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Abstract 

Line coupling and line mixing effects have been calculated for several self-broadened 

NH3 lines in parallel bands involving an excited 2 mode. It is well known that once the 2 

mode is excited, the inversion splitting quickly increases as this quantum number increases. 

In the present study, we have shown that the 2 dependence of the inversion splitting plays 

a dominant role in the calculated line-shape parameters. For the 2 band with a 36 cm1 

splitting, the intra-doublet couplings practically disappear and for the 22 and 22 - 2 bands 

with much higher splitting values, they are completely absent. With respect to the inter-

doublet coupling, it becomes the most efficient coupling mechanism for the 2 band, but it is 

also completely absent for bands with higher 2 quantum numbers. Because line mixing is 

caused by line coupling, the above conclusions on line coupling are also applicable for line 

mixing. Concerning the check of our calculated line mixing effects, while the present 

formalism has well explained the line mixing signatures observed in the 1 band, there are 

large discrepancies between the measured Rosenkranz mixing parameters and our 

calculated results for the 2 and 22 bands.  In order to clarify these discrepancies, we 

propose to make some new measurements. In addition, we have calculated self-broadened 

half-widths in the 2 and 22 bands and made comparisons with several measurements and 

with the values listed in HITRAN 2012. In general, the agreements with measurements are 

very good. In contrast, the agreement with HITRAN 2012 is poor, indicating that the 

empirical formula used to predict the HITRAN 2012 data has to be updated.  

 

1. INTRODUCTION 

Accurate laboratory data on the spectral line parameters for NH3 are required for 

planetary atmosphere remote sensing. In order to meet this requirement, several authors 

have reported self-broadening coefficients of NH3 lines in various vibrational bands during 

the past few years. Beside the 1 and pure rotational bands [1,2] studied by the current 

authors in Refs. [3,4] (denoted as papers I and II in the following), a number of 
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measurements have also been published for other parallel bands. Baldacchini et al. have 

measured half-widths in the 2 and 22 - 2 bands [5-7] and their results were compared with 

predictions of the Anderson-Tsao-Curnutte (ATC) theory [8]. In 2004, Nemtchinov et al. [9] 

have made a systematic study of pressure broadening in the 10 μm bands of NH3, including 

the 2 band. At the same time, Aroui et al. [10] have measured self-broadening coefficients 

in the 2 band and, more recently [11], they have published a more complete study of the 10 

μm spectral region. By using a non-linear least-squares fitting procedure, they have 

simultaneously determined not only the half-widths in the 2 and 22 bands, but also the 

Rosenkranz line mixing parameters   . More recently, half-widths of lines with high j and k 

values in the R branch of the 2 band have been measured by Guinet et al. [12]. 

In papers I and II, we have demonstrated the need to take into account the inversion 

splitting in half-widths calculations in the 1 and pure rotational bands. More precisely, we 

have shown that, in general, the intra-doublet coupling plays a major role in the reduction of 

calculated half-widths (i.e., the diagonal elements of the relaxation matrix). Such reductions 

by large amounts indicate significant off-diagonal elements of the relaxation matrix. Indeed, 

the whole relaxation matrices calculated by us with our new formalism have demonstrated 

their non-diagonality. The method has been successfully applied to the calculation of the 

shape of the Q branch and of some R manifolds in the 1 band, for which an obvious 

signature of line mixing (LM) caused by this non-diagonality had been experimentally 

demonstrated [1]. 

As shown in I and II, the main parameter governing the importance of line coupling (LC) 

within doublets is the inversion splitting. Meanwhile, it is well known that the latter largly 

varies with the vibrational states of interest. For example, while it is about 0.8 cm1 in the 

ground and 1 = 1 vibrational states, it increases to 35 cm1 and 284 cm1 for the 2 = 1 and 

2 = 2 states, respectively. Based on experiences learnt from papers I and II, we expect that, 

in comparisons with the 1 and pure rotational bands, LC (and hence LM) should be much 

smaller in the 2 band and itbecomes completely negligible in the 22 band. Therefore, it is 

worth to complete our previous studies by considering more parallel bands of NH3 where 

measured data are available. In addition, this would enable to analyze the vibrational 

dependence of both self-broadening coefficients and line mixing parameters. 

