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Motivation
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1Somorjai, G. A., & Li, Y. (2010). Introduction to surface chemistry and catalysis. John Wiley & Sons.
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Computational framework

* Finite-rate surface chemistry module with adsorption.

* Includes gas-surface (GS) and pure-surface (PS) reactions.

* Both catalytic and surface altering (oxidation/nitridation) reactions.

* Computational framework similar to Marschall, Maclean and Driver [2,3] for CFD.
* Langmuir model for surface sites.

» Diverse VDF and angular distributions of scattered products.

Environments Phases Site Sets
Gas GP1 N sp1 =3
“ ) Nss, sp2 =2
Surface l SP1 l SP2 l SP3 Nep =3 N, sp3 = 1
Bulk ‘ BP1 BP2 ‘ Ngp =2

taken from Marschall and Maclean [1].

SP1 SP2 1 SP3

3 Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011.
3MacLean, M., Marschall, J., & Driver, D. M. (2011). Finite-rate surface chemistry model, Il: coupling to viscous Navier—Stokes code. AIAA Paper,
3784, 2011.
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Computational framework

* Particles adsorbed (deleted) and desorbed (created), surface element stores
adsorbed particle concentration.

e Surface reactions based on concentration within surface element.
 Multiple triangulated elements (like cells) on surfaces

e Surface treated as infinite sink and source.

Environments Phases Site Sets
Gas GP1 Ny, sp1 =3
< _ ) Nss, sp2 = 2
Surface l SP1 l SP2 l SP3 Nep =3 N, sp3 = 1
Bulk ‘ BP1 BP2 ‘ Ngp =2 :
i l
taken from Marschall and Maclean [1]. Sp1 E Sp2 E sp3

3 Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011.
3MacLean, M., Marschall, J., & Driver, D. M. (2011). Finite-rate surface chemistry model, Il: coupling to viscous Navier—Stokes code. AIAA Paper,
3784, 2011.
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@ List of gas-surface (GS) reactions

I

Reactants include both gas-phase and surface species.
Comprehensive set of reactions — Includes reaction types from thermal regime and

hyperthermal energy regime.

Symbol Reaction type Examples
e : O(g) + (s) — O(s)
1: AA Associative Adsorpt
ssociative Adsorption 0a(q) + (s) —3 Oa(5)
2: DA Dissociative Adsorption 02(092)(9)(_{_)2;_0_() )2_0*_(0)( 9)
. o O2(g) + (s) — 20(g) + (s)
3: DIS Dissociation COy(g) + (s) —s 20(g) + (s) + C(b)
4: LH1 Langmuir-Hinshelwood type 1 O((Z)) + ((S)) M (( ; : (C)'ZO(?;)++2((:))
- , e oo o O(g) + (s) + O(s) — Oz(s) + 2(s)
5: LH3 Langmuir-Hinshelwood type 3 0(g) + (s) + C(b) —s CO(s) + (s)
6: CD Condensation C3(g) + 3(s) — 3C(b) + 3(s)
7: ER Eley-Rideal CO(g) + O(s) — CO2(g) + (s)
. . _ O(g) + CO(s) — CO(g) + O(s)
8: CI Collision Induced Ar(g) + O(s) —> Ar(g) + O(g) + (s)
DSMC Workshop 2017 6
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@ Modeling of gas-surface (GS) reactions ][

* @GS reaction probability computed when gas-phase species hits surface.
* Reaction probability function of:

o rate constant

o gas-phase particle properties (energy, angle, etc.)

o surface conditions (temperature, surface coverage, etc.)

Reaction type Sample Probability

. A(g) + (s) — A(s)
Adsorption P = S%0) = f(So,0,a)

As(g) + () —> 2A(s)

Adsorption mediated reactions: As(g) + (s8) — 2A(g) + (s) P = Pui* kreac
Dissociation, LH1, LH3, Condensation | A(g) + (s) + B(s) — AB(g) + 2(s) P = Pud * kreac * —c’.’[‘—\
Eley-Rideal A(g) + B(s) — AB(g) + (s) P = 2peq.~2N L
PR IEPRP v ) X | . — 1. \ FN-“ mo nin
Collision Induced A(g) + B(s) — Alg) + B(g) + (s) | P = k. ac—g— (Ein)" cos™(0)
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@ List of pure-surface (PS) reactions ][

e Pure-surface (PS) reactants include only surface species (adsorbed and bulk).
 Comprehensive set of reactions

