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Abstract
We investigale model dependence of bounding estimates of TID degradation as a function of sample size and statistical mode] and develop a method for selecting the model with greatest predictive power.
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Introduction

Radiation Hardness Assurance (RHA) methodologies against
Total lonizing Dose (TID) degradation impose rigorous statistical
treatments for data from a part's Radiation Lot Acceptance Test
(RLAT)[1] and/or its historical performance.[2],[3],[4],[5] However, no
similar methods exist for using “similarity” data—that is, data for
similar parts fabricated in the same process as the part under
qualification. This is despite the greater difficulty and potential risk in
interpreting of similarity data. In this work, we develop methods to
disentangle part-to-part, lot-to-lot and part-type-to-part-type variation.
(See figure 1.) The methods we develop apply not just for qualification
decisions, but also for quality control and detection of process
changes and other “out-of-family” behavior.

We begin by discussing the data used in the study and the
challenges of developing a statistic providing a meaningful measure of
degradation across multiple part types, each with its own performance
specifications. We then develop analysis techniques and apply them
to the different data sets.
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Data Sources

All data are from public sources. Data in Table | are for op amps
fabricated in the Analog Devices Inc. (ADI) bipolar process (minimum
feature size >2.5 pm) in are from the Goddard Space Flight Center
(GSFC) Radhome database.[6] Data in Table Il are form reports for
low-dose-rate (LDR) tests of Linear Technologies Corp. (LTC)
RH-series parts, and are available on LTC's website.[7] Table Il
contains a subset of data from Table l—those parts where we have
data for multiple wafer lots, allowing us to explore lot-to-lot and
part-type-to-part-type as well as part-to-part variation, For each lot, we
determined mean failure dose (Tables | and lil) or mean %Albias
(Table 1) and the standard deviations ¢ about those means (where
data allows).

Table I: Lot Failure levels for Table Iil: MultiLot samples
ADI bipolar (>2.5 pm) Op Amps for ADI bipolar (>2.5 ym) Op Amps
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Table II: Albias for LTC RH
Series Parls
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Inference with Limited Data

Because similarity data must consider TID degradation in many
different part types to have a chance of reliably bounding degradation
for flight parts, a first challenge is developing a meaningful criterion for
comparing degradation across such different part types. For the parts
in Tables | and Ill, we defined failure dose as that where the first
parameter (usually input bias current) goes out of specification for the
device,

Such a criterion will not work for the parts in Table Il, since
none of the parts failed parametrically or functionally at even the
highest dose of 50 krad(Si). Here, we compare the parts’ parametric
degradation—with input bias current change (Albias) as a proxy for
degradation. Because pre-rad specifications of Ibias varied widely
from part to part, we normalized changes of input bias current to
pre-rad values (%Albias). Although only one lot of data exists for each

part type on the LTC site, previous data show the series performance -

to be exceptionally stable from lot to lot. For instance, 38 lots of
RH1014 op amps showed that mean lot Albias varying by less than
2x,

Our model seeks to quantify types of variation that affect TID
response for parts fabricated in a particular process. These include
part-to-part variation within the flight lot, which can be estimated using
RLAT data,[1] or bounded to a desired confidence level if lot-todot
varation is well behaved and we have sufficient representative
historical data.[2],(3],[4].[5] Likewise, unless the flight parts are
somehow exceptional, we can bound lot-to-ot varation with a
sufficiently large dataset of data for similar parts. )

Many of the parts in Table | include data only for a single lot.
Under these circumstances, it is not possible to disentangle lot-to-ot
variation from the part-type-to-part-type contribution. Rather, the rank
plot in Fig. 1 shows the probability (abscissa) that the mean failure
dose of a random lot of a random part type drawn from the process
will exceed a given failure dose. Assuming Weibull statistics (which
give the best fit), with 950% confidence 90% of lots in the process will
not exhibit first failure below 3.3 krad(Si), and a “typical” lot of a typical
part will be hard to >13 krad(Si).

As such, the larger pari-to-part variation exhibited by the
RH27—sufficient to distort the lognormal fit to the other parts (Fig. 2a,
b) is surprising. The part also exhibited the highest overall %Albias,
although this was less out of family (Fig. 2c). A query to LTC[8]
revealed that the RH27 uses the same design as the commercial
OP27 with no additional design hardening. As such, it likely
represents a worst case for parts fabricated in the RH process.
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+ [0 Serios wio RH2T / * RH Saries wf RH27

i —

* Mhaan Afsins WRHIT
200% 1 ™ Mean Albies wio RHIT

i = Y/
i'“ P4

Fig. 2 a) Moslt op amps in LTC's RH seres exhubil ide parido-pari variation, as indicated by the
low standard deviations on %Albias. b) RH27 part-to-part variation is out of family due to lack of
designdevel hardening, c) The RH27 also exhibits the most mean degradation, afthough it is not
out of family in this regard.

Even minimally restrictive data can constrain failure
distributions. For the data in Table IV on ADI's eXtra-Fast
Complementary Bipolar (XFCB) process,[9] we know only that all
parts performed within specifications at the highest dose (column [ll).
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not exhibit first failure below 3.3 krad(Si), and a “typical lot of a typical
part will be hard to >13 krad(Si).