The manuscript is arranged in the following way. Section 2 gives a brief summary of the 

theoretical model. Sec. 3 is devoted to comparisons of calculated and experimental half-

widths, to an analysis of the role of the vibrational dependence of the inversion splitting on 

the efficiency of the LC process and to comparison with the broadening coefficients given by 

the HITRAN 2012 database. Finally we complete this study by examining the vibrational 

dependence of the relaxation matrix and of the line mixing parameters in sec. 4. The 

disagreement between some experimental and calculated line mixing parameters is 

discussed and some experiments are suggested in order to clarify this discrepancy. 

 

2. THEORY 
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In this section, we briefly outline the main features of the formalism developed in papers 

I and II.  In these two papers and other earlier works [13] devoted to the line coupling, we 

have pointed out that, in order to avoid the cut-off introduced in the ATC theory, the 

authors of the Robert-Bonamy (RB) formalism [14] had applied the linked cluster theorem to 

evaluate the Liouville scattering operator Ŝ. However, they had neglected the non-

diagonality of the Ŝ operator. Unfortunately, the applicability of this so-called isolated line 

approximation is not valid in many cases so that relying on this assumption is one of the 

main weaknesses of the RB formalism.  

In our recent works, we have proposed a new formalism by correctly applying the 

cumulant expansion to evaluate the Liouville scattering operator Ŝ up to the second order 

terms (S1 and S2). In contrast with the RB formalism or the model developed by Cherkasov 

[15,16], the S1 and S2 terms defined in our formalism are independent of the bath molecular 

states. This enables to diagonalize the operator iS1 S2 and consequently to evaluate the 

whole matrix elements of exp(iS1 S2). As a result, the introduction of the so-called isolated 

line approximation becomes completely unnecessary. In papers I and II, we have presented 

general expressions of the matrix elements of S1, S2,outer,i, S2,outer,f and S2,middle for parallel 

bands of NH3. It is well known that in general, the non diagonality of iS1 S2 solely results 

from the S2,middle term. The expression for its matrix elements in a symmetrized formalism 

are given by (cf. Eq. (11) of paper I) 
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where all symbols have been defined in paper I.  

As shown in Eq. (1), the magnitudes of the off-diagonal element of S2,middle depend on 

three factors. The first one is the coupling strength factor defined by 
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The others are the two arguments of the two dimensional (2-D) Fourier transforms 

       
       

  with specified L1, K1, and K1: the energy gap  
 

   
  

   

 
    

   
 and the 

frequency gap           . The energy gap represents the resonant character (in the sense 

of the ATC-RB formalisms) of the two coupled lines and the frequency gap is their separation 

in the spectrum. As shown in paper I, beyond their central regions, the magnitudes of 

       
       

  decrease very quickly as their two arguments increase. This variation pattern 

indicates that the smaller these two gaps are, the stronger the LC.   
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For later convenience, we introduce a notation of  
      

 
( ) (    

 ) defined by 
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whose value divided by (2L2 + 1) is a probability with which a specified perturber frequency 

change of    
   

 appears in        
       

  of Eq. (1). 

Once all matrix elements of exp(iS1 S2) have been obtained, it is easy to calculate the 

relaxation matrix elements using the following expression [3,4] 
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where nb is the number density of the bath molecules,  ̅ is the mean relative speed, b is the 
impact parameter, and    is the closest distance for a given trajectory. 

3. PRACTICAL CALCULATIONS 

3.1. Potential model 

The intermolecular potential has been detailed in sec. II-C of paper I. With respect to its 

isotropic part, it is represented by a LJ model. By neglecting their vibrational dependence, 

the two LJ parameters (i.e., LJ = 3.018 Å and LJ = 294.3 K) adopted here are the same as 

those used in Paper I.  

Because the NH3 molecule has a very large dipole moment and a significant quadrupole 

moment, the anisotropic interaction between two NH3 molecules can be well represented by 

a summation of the dipole-dipole (Vdd), dipole-quadrupole (Vdq), quadrupole-dipole (Vqd), 

and quadrupole-quadrupole (Vqq) components. It is obvious that among these components, 

Vdd is the dominant one. 

Table 1 Vibrational dependence of the averaged dipole moment (in Debye) 

Vibrational state Ground 1 2 22 

⟨ | | ⟩ 1.4483 1.47925 1.24495 1.01535 

 

It is worth mentioning that values of the dipole moment appearing in the expressions for 

the S2 terms are average dipole moments ⟨ | | ⟩ in the corresponding vibrational states. 