Symbol Reaction type Examples

. : O(s) — O(g) + (s)

1: DS Desorption Os(s) —> Oa(g) + (5)

. . . N(s)+O(s) — NO(g) + 2(s)
2: LH2 Langmuir-Hinshelwood type 2 0(s) + C(b) —s CO(g) + (s)
3: LH4 Langmuir-Hinshelwood type 4 ggg i(C)EZ; : gOO((.:))i ((j))
4: SB Sublimation 3C(b) + 3(s) — C3(g) + 3(s)
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@ Modeling of pure-surface (PS) reactions ][

* Characteristic time computed between two reactions: Time counter method [5].
* Characteristic time function of

o reaction rate constant

o surface conditions (temperature, surface coverage, etc.).

—log(Rn)

I‘/T'(f (c

* Time counter algorithms developed to be independent of dt.

Tl'(:‘-(l -

Reaction type Sample Frequency
. dn 4 ()
Desorption 22 = —kreqen 4
A(s) — A(g) + (s)
Sublimation Vreac = kreacN A,
dn‘,l(s) _ dnb»(,,) _ _l .
. ‘ . dt _ dt - vreac't A
LH-2, LH-4 | A(s)+ B(s) — AB(g) + 2(s)
Vreac = kreacN A(s)INB(s Fs\
S,

5Molchanova, A. N., A. V. Kashkovsky, and Ye A. Bondar. "A detailed DSMC surface chemistry model." In AIP Conference Proceedings,
vol. 1628, no. 1, pp. 131-138. AIP, 2014.
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Scattering models

Current models in SPARTA

e Specular

e Diffuse — Maxwell’s model

Additional models

* CLL model — Thermal regime scattering. Can capture full and partial energy and
angular accommodation [6,7].

 Thermal — Thermally desorbing particles with options such as desorption
barrier, additional energy transfer due to local hot-spots, etc.

* Impulsive — Structural regime scattering at hyperthermal energies.

* Non-thermal — Transition regime scattering at superthermal energies without
full accommodation

6Lord, R. G. (1991). Some extensions to the Cercignani—-Lampis gas—surface scattering kernel. Physics of Fluids A: Fluid Dynamics, 3(4),706-710.
7Lord, R. G. "Some further extensions of the Cercignani—-Lampis gas—surface interaction model." Physics of Fluids 7, no. 5 (1995): 1159-1161.
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Application: Simulating Beam Experiments

* Perform DSMC simulations of the molecular beam experiments of oxygen beam on
Vitreous Carbon and Fiberform — Murray et al [8].
* Used to construct a finite rate surface oxidation model for carbon.

25 mm

Vitreous carbon
SPI Supplies

Electrical current
delivered through

copper cooling lines

Water-cooled
copper blocks

100 um

Murray et al [1]

FiberForm®

8 Murray, V J., et al. "Inelastic and Reactive Scattering Dynamics of Hyperthermal O and O2 on Hot Vitreous Carbon Surfaces." The Journal
of Physical Chemistry C 119.26 (2015): 14780-14796.
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Application: Vitreous Carbon Oxidation Model ][
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Application: Vitreous Carbon Oxidation Model ][

Mechanisms Reaction Rate constant (k)
Adsorption 0 + (s) — O(s) /L = 0.87
LH3 CO{a} formation | O + (s) + O'(s) + C(b) — CO{a}(s) + O'(s) Tl!»' ”;_bnlll 3.8027 exp(— ‘_’7‘.2"_'3)
LH3 CO{b} formation | O + (s) + O'(s) + C(b) — CO{b}(s) + O'(s) | - %’} 8.7351 exp(—14652)
LH1 O formation O(IS) + (s) — O(T'D) + (s) 4_!::\/ EkoTs 4 3.0237 exp(— 30?:'5)
LH1 CO formation O + (s) + O'(s) + C(b) — CO + (s) + O'(s) TIF\/TE' + 73.006 exp(—57=2)
LH1 CO; formation O +0(s)+40'(s)+C(b) — CO2+(s5)+40'(s) Tgﬂ/ BTy 4 53.007 ex; p(— 3}3“)

Desorption
LH3 CO{a} desorption
LH3 CO{b} desorption

O(s) — O + (s)

CO{a}(s) — CO{a} + (s)

CO{b}(s) —s CO{b} + (s)

270567. 8€_rp(

8573.7 t".rp(

0.70598 exp (——'T—

28t Aug 2017
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@ Parallelization in DSMC with surface chemistry ][

* Particle on the surface is not stored
anymore (only its information).

