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o Abstract
A 1 GeV/u 5%Fe ion beam allows for true 90" tilt irradiations of various adtt
microelectronic components and reveals relevant upset trends for an
abundant element at the galactic cosmic ray (GCR) flux-energy peak.
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Static Random Access Memories
Note: Different scales for Vendor A's S01 and Vendor B's bulk CMOS
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+ Test setup for normal incidence irradiations
=> Solid lines connect 1 GeV/u MBU cross sections € » Taking advantage of 8 in x 8 In beam spot
+ Vendor A's SOI devices have both a data pattern and orientation dependence * Two setups in front and one in back
* Vendor B's bulk CMOS device only has an orientation dependence * Roughly £ 2% uniformity over this area

Pattern and orientation sensitlvities arise from SOI's inter-device isolation and bit cell layout.
g These features are muted in bulk CMOS due to charge transport.
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