The values used in the present study, given in Table 1 [17], show that the average dipole 

values exhibit a significant vibrational dependence which may affect the calculation of the S2 

matrix elements. Remember that the contributions to the three S2 terms from Vdd are 

proportional to the products of two dipole values. For example, the magnitude of the S2,outer,f 

term is proportional to ⟨  | |  ⟩
 
   

3.2. Rovibrational energy levels of NH3 

 As explained in paper I, the present formalism, which uses “0-th” order wavefunctions, 

does not consider the various intra-molecular couplings that exist between the NH3 levels.  

The same approximation allows a simple calculation of the energy levels with two sets of 
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parameters associated with the symmetric and asymmetric inversion levels. The energy 

parameters are given in Table 6a and the formulas for the energies in Table 4 (diagonal 

elements) of Ref. [18]. Numerical tests have demonstrated the validity of this approximation 

for states whose rotational quantum numbers are not too high. 

3.3. Construction of the linespace 

Because the dipole and quadrupole moments of NH3 lie along its symmetry axis, the 

matrix elements of the anisotropic potential between two rotational states are zero unless 

their k values are identical. This implies that the coupling selection rules is     , which 

coincides with the radiative dipolar selection rule for parallel bands. Consequently, the 

whole linespace can be divided into uncoupled sub-blocks constructed for lines with 

specified k values. In the present study, we limit the size of the linespace by only considering 

lines with initial angular quantum number j up to         With this limitation, the whole 

linespace involves 217 Lines and it is divided into 9 sub-blocks associated with k = 0, 1, 2, …, 

8, respectively. For example, there are 17 lines whose k values is zero, the dimension of the 

sub-block with k = 0 is 17  17. Similarly, one can easily determine the dimensions of other 

sub-blocks as 46 x 46, 40 x 40, 36 x 36, 28 x 28, 22 x 22, 16 x 16, 10 x 10 and 4 x 4. 

3.4. Trajectory model   

The “exact” trajectory model governed by the isotropic part of the intermolecular 

potential is used in calculations. As done in papers I and II, 600 values of the closest 

approach distance rc have been selected in order to represent all the accessible trajectories, 

with a more dense grid for nearly head-on collisions. As shown in Eq. (4), calculations have 

been restricted to the average relative kinetic energy   ̅    
    

 
 associated to the mean 

velocity at temperature T. Such an approximation is known to be valid for self-broadening 

coefficients calculations. For the off-diagonal elements of W, we expect that the uncertainty 

associated with neglecting the velocity average is tolerable. A more refined treatment in 

which we take into account the kinetic energy dependence of the relaxation matrix is under 

way. 

4. RESULTS OF CALCULATED HALF-WIDTHS 

4.1. Comparison with experimental data 

Calculated half-widths of lines in the 2 band are compared with experimental results in 

Figs. 1-3. In general, the calculated valuess (including a weak LC effect that will be discussed 

later on) agree well with the experimental data. A large disagreement is obtained for one 

single transition,  sP(2,1), between the measurement by Nemtchinov et al. [9] (290.3  103 

cm1 atm1) and our calculated value (470.8  103 cm1 atm1) as shown in Fig. 2. However, a 

recent analysis of old Kitt Peak spectra [19] gave a new result of 445  103 cm1 atm1 with ± 

8% uncertainty, in good agreement with our theoretical value. 
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Fig. 1. Comparison of calculated half-widths () of aR(j,k) lines in the 2 band with 

measurements () by Nemtchinov et al. [9] and () by by Aroui et al. [11]. The values of k are 

presented at the right side of symbols representing calculated values with j = 8 and different 

colors are used to distinguish different k values. In addition, measured results with the same 

k values are connected by dotted thin lines.   

 
Fig. 2. Comparison of calculated half-widths () for sP(j,k) lines in the 2 band with those () 

measured by Nemtchinov et al. [9]. The large difference observed for sP(2,1) is discussed in 

the text. 
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Fig. 3. Comparison of calculated half-widths () for aQ(j,k) lines in the 2 band with 

measured data  () of Ref. |5]. The experimental uncertainty is around ±10%.   

Calculated half-widths of lines in the 22 band are compared with experimental results 

provided by Aroui et al. [11] in Fig. 4, showing a very good agreement. Meanwhile, a 

comparison between measurements by Baldacchini et al. [6,7] and our calculated values for 

lines in  the 22 - 2 band is presented in Table 2. Given the fact that the experimental results 

have a ±10 % uncertainty, the agreement is excellent. Finally, we note that the important 

vibrational dependence of the widths is well predicted by the formalism. We will go back to 

this issue later. 
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Fig. 4. AComparison between calculated half-widths () for aR(j,k) lines in the 22 band and 

those () measured by Aroui et al. [11]. 

