

Development of a Detailed Surface Chemistry Framework in SPARTA

K. Swaminathan-Gopalan,^a A. Borner,^b K. A. Stephani^a ^a Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, b Science and Technology Corporation at NASA Ames Research Center

Acknowledgments

This work was performed under the Entry System Modeling Project (M. J. Wright, Project Manager) for the NASA Game Changing Development (GCD) Program and supported by NASA Grant NNX15AU92A.

27th – 30th Aug 2017 DSMC Workshop 2017 Santa Fe, NM

- Motivation
- **Overview of Surface Chemistry Framework**
- Gas-Surface (GS) Reactions
- Pure-Surface (PS) Reactions
- Applications
- **Parallelization strategies**
- **Summary and Future Work**

Motivation

Adsorption and reactive surface chemistry

Surface chemistry at microporous catalysts.

Ablative TPS Image credit: NASA

Flow through porous preform carbon TPS using SPARTA. Image credit: Sandstorm

1 Somorjai, G. A., & Li, Y. (2010). Introduction to surface chemistry and catalysis. John Wiley & Sons.

28th Aug 2017 **DSMC Workshop 2017**

Somorjai and Li [1]

Objective:

To construct a general, detailed physicsbased surface chemistry framework in DSMC.

- Finite-rate surface chemistry module with adsorption.
- Includes gas-surface (GS) and pure-surface (PS) reactions.
- Both catalytic and surface altering (oxidation/nitridation) reactions.
- Computational framework similar to Marschall, Maclean and Driver [2,3] for CFD.
- Langmuir model for surface sites.
- Diverse VDF and angular distributions of scattered products.

3 Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011. 3 MacLean, M., Marschall, J., & Driver, D. M. (2011). Finite-rate surface chemistry model, II: coupling to viscous Navier–Stokes code. AIAA Paper, 3784, 2011.

28th Aug 2017 **the Auge 2017 DSMC Workshop 2017 4**

- Particles adsorbed (deleted) and desorbed (created), surface element stores adsorbed particle concentration.
- Surface reactions based on concentration within surface element.
- Multiple triangulated elements (like cells) on surfaces
- \bullet Surface treated as infinite sink and source.

3 Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011. 3 MacLean, M., Marschall, J., & Driver, D. M. (2011). Finite-rate surface chemistry model, II: coupling to viscous Navier–Stokes code. AIAA Paper, 3784, 2011.

28th Aug 2017 **5 DSMC Workshop 2017** 5

- Reactants include both gas-phase and surface species.
- Comprehensive set of reactions Includes reaction types from thermal regime and hyperthermal energy regime.

- \circ gas-phase particle properties (energy, angle, etc.)
- \circ surface conditions (temperature, surface coverage, etc.)

Modeling of gas-surface (GS) reactions

- Pure-surface (PS) reactants include only surface species (adsorbed and bulk).
- Comprehensive set of reactions

- Characteristic time computed between two reactions: Time counter method [5].
	- Characteristic time function of
		- \circ reaction rate constant
		- \circ surface conditions (temperature, surface coverage, etc.).

$$
\tau_{reac} = \frac{-log(Rn)}{\nu_{reac}}
$$

Time counter algorithms developed to be independent of dt.

5 Molchanova, A. N., A. V. Kashkovsky, and Ye A. Bondar. "A detailed DSMC surface chemistry model." In AIP Conference Proceedings, vol. 1628, no. 1, pp. 131-138. AIP, 2014.

28th Aug 2017 **DSMC Workshop 2017** 9

Current models in SPARTA

- **Specular**
- Diffuse Maxwell's model

Additional models

- CLL model Thermal regime scattering. Can capture full and partial energy and angular accommodation [6,7].
- Thermal Thermally desorbing particles with options such as desorption barrier, additional energy transfer due to local hot-spots, etc.
- Impulsive $-$ Structural regime scattering at hyperthermal energies.
- Non-thermal Transition regime scattering at superthermal energies without full accommodation

⁶ Lord, R. G. (1991). Some extensions to the Cercignani–Lampis gas–surface scattering kernel. Physics of Fluids A: Fluid Dynamics, 3(4),706-710. 7 Lord, R. G. "Some further extensions of the Cercignani–Lampis gas–surface interaction model." Physics of Fluids 7, no. 5 (1995): 1159-1161.

