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NASA Environmental Barrier Coatings (EBCs) and Ceramic 

Matrix Composite (CMC) System Development 
− Emphasize material temperature capability, performance and long-term

durability- Highly loaded EBC-CMCs with temperature capability of 2700°F 

(1482°C)

• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings

• 2700°F (1482°C) EBC bond coat technology for supporting next generation
– Recession: <5 mg/cm2 per 1000 h

– Coating and component strength requirements: 15-30 ksi, or 100- 207 Mpa

– Resistance to Calcium Magnesium Alumino-Silicate (CMAS)
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Outline

• Environmental barrier coating (EBC) development: the CMAS relevance 
and importance

• Some generalized CMAS related failures

• CMAS degradation of environmental barrier coating (EBC) systems: rare 
earth silicates

– Ytterbium silicate and yttrium silicate EBCs

– Some reactions, kinetics and mechanisms

• Advanced EBCs, HfO2- and Rare Earth - Silicon based 2700°F+ capable 
bond coats 

– Compositions, and testing results

• Summary
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EBC-CMAS Degradation is of Concern with Increasing 

Operating Temperatures
− Emphasize improving temperature capability, performance and long-term

durability of ceramic turbine airfoils

• Increased gas inlet temperatures for net generation engines lead to significant CMAS -
related coating durability issues – CMAS infiltration and reactions

Marcus P. Borom et al, Surf. Coat. 

Technol. 86-87, 1996 

Current airfoil CMAS attack 

region - R. Darolia, International 

Materials Reviews, 2013
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Calcium Magnesium Alumino-Silicate (CMAS) Systems Used 

in Laboratory Tests

NASA modified CMAS

ARFL PTI CMAS 02

(higher SiO2)

GE/Borom

Wellman 

Kramer 

Aygun 

Smialek 

Rai 

Braue 

− Synthetic CMAS compositions, in particular, NASA modified version (NASA CMAS), and the 

Air Force Powder Technology Incorporated PTI 02 CMAS currently being used for advanced 

coating developments

− CMAS SiO2 content typically ranging from 43-49 mole%; such as NASA’s CMAS (with NiO

and FeO)

ARFL PTI 11717A 02

Fully reactedAs received

AFRL02 particle size 

distribution

(34% Quartz, 30% Gypsum, 

17% Aplite, 14% Dolomite, 5% 

Salt)

Percentile Size (μm)

10 2.5 +/- 1.0

50 8.5 +/- 2.0

90 40.5 +/- 3.0

Fully reacted 

CMAS EDS
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Calcium Magnesium Alumino-Silicate (CMAS) Systems Used 

in Laboratory Tests - Continued

NASA modified CMAS

ARFL PTI CMAS 02

(higher SiO2)

GE/Borom

Wellman 

Kramer 

Aygun 

Smialek 

Rai 

Braue 

− NASA modified version (NASA CMAS)

− CMAS SiO2 content typically ranging from 43-49 mole%; such as NASA’s CMAS (with NiO

and FeO)

NASA CMAS Compositions
Method

Content (mol%)

CaO MgO Al2O3 SiO2 Fe2O3 NiO

(Designed/Targeted) 33.8 9.0 6.7 46.0 3.0 1.5

Measured by ICP-

OES 

38  2 9.0  0.5 6.9  0.3 41  2 3.8  0.2 1.37  0.07

Measured by EDS 36  1 8.4  0.3 7.5  0.2 43  1 3.9  0.1 1.5  0.1

Created with NETZSCH Proteus software

[#] Type

[1.1] Dynamic

Range

25/5.0(K/min)/1500

Acq.Rate

75.00

STC

0

P1:N2/O2

50.0

Corr.

DSC:020

[#] Type

[1.3] Dynamic

Range

1500/5.0(K/min)/25

Acq.Rate

75.00

STC

0

P1:N2/O2

50.0

Corr.

DSC:020

Project :

Identity :

Date/time :

Laboratory :

Operator :

Sample :

G57

6/28/2016 9:15:11 AM

Glenn Research Center

Costa

G57, 40.00 mg

Reference :

Material :

Corr./temp.cal :

Sens.file :

Sample car./TC :

Mode/type of meas. :

Ref Al2O3,0 mg

baseline for YSZ 5 C_min up tp 1500 C 06-24-16.bd8 / TCALZERO.TMX

sensitivity from sapphire_Pt crucible 1500C air 01-06-16.ed8

DSC Cp S / S

DSC / sample with correction

Segments :

Crucible :

Atmosphere :

M. range :

3

DSC/TG pan Pt

N2/O2, 50.0ml/min

5000 µV

Instrument : NETZSCH DSC 404F1