 

Table 2 Half-widths (in units of 103 cm1 atm1) for sQ(j,k) lines in 22 - 2 band  

j, k Experiment Ref. [6] Calculated values 

1, 1 241 246.3 

2, 2 266 249.6 

3, 3 254 247.2 

4, 3 254 237.4 

4, 4 266 245.1 

5, 3 228 239.0 

6, 3 228 240.8 

6, 6 228 238.3 

7, 6 228 238.2 

8, 7 228 233.7 

8, 8 228 229.5 

 

4.2. Reduction of calculated half-widths due to the line coupling 

In Figs. 5. and 6. we present relative differences between half-widths derived with and 

without considering LC. As can be seen, the reductions of calculated half-widths by LC are 

weak when compared with those in both the 1 and the pure rotational bands (compare 

with Fig. 5. of paper I). Given the fact that when the 2 mode is excited a huge increase of 

the inversion splitting occurs, this trend is expected.  

 
Fig. 5. Relative differences between half-widths (i.e., [noLC LC]/LC) calculated with and 

without considering LC for aR(j,k) lines in the 2 band.  
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Fig. 6. The same as Fig. 5. except for the sQ(j,k) lines. The large reduction for the sQ(1,1) line 

results from its strong coupling with the aR(1,1) line. 

The “anomalous” large reductions happening for aR(1,1) and sQ(1,1) in Figs. 5 and 6, 

respectively, deserve an explanation. They result from the same origin, i.e., a relatively small 

but significant coupling between aR(1,1) and sQ(1,1) which is allowed by the dipole selection 

rule. Their frequency gap (i.e., 1.9 cm1) is rather small. With respect to their energy gap  

(         )      
   

   its first component        can be neglected since it is equal to one 

half of the inversion splitting (i.e., 0.8 cm1) in the ground state. Meanwhile, the values of 

     can be estimated by a simple formula 

          
    [  

 (  
   )    (    )]  (5) 

where    
   is the inversion splitting, the plus and minus signs are for transitions of a  s and 

s  a, respectively, and the rotational constant is B  10 cm1. With Eq. (5), the second 

component        can be approximated by (   
     )    The inversion splitting in the 2 = 

1 band is     
    36 cm1 and consequently, the of        (i.e., 2 cm1) is small.  

For the third component     
   

 associated with the bath molecule, we plot a distribution 

of     
( )(    

 ) in Fig. 7. Its intensities divided by 3 represent probabilities with which 

specified values of    
   

 occur. We note that the resolution adopted here is 0.5 cm1. In 

other words, the values within [0 – 0.25, 0 + 0.25] are grouped to its total value at 0. As 

clearly demonstrated in the plot, the occurring of    
   

   is dominant. Therefore, in order 

to simplify the analyses, one can neglect it. 
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Fig. 7. The distribution of  
      

 
( ) (    

 ) over    
   

 with a resolution of 0.5 cm1. After 

dividing by (2L2 + 1), the values represent the probability with which    
   

 appears as the 

third component of the energy gap. 

 

Thus, based on the above discussion, one can conclude that because their energy gap is 

more likely small, many significant contributions to the off-diagonal elements of S2,middle exist 

for this pair and consequently, “anomalous” reductions happen for these two lines. We will 

go back to the aR(1,1) line in the section devoted to LM effect. 

4.3. Intra- and Inter-doublet couplings 

For doublet partners, their frequency gap is given by the doublet splitting. For the 1 and 

pure rotational bands, it is about 0.8 cm1 and leads to large magnitudes of the 2-D Fourier 

transforms. As a result, for these two bands, the intra-doublet coupling is the main source 

responsible for the line coupling. For the 2 band which has a splitting of about 36 cm1, 

there is a different story. With such a large gap, the magnitudes of 2-D Fourier transforms 

fall down to a negligible level (see the discussion around Fig. 3. of paper I). This implies that 

the intra-doublet coupling practically disappears for the 2 band and becomes completely 

absent for the 22 and 22 - 2 bands. (Remember that the inversion splitting is about 284 

cm1 in the 2 = 2 level). 