- Perform DSMC simulations of the molecular beam experiments of oxygen beam on Vitreous Carbon and Fiberform – Murray *et al* [8].
- Used to construct a finite rate surface oxidation model for carbon.

8 Murray, V J., et al. "Inelastic and Reactive Scattering Dynamics of Hyperthermal O and O2 on Hot Vitreous Carbon Surfaces." *The Journal of Physical Chemistry C* 119.26 (2015): 14780-14796.

28th Aug 2017 **DSMC Workshop 2017**

Application: Vitreous Carbon Oxidation Model

Parallelization in DSMC with surface chemistry

- Particle on the surface is not stored anymore (only its information).
- Parallelization based on the number of (gas-phase) particles will not work in DSMC-SC
- Two additional kernels in DSMC-SC $-$ GS and PS reactions.
- **Move**
- **Collide**
- **GS (Gas-Surface) reactions**
- **PS (Pure-Surface) reactions**

Two strategies

- 1. Keep track of the computer time taken for each cell for a length of time. Use this information to partition the domain.
	- Works well for steady flows
- 2. Do approximate calculation of the computer time based on the information and the algorithms used.

- $t_{move} = O(n_p * n_{steps})$ {moving} + $O(n_p * n_{steps})$ {boundary/surface/cell exit check}
- $t_{GS} = O(n_{\text{surf-element}} * n_{\text{surf-coll}} * n_{GS-rxns})$
- $t_{\text{collide}} = 0$ $0.5 * n_p^2$ V_c {assuming temperature and cross sections are constant}

•
$$
t_{PS} = O(n_{\text{surf-element}} * n_{PS-rxns-occur} * n_{PS-rxns})
$$
 $n_{PS-rxns-occur} = \frac{dt}{-\log(0.5)} \sum_{i=1}^{n_{rxn}} v_i$

• v_i α Rate(k, n_{ad} , order)

$$
t_{C+PS} = t_{\text{collide}} + t_{\text{PS}} \qquad t_{M+GS} = t_{\text{move}} + t_{\text{GS}}
$$

Summary

- A general, detailed, physics-based surface chemistry framework implemented in **SPARTA**
- Includes physical models with wide range of options and parameters to capture all/several experimental details.
- Capability to model various types of surface reactions accommodating user specified reaction rates, surface properties and parameters.

Future Work

- Further develop and implement parallelization strategies.
- Extension to ionization and plasma chemistry.
- Inclusion of internal energy scattering details.

• This work was performed under the Entry System Modeling Project (M. J. Wright Project Manager) at the NASA Game Changing Development (GCD) Program and supported by NASA Grant NNX15AU92A.

Backup Slides

- Adsorption: direct and indirect pathways.
- Direct adsorption captured using the Langmuir model.
- Kisliuk model[4] used to capture the indirect adsorption pathway.
- K_{eq} is an additional parameter K_{eq} =0 gives the Langmuir model.

4 Kisliuk, P. "The sticking probabilities of gases chemisorbed on the surfaces of solids." Journal of Physics and Chemistry of Solids 3, no. 1-2 (1957): 95-101.

28th Aug 2017 **DSMC Workshop 2017** 21

Eley-Rideal (ER) mechanism : $A(s) + B \rightarrow AB + (s)$

Langmuir-Hinshelwood (LH) mechanism : $A(s) + B(s) \rightarrow AB + 2(s)$

From: UCL Center for Cosmic Chemistry and Physics

The Langmuir-Hinshelwood mechanism has two steps – Formation Desorption

 $\frac{O(g) + C(b) \rightarrow CO(g)}{2}$ (3) Time scale of interest = T $Q(g) + (s) \rightarrow O(s)$ $CO(s)$ $\rightarrow CO(g) + (s)$ (2) $- t_d$ $\theta(s) + C(b) \rightarrow C\theta(s)$ (1) – t_f

 $O(s)$ – Reactant $CO(s)$ – Intermediate $CO(g)$ – Product

Based on time scale arguments 4 types of LH mechanisms can be defined

- 1. $t_f \ll \tau$ $t_d \ll \tau$ Prompt thermal mechanism
- 2. $t_f \sim \tau$ $t_d \ll \tau$ LH limited by formation
- 3. $t_f \ll \tau$ $t_d \sim \tau$ LH limited by desorption
- 4. $t_f \sim \tau$ $t_d \sim \tau$ LH limited by both desorption and formation