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Motivation

Objective:
To construct a general, detailed physics-
based surface chemistry framework in 
DSMC.

Ablative TPS

3

Adsorption and reactive 
surface chemistry 

Somorjai and	Li	[1]

Image	credit:	NASA

1 Somorjai, G. A., & Li, Y. (2010). Introduction to surface chemistry and catalysis. John Wiley & Sons.
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Surface chemistry at 
microporous catalysts. 

Flow through porous 
preform carbon TPS 
using SPARTA. Image	credit:	Sandstorm



Computational framework

• Finite-rate	surface	chemistry	module	with	adsorption.
• Includes	gas-surface	(GS)	and	pure-surface	(PS)	reactions.
• Both	catalytic	and	surface	altering	(oxidation/nitridation)	reactions.
• Computational	framework	similar	to	Marschall,	Maclean	and	Driver	[2,3]	for	CFD.
• Langmuir	model	for	surface	sites.
• Diverse	VDF	and	angular	distributions	of	scattered	products.

taken	from	Marschall and	Maclean	[1].
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3 Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011.
3 MacLean, M., Marschall, J., & Driver, D. M. (2011). Finite-rate surface chemistry model, II: coupling to viscous Navier–Stokes code. AIAA Paper, 
3784, 2011.



Computational framework

• Particles	adsorbed	(deleted)	and	desorbed	(created),	surface	element	stores	
adsorbed	particle	concentration.	

• Surface	reactions	based	on	concentration	within	surface	element.	
• Multiple	triangulated	elements	(like	cells)	on	surfaces
• Surface	treated	as	infinite	sink	and	source.
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taken	from	Marschall and	Maclean	[1].

3 Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011.
3 MacLean, M., Marschall, J., & Driver, D. M. (2011). Finite-rate surface chemistry model, II: coupling to viscous Navier–Stokes code. AIAA Paper, 
3784, 2011.



List of gas-surface (GS) reactions

• Reactants	include	both	gas-phase	and	surface	species.
• Comprehensive	set	of	reactions	– Includes	reaction	types	from	thermal	regime	and	

hyperthermal	energy	regime.	
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Modeling of gas-surface (GS) reactions

• GS	reaction	probability	computed	when	gas-phase	species	hits	surface.
• Reaction	probability	function	of:	

o rate	constant
o gas-phase	particle	properties	(energy,	angle,	etc.)
o surface	conditions	(temperature,	surface	coverage,	etc.)
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List of pure-surface (PS) reactions

• Pure-surface	(PS)	reactants	include	only	surface	species	(adsorbed	and	bulk).
• Comprehensive	set	of	reactions
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Modeling of pure-surface (PS) reactions

• Characteristic	time	computed	between	two	reactions:	Time	counter	method	[5].	
• Characteristic	time	function	of	

o reaction	rate	constant
o surface	conditions	(temperature,	surface	coverage,	etc.).	

• Time	counter	algorithms	developed	to	be	independent	of	dt.
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5 Molchanova, A. N., A. V. Kashkovsky, and Ye A. Bondar. "A detailed DSMC surface chemistry model." In AIP Conference Proceedings, 
vol. 1628, no. 1, pp. 131-138. AIP, 2014.



Scattering models

Current	models	in	SPARTA
• Specular
• Diffuse	– Maxwell’s	model

Additional	models	
• CLL	model	– Thermal	regime	scattering.	Can	capture	full	and	partial	energy	and	

angular	accommodation	[6,7].
• Thermal	– Thermally	desorbing	particles	with	options	such	as	desorption	

barrier,	additional	energy	transfer	due	to	local	hot-spots,	etc.	
• Impulsive	– Structural	regime	scattering	at	hyperthermal	energies.	
• Non-thermal	– Transition	regime	scattering	at	superthermal energies	without	

full	accommodation	
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6 Lord, R. G. (1991). Some extensions to the Cercignani–Lampis gas–surface scattering kernel. Physics of Fluids A: Fluid Dynamics, 3(4),706-710.
7 Lord, R. G. "Some further extensions of the Cercignani–Lampis gas–surface interaction model." Physics of Fluids 7, no. 5 (1995): 1159-1161.
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Application: Simulating Beam Experiments

• Perform	DSMC	simulations	of	the	molecular	beam	experiments	of	oxygen	beam	on	
Vitreous	Carbon	and	Fiberform – Murray	et	al [8].		

• Used	to	construct	a	finite	rate	surface	oxidation	model	for	carbon.		