For the 2 band, the inter-doublet coupling becomes the most efficient coupling 

mechanism. More explicitly, the coupling mainly takes place between two lines belonging to 

adjacent doublets whose j values differ by 1. An example is the inter-doublet coupling 

between sR(j,k) and aR(j+1,k) allowed by the dipole selection rule. In Fig. 8, we present the 

frequency gap between these pairs as a function of j and k. By comparing Figs. 5 and 8, a 

perfect correlation is clearly seen. Then, one can draw two conclusions. Firstly, the inter-
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doublet coupling is actually the dominant coupling mechanism. Secondly, it is the frequency 

gap that plays a major role in the j and k dependence of the reduction of calculated half-

widths.   

 
Fig. 8. Frequency gaps between sR(j,k) and aR(j+1,k) lines in the 2 band as a function of j and 

k. 

 

4.4. Vibrational dependence of the half-widths 

As mentioned above, the vibrational dependence of the half-widths is significant. This 

claim appears more clearly in Fig. 9 in which the half-widths of the sQ(j,j) lines for four 

vibrational parallel bands are plotted. The half-widths become smaller by a factor of 2.6 

from the 1 band to the 22 - 2 band, in good agreement with the experimental results. We 

note that for the 22 and 22 - 2 bands, theoretical calculations are carried out without 

considering LC because its effects are negligible. 
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Fig. 9. Vibrational dependence of the widths of sQ(J,J) lines in four parallel bands of NH3. 
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Fig. 10. The S2,outer,f term as a function of rc for four different final vibrational levels. The line 

of interest is aR(3,3). 

 

The half-width decrease shown in Fig. 9 results from the vibrational dependence of the 

matrix elements of S2,outer,f. In Fig. 10, we present a plot of the S2,outer,f term associated with 

the aR(3,3) line as a function of rc for the ground, 1, 2, and 22 bands. A minor part of the 

observed vibrational dependence is due to the different averaged dipole moments (cf. Table 
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1), but the latter cannot explain why, for instance, S2,outer,f practically vanishes as the band of 

interest varies from the ground state to the 22 level. Here again, the large 2 inversion 

splitting plays a major role. As is known, contributions to S2,outer,f mainly depend on the one 

dimensional (1-D) Fourier transform associated with Vdd, which is, in some sense, the analog 

of the resonance functions   ( ) of the ATC and RB theories. Both functions depend on a 

characteristic energy gap           
 . It is worth mentioning here that now, f is a 

summation index and represents all possible choices of quantum numbers for states (i.e., 

the inversion symmetry s or a, the angular moment      and others) allowed by the potential 

components associated with the 1-D Fourier transforms.  

It is well known that the magnitudes of the 1-D Fourier transforms decrease very quickly 

as their arguments increase beyond their center regions. In both the ground and 1 bands, 

because the inversion splitting is small,       may be approximated by  [  (    )  

  
 (  

   )]  Among all of the choices of       some of them are small as well. This is the case 

of the dipole allowed ones        which lead, via the 1-D Fourier transform  

       (          
 )  to very significant contributions to S2,outer,f. However, the above 

statement is not valid for the 2 = 1 and 2 = 2 modes because their inversion splitting values 

are not small. In this case,      is given by      
    [  (    )    

 (  
   )], and for 

example, the choice of f with        are no more resonant. Except for some rare cases, 

the large splitting completely eliminates the contributions to S2,outer,f from        (     

     
 )  

With Fig. 10, one can easily understand the results presented in Fig. 9. In the 1 band (as 

in the pure rotational one), the contributions of S2,outer,f and S2,outer,i are almost identical. On 

the other hand, for the 2 and 22 bands the S2,outer,f term is much smaller than S2,outer,i so 

that the latter alone practically determines calculated half-widths. Things are even amplified 

in the 22 - 2 band where the blue curve (called 2) in Fig. 10 corresponds to S2,outer,i while 

the green one (called 22) corresponds to S2,outer,f, leading to the observed “huge” decrease 

of the half-widths.  

 

4.5. Broken approximate doublet symmetry 

In paper I, we have explained why the partners of a doublet (i.e. sP(j,k) and aP(j,k)) in the 

1 band have almost equal half-widths. However, as shown in Table 3, it is risky to 

extrapolate this approximate symmetry to other bands. Let us consider the doublet of 

s,aP(2,1) in the 2 band first. In this case the half-width s is significantly larger than a. 