~ 50 8
2 *+ Lot Mean Fallure Dose ’ T 4 * Lot Sigma -
Eﬂ"—mmm T i..- /
a0 ||~ Welxl Trena A s
g — Lognormal Trend / '§ +H
%m % s & 39
= - 2.
3w o
04+52— " v v 0+ v v v
0 02 04 06 <5 ] 1 0 02 04 08 08 1
Probability (Felurs Dosex<) Probabilty Sigma <

Fig. 1 Rank plots showing probabilty that a random lot of &
random part type will remain within spectfication up o a
given fallure dose (lefl) and the distribution of part-to-part
standard deviations about those mean failure doses (rightl

Likewise, for all part types in Table II, we have data only for a
single lot. However, while we have data for fewer part types, the RH
series is a radiation hardened process, so we expect lot-to-lot and
part-to-part variation to be moderate,

Even minimally restrictive data can constrain failure
distributions. For the data in Table IV on ADI's eXtra-Fast
Complementary Bipolar (XFCB) process,[9] we know only that all
parts performed within specifications at the highest dose (column lii).
A fit of this data to a lognormal distribution (Fig. 3) shows that >99% of
parts in the XFCB process will survive 45 krad(Si) with 90%
confidence,

" Tablo IV: Suspension data © .
for ADI XFCB Parts

rats e Szt

poss4ofADC (50 m“mmm

ADB640 >1000
[AD2042]ADC >1000
>103
184 MUX | (0.06 rad(siys)
ADB0S3 > 10
Fig.3 Lognommal fits of Tablo IV's data indicato
AD8001 >100 5 that for parameters ( p.o) consistenl with 90%
| (1.5 rad(SiVs) confidence (unshaded colls) estimate >99% of
>1000 parts will pass at 45 krad(Si) unless the fadure
jADee: (150 ragisivs)| 5 distribution |s exceptionally broad (0>0.9),

Op e 5 which is very unBkely given prior experience.
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Inference with Limited Data

The data for multiple lots of multiple ADI op amps in Table Ill allow us to estimate the
contributions of part-to-part, lot-to-lot and part-type-to-pari-type variation to the overall
variability of the process. The method used is illustrated in figure 4. For each part type, we
use likelihood to fit the lot~mean failure doses and standard deviations (which are positive
definite) to their own lognormal distributions, resulting in 4 parameters as in reference 5 (2.
lognormal means y, and y, and 2 lognormal standard deviations o, a,). Then we fit each of
these 4 parameters to appropriate distributions across part types, resulting in 8 parameters
describing mean behavior of the process and its variation. Given that our small dataset will
likely not produce a sharply peaked maximum in the likelihood, we use a likelihood-based

model averaging approach similar to that in reference 10.
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Fig. 4. A) Fitting tho moan failure dose
and standard deviation (p;,0y) for each lot
] of each part type i to lognormal
distributions yields 4 parameters for each
part-type (. 0u.Ha.%)
B) Fitting these paramelors across part
types to suitable distributions yields 4
distibutions that describe process
variability in terms of 8 parameters
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C) Becausc our dataset is small, rather
than taking the single parametlric
combination that maximizes likeihood, we
perform a weighted average over all
parametric combinations using lkelihood
weights:
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The resulting distributions describe
part-to-pant, loHodot variation over the
range of similar part types in the process.
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Looking at the data in Table Ill, the OP400 appears to exhibit greater
variability=especially in its part-to-part standard deviation—from one lot to the next. As for
the RH27, we initially perform the procedure outlined above excluding the OP400 data.
Fig. 5 summarizes the various contributions to variability within the process. . These curves
indicate that while the OP400 is unremarkable in terms of its mean hardness, variation of
mean hardness or expected part-to-part variation, part-to-part variation fluctuation is at the
90% WC level for the process—indicating that the part could be out of family for the
process. Certainly, inclusion of the OP400 results in much broader distributions except for
that of mean hardness.
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Fig. 5 Variability across Analog Devices’ bipolar (>2.5 ym) OP series op amps is summarized by four distributions: 1) the variation
of mean hardness over part-types ({pfail)}=blue diamonds in a), 2) the variation of mean hardness from lot to lot (plotted as (ApV
(U1ay) magenta squares in a)—and scaled upward by a factor of 150 to plot it on the same scale as the mean), 3) the expected part
to part standard deviation (oy,) (blue diamonds in b) and 4)how the pari-lo-part standard dewahm varies from lot-todot (plotted as
{Aopp ) (04) in the magenta squares in b).
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Conclusions and Recommendations

We have examined how to use statistical analysis of parts fabricated in a
process to bound likely radiation behavior of other parts in the process for which
we do not yet have data.

Our research has revealed that even with small, imperfect data sets drawn
from public sources, we can place meaningful bounds and draw useful
conclusions about likely performance of flight parts. If we have at |east three lots
of data for three different part types in a process, we can begin to disentangle the
various contributions to variability for the process—part-to-part and lot-to<dot
variation, as well as how susceptibilities to these variations change from one
part type to another in the process. However, even if we lack data for multiple
lots, we can still draw useful conclusions about how an “average lot" will
perform—especially for radiation hardened part families like the LTC RH series of
op amps. Indeed, if the process is sufficiently hard, even suspension data like
that for the ADI XFCB process in table IV can place useful constraints on
possible failure distributions.

Although the method outlined here is sufficiently robust to yield useful
results even with small, imperfect datasets, its utility will improve with increasing
dataset size or quality. In particular, if data are drawn from a long time series of
lot qualification efforts with consistent test procedures and conditions, much
greater precision is possible. Moreover, while here we have concentrated on a
single parameter (Ibias), one can apply it across the board to all parameters or to
different definitions of failure (e.g. functional).

In addition to use in qualification, the method should also find application in
quality assurance—e.g. identification of process changes and other “out of
family” behavior. Finally, because the method allows the various contributions to
variability in a process to be estimated separately, its results can serve as useful
input for physics-based modeling and process and circuit hardening efforts.
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