8 Murray, V J., et al. "Inelastic and Reactive Scattering Dynamics of Hyperthermal O and O2 on Hot Vitreous Carbon Surfaces." The Journal 
of Physical Chemistry C 119.26 (2015): 14780-14796.
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Vitreous carbon

FiberForm®

SPI Supplies

100	µm

25	mm

Murray et al [1]



O	:	1875K
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Application: Vitreous Carbon Oxidation Model
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CO	:	1875K

O	:	1875K

CO	:	1875K



13DSMC Workshop 201728th Aug 2017

Application: Vitreous Carbon Oxidation Model



Parallelization in DSMC with surface chemistry

• Particle	on	the	surface	is	not	stored	
anymore	(only	its	information).	

• Parallelization	based	on	the	number	of	
(gas-phase)	particles	will	not	work	in	
DSMC-SC

• Two	additional	kernels	in	DSMC-SC	– GS	
and	PS	reactions.

• Move	
• Collide
• GS	(Gas-Surface)	reactions	
• PS	(Pure-Surface)	reactions
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Flowchart for DSMC-SC

Move	

Collide PS

PSGSif	(surf)

if	(surf)

M	+	GS

C	+	PS
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Two	strategies

1. Keep	track	of	the	computer	time	taken	for	each	cell	for	a	length	of	time.	Use	
this	information	to	partition	the	domain.	
• Works	well	for	steady	flows		

2. Do	approximate	calculation	of	the	computer	time	based	on	the	information	
and	the	algorithms	used.	
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Parallelization in DSMC with surface chemistry



• tmove =	O(np *	nsteps){moving}	+	O(np *	nsteps)	{boundary/surface/cell	exit	check}

• tGS =	O(nsurf-elem *	nsurf-coll *	nGS-rxns)

• tcollide =	O
!.#	∗	&'(

)*
	{assuming	temperature	and	cross	sections	are	constant}

• tPS =	O(nsurf-elem *	nPS-rxns-occur *	nPS-rxns)								nPS-rxns-occur =		
+,

-./0	(!.#)
∑ 𝜈5	
&678
59:

• 𝜈5	α Rate(k,	nad,	order)		

tC+PS =	tcollide +	tPS tM+GS =	tmove +	tGS
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Parallelization in DSMC with surface chemistry



Summary
• A general, detailed, physics-based surface chemistry framework implemented in

SPARTA.

• Includes physical models with wide range of options and parameters to capture
all/several experimental details.

• Capability to model various types of surface reactions accommodating user
specified reaction rates, surface properties and parameters.

Future Work
• Further develop and implement parallelization strategies.

• Extension to ionization and plasma chemistry.

• Inclusion of internal energy scattering details.

Summary and Future Work
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Adsorption modeling

• Adsorption:	direct	and	indirect	pathways.
• Direct	adsorption	captured	using	the	Langmuir	model.
• Kisliuk model[4]	used	to	capture	the	indirect	adsorption	pathway.
• Keq is	an	additional	parameter	– Keq=0	gives	the	Langmuir	model.	
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4 Kisliuk, P. "The sticking probabilities of gases chemisorbed on the surfaces of solids." Journal of Physics and Chemistry of Solids 3, no. 1-2 
(1957): 95-101.



Eley-Rideal (ER) mechanism : A(s) + B à AB + (s) 

Langmuir-Hinshelwood (LH) mechanism : A(s) + B(s) à AB + 2(s) 

From: UCL Center for Cosmic Chemistry and Physics

Surface Reaction Mechanisms
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The Langmuir-Hinshelwood mechanism has two steps –

Based on time scale arguments 4 types of LH mechanisms can be defined

1. tf << τ td << τ - Prompt thermal mechanism

2. tf ~ τ td << τ - LH limited by formation
3. tf << τ td ~ τ - LH limited by desorption
4. tf ~ τ td ~ τ - LH limited by both desorption and formation

Time	scale	of	interest		=			τ𝑂 𝑔 + 𝐶 𝑏 		→ 𝐶𝑂 𝑔 															(3)

𝑂 𝑔 + 𝑠 					→ 𝑂 𝑠

𝐶𝑂 𝑠 														→ 𝐶𝑂 𝑔 + 𝑠 				(2) 	− 		 𝑡+

𝑂 𝑠 + 𝐶 𝑏 		→ 𝐶𝑂 𝑠 																 1 	− 		 𝑡G

Formation	
Desorption

Different Types of LH Mechanisms

𝑂 𝑠 – Reactant
𝐶𝑂 𝑠 – Intermediate
𝐶𝑂 𝑔 – Product
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