Meanwhile, the opposite is true for s,aP(3,1). It turns out that the inversion splitting again is 

responsible for this symmetry breaking. Indeed, let us look at     , the key component of 

the characteristic energy gaps, appearing as the argument of        (          
 ) in the 

expression for S2,outer,f. For the two partner transitions of 1 1 a  2 1 s (i.e., sP(2,1)) and 1 1 s 

 2 1 a (i.e., aP(2,1)),  one has        The summation index f thus corresponds to  jf = 0, 1, 

and 2. But, simultaneously, the inversion symmetry must be “s” for sP(2,1) and “a” for 



14 
 

aP(2,1) because their final states have the “a”  and “s” symmetries respectively, and the 

selection rule of inversion symmetry in         requires a switch of s  a. Corresponding to 

these possible jf values, the rotational energy change (in units of cm1) are [Erot(jf)  Erot(jf)]  

= 20, 0, and 40 cm1. Thus, an almost perfect compensation in      happens only for jf = 2 

and a case of the doublet splitting equal to 36 cm1. The latter corresponds to an inversion 

energy change of Einv(a)  Einv(s). Therefore, in order to have large contributions to S2,outer,f, 

the final state of P(2,1) must have the “a” symmetry and this is just the line of sP(2,1).  

The same argument is also applicable for the doublet of s,aP(3,1). In this case, jf = 2 and 

jf = 1, 2, and 3 and the corresponding Erot(jf)  Erot(jf) = 40, 0, and 60 cm1, respectively. An 

almost perfect compensation happens only for jf = 1 and the doublet splitting change equals 

to 36 cm1 resulting from Einv(s)  Einv(a). This is just the line of aP(3,1). 

Table 3 Broken symmetry of half-widths for some doublets (in units of 103 cm1 atm1) 

Band Doublet       

2 P(2,1) 471 359 

2 P(3,1) 326 422 

2  22 Q(1,1) 246 385 

2  22 Q(2,2) 250 197 

 

Similarly, one can explain the broken symmetry observed in the 22 - 2 band. But here, 

it results from the S2,outer,i term. The reader can easily explain the results given in Table 3, 

because the S2,outer,i term of aQ(1,1) in this band is exactly the same as S2,outer,f of sP(2,1) in 

the 2 band. Similarly, the S2,outer,i term of sQ(2,2) is just the S2,outer,f term of aP(3,1). 

Finally, we note that for higher j and k values, there are no more effective 

compensations happening between the inversion splitting and changes of rotational energy 

of the active molecule. As a result, the broken symmetry disappears and the approximate 

symmetry for the doublets components becomes valid again.  

4.6. Comparison with HITRAN 2012 

As already mentioned in paper I, for the 1 band the agreement between calculated (or 

experimental) widths and those stored in HITRAN 2012 [20] is poor in some cases.  A similar 

conclusion is also valid for the 2 band as shown in Figs. 11 and 12. In our opinion, the 

database needs to be improved by taking into account both the rotational and vibrational 

dependences of the self-broadened widths. 
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Fig. 11. Calculated half-widths of aR(j,k) lines () and HITRAN data (⧠) in the 2 band. 

 

 
Fig. 12. Calculated half-widths of sP(j,k) lines () and HITRAN data (⧠) in the 2 band. 

 

5. LINE MIXING EFFECTS 

As known from previous studies, our formalism allows one to calculate the whole 

relaxation matrix. Then, with the method detailed in paper II, one can calculate the first 

order Rosenkranz mixing parameters [21] 

    ∑
  

  
 

    

     
   

  (6) 
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Because these parameters have been experimentally determined by Aroui et al. [11] for 

many lines in the 2 and 22 bands, it is worth to compare our theoretical predictions with 

their experimental data. Although the agreement between measured and calculated half-

widths is good, a severe disagreement occurs for the    parameters, as shown in Table 4 

where some samples in the R(4,K) manifold are presented. In this case, the experimental 

results are higher than the calculated values by two orders of magnitude. Note that they are 

quite comparable to the values obtained in the 1 band although effects from LC 

dramatically differ from each other for these two bands (remember that we have obtained a 

rather good agreement between the experimental and theoretical LM signatures for the 

R(3,k) manifold in the 1 band).   In addition, a similar problem also happens in the 22 band. 