* Parallelization based on the number of
(gas-phase) particles will not work in
DSMC-SC

 Two additional kernels in DSMC-SC — GS
and PS reactions.

* Move

* Collide

* @GS (Gas-Surface) reactions
* PS (Pure-Surface) reactions

|

Oold
partition

I Y A

Su rface/
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New partition|

DSMC

DSMC-SC
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@ Flowchart for DSMC-SC

I

l l()
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@ Parallelization in DSMC with surface chemistry ][

Two strategies

1. Keep track of the computer time taken for each cell for a length of time. Use
this information to partition the domain.
*  Works well for steady flows

2. Do approximate calculation of the computer time based on the information
and the algorithms used.
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@ Parallelization in DSMC with surface chemistry ][

* toove = 0N, * Ny J{moving} + O(n, * ny. ) {boundary/surface/cell exit check}
* tGS = O(nsurf-elem * nsurf—coll * nGS-rxns)
0.5 *n3 . )
tcollide = O( ) {assummg temperature and cross sections are constant}
c
dt n
* tPS = O(r]surf-elem * nPS-rxns-occur * nPS-rxns) r]PS-rxns-occur = —log(0.5) Z Tylm vl
* v; a Rate(k, n_y, order)
tC+PS = tcollide + tPS tM+GS = tmove + tGS
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@ Summary and Future Work

Summary

* A general, detailed, physics-based surface chemistry framework implemented in
SPARTA.

* Includes physical models with wide range of options and parameters to capture
all/several experimental details.

« Capability to model various types of surface reactions accommodating user
specified reaction rates, surface properties and parameters.

Future Work

* Further develop and implement parallelization strategies.
« Extension to ionization and plasma chemistry.

 Inclusion of internal energy scattering details.
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Adsorption modeling

* Adsorption: direct and indirect pathways.

* Direct adsorption captured using the Langmuir model.

* Kisliuk model[4] used to capture the indirect adsorption pathway.
* Kgq is an additional parameter — K,,=0 gives the Langmuir model.

1
0.8} I
S(0) _ (14 K¢) (1 —6)° —— k=10
S(0) 1+ Keg(1-60)* € 06 ——— K= infiny
@ ' -
* ) i K=-0.9
K L ads (\D’ 0.4_ e K=
eq - *
des 0.2 F
|

0 02 04 06 08 1
Surface Coverage 6

4 Kisliuk, P. "The sticking probabilities of gases chemisorbed on the surfaces of solids." Journal of Physics and Chemistry of Solids 3, no. 1-2
(1957): 95-101.
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@ Surface Reaction Mechanisms

I

Eley-Rideal (ER) mechanism : A(s) + B > AB + (s)

o

An atom adsorbs onto the surface. Another atom passes by which interacts with the one on the surface. A molecule is formed which desorbs.

O

Fo

@)

Langmuir-Hinshelwood (LH) mechanism : A(s) + B(s) =2 AB + 2(s)

Fo

O @)

(b) I ©

Two atoms adsorb onto the surface. They diffuse across the surface and interact when they are close. A molecule is formed which desorbs.

(@

From: UCL Center for Cosmic Chemistry and Physics
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@ Different Types of LH Mechanisms [

The Langmuir-Hinshelwood mechanism has two steps — Formation
Desorption

0(g)+(s) —0(s)
0(s)+C(b) - CO(s) (1) — tf O(s) - Reactant

€O(s) > Co(g) + () (2) — tg ggg))  Intermediate

0(9) t C(b) - CO(g) (3) Time scale of interest = T

Based on time scale arguments 4 types of LH mechanisms can be defined

1. t,<<T t;<<T - Promptthermal mechanism

2. t~T ty;<<T - LH limited by formation
3. t<<T t;~T - LH limited by desorption
4. t~T ty~ T - LHlimited by both desorption and formation
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