In Table 5, we present measured    values for some aQ(j,j) lines in the 22 band. For the 

calculated results which are not presented in Table 5, they are almost zero. As a reference, 

measured and calculated results in the 1 band are also listed. Given the fact that for the 22 

band, almost no line couplings exist, how is it possible to observe such large mixing 

parameters comparable to those in the 1 band? Therefore, we strongly doubt the 

correctness of these measured results in the 2 and 22 bands. 

Table 4 Rosenkranz parameters    (in units of atm1) for the aR(4,k) manifold 

k 
Experiments Ref. [11] 

in the 2 band 

Calculated values 

in the 2 band 

Calculated values 

 in the 1 band 

0 0.29 (0.04) 3.9  10
3 

1.2 

1 0.63 (0.08) 2.9  10
3 0.04 

2 0.35 (0.06) 1.5  10
3 0.13 

3 0.20 (0.03) 0.5  10
3 0.23 

4 0.32 (0.04)  0.0 0.33 

 

Table 5 Rosenkranz parameters    (in units of atm1) for some aQ(j,j) lines 

Line 
Experiments Ref. [11] 

in the 22 band 

Experiments Ref. [1] 

in the 1 band 

Calculations Ref. [3]  

in the 1 band 

aQ(2,2) 0.85 (0.16) 0.41 0.28 

aQ(3,3) 1.48 (0.24) 0.57 0.34 

aQ(4,4) 2.48 (0.18) 0.52 0.37 

aQ(5,5) 2.47 (0.23) 0.82 0.39 

aQ(6,6) 0.36 (0.07) 0.89 0.41 

 

 We have encountered a similar situation in our previous analysis of LC in the 1 band. 

While our calculated W matrix elements reproduced very well the observed line mixing 

effects in the Q branch, the calculated     parameters strongly disagree with the measured 

ones. In our opinion, here too, the measured    are “effective” parameters derived from a 

fitting procedure applied to “congested” spectra recorded in experimental conditions ( too 

small NH3 pressures, too long cell…)  not favorable for an accurate determination of the 
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mixing parameters     In the following, we provide additional arguments supporting this 

assertion. 

As shown in Sec. 4, with respect to the 1 band, the intra-doublet coupling is significantly 

weaker in the 2 band and becomes totally negligible in the 22 band. As a result, one should 

observe a very significant decrease of the corresponding off-diagonal matrix elements of W 

as the band of interest goes from 1 to 2. This is exactly what we observe in Tables 6 and 7.  

As expected from the above analysis of LC, very weak W matrix elements between adjacent 

(in j) components subsist, but due to the denominator in Eq. (6), they lead to small values of 

the     parameters, in total contradiction with the experimental data of Ref. [11], which have 

amplitudes similar to those measured and calculated in the 1 band (and the same is true for 

the 22 band).  

Table 6 The most efficient off-diagonal elements      (in units of 10-3 cm1 atm-1) coupling 

one line denoted by   to others denoted by   

    (   )     (   )     (   ) 

n       n       n       

sQ(3,3) 298 1.3 sR(3,3) 265 1.3 sR(4,4) 294 1.3 

sQ(4,3) 22.5 0.21 sR(4,3) 5 0.03 sR(5,4) 5.2 0 

aQ(4,3) 13.4 0.6 aR(4,3) 5.2 0.22 aR(5,4) 5.4 0.2 

 

Table 7 The most efficient off-diagonal elements       (in units of 10-3 cm1 atm1) coupling 

aR(4,3) to other lines denoted by n 

  (   ) 

n       

sR(3,3) 7.5 4.2 

aR(3,3) 5.2 0.2 

sR(4,3) 202 1.8 

sR(5,3) 6.5 0 

aR(5,3) 6.2 0.4 

 

As mentioned above, we do think that the experimental     of Ref. [11] are “effective” 

parameters due to strong correlations in the fitting process. In order to go further and clarify 

the situation, we suggest two experiments limited to some very specific spectral regions. 

The first one is to investigate the aR(1,1) line which, as discussed in Sec. 4, coupled to 

sQ(1,1). Although the coupling is relatively weak, it nevertheless leads to a “significant” 

value of   . Here, “significant” means that    should be measureable if the experimental 

conditions are optimized. The NH3 pressures should be sufficiently high to favor the mixing 

effect but sufficiently low such that the line remains well isolated from the others. From Fig. 

13 it seems that an experiment with a very good signal to noise ratio, and using an “ad-hoc” 

cell length could anable the determination of    and a meaningful comparison with the 
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calculated one. In this figure and the two following ones the first order correction is the 

difference between the Rozenkranz and Lorentzian profiles. 
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Fig. 13.  Absorption coefficient of aR(1,1) in the 2 band  at a sample pressure of 0.5 atm. 

(           ). 

 

Next, one can consider the aR(4,K) manifold in the region 1028 -1037 cm1. The 

experiment should enable to determine which set of    is more reliable between our 

calculated results and those measured by Aroui et al. [11]. By looking at the high resolution 

spectrum reproduced in Ref. [22], it appears that this manifold is relatively isolated, only 

slightly “contaminated” by the presence of the sR(2,2) and sR(2,1) lines at moderate NH3 

pressures. Then, the measurement of the absorption coefficient at pressures of NH3 around 

0.6 atm should discriminate between the two sets of     The prediction based on the 

parameters of Ref. (11] is shown in Fig. 14, while that corresponding to our theoretical 

parameters is poltted in Fig. 15. Note that the first order correction derived from the 

theoretical    is multiplied by 100 in Fig. 15. Given the fact that our theoretically calculated    

values are so small, it should be impossible to measure any significant effect from line mixing 

on this manifold. Our conclusion is in complete opposition with what would be expected 

from Aroui’s    values.  
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Fig. 14.  Absorption coefficient of the aR(4,k) manifold in the 2 band at a sample pressure of 

0.6 atm. The set of    used is that measured in Ref. [11]. The line around 1027 cm1 (located 

at 1027-   ) is due to the presence of sR(2,2) and sR(2,1) which slightly contaminate the 

manifold (            ). 
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Fig. 15.  Absorption coefficient of the aR(4,k) manifold in the 2 band at a sample pressure of 

0.6 atm.  The set of     used is the theoretical one. Note that the first order correction has 

been multiplied by 100. (            ). 

 

 

6. CONCLUSION 
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 We have calculated relaxation matrices of self-broadened half widths of NH3 lines in 

several parallel bands whose inversion splitting values change over a wide range. Detailed 

comparisons of the measured and calculated half-widths (i.e., diagonal elements of the W 

matrices) show a good agreement. The present work has provided a new insight on the role 

played by the inversion splitting (mainly due to a change of the 2 mode) on both the intra-

doublet coupling and the vibrational dependence of the half-widths, through the 2-D Fourier 

transforms derived from components of the potential models adopted in the calculations. 

As the 2 mode is excited, the intra-doublet coupling disappears and consequently, the 

corresponding off-diagonal element      practically vanishes as well. This is in contrast with 

what have been observed in the 1 band. With respect to the Rosenkranz line mixing 

parameters, our calculated values in the 2 and 22 band are one to two orders smaller than 

those obtained for the 1 band.  In comparison with measured values by Aroui et al. [11] for 

these two bands, their values are two orders of magnitude larger than ours. At present, the 

origin of this large discrepancy is unclear. In our opinion, it may be due to improper 

experimental conditions. It would be helpful if the measurements could be performed under 

more appropriate conditions. Two experiments for relatively well isolated manifolds, even at 

relatively “high” NH3 densities, have been suggested by us. In our opinion, these 

measurements should provide more reliable values of     and thus a more meaningful test of 

the theory.  

It is worth mentioning that such “clean” measurements have already been reported for 

closely spaced pP(j,k) doublets in the 4 band [23]. This implies that it has been possible to 

measure the      matrix elements as well as to determine their j and k dependences. On the 

other hand, in order to make a comparison, it becomes necessary to extend the present 

formalism to perpendicular bands. This work is currently being carried out by us and the 

results obtained are very encouraging. The summary of this work will be presented in a 

forthcoming paper. 

Finally our formalism could be easily applied to the case of foreign gas broadening 

including rare gas perturbers for which many experimental results exist in the literature 

[1,23,24]. Some of them, especially the NH3-rare gas broadening, have revealed LM features 

strongly differing from those observed in self-broadened lines. One of the possible 

explanation is the presence of potential components with K1   0 which are absent in self-

broadening. Since sophisticated potentials for some NH3-rare gas atoms are available, they 

will give us the opportunity to test our semi-classical formalism with more general potential 

models.  
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Highlights 

 New formalism is applied to calculate line shape parameters in parallel bands of NH3. 

 Theoretical results are compared with measurements in the 2, 22, and 22-2 bands. 

 Half-widths and line mixing parameters strongly depend on excitation of the 2 mode. 

 

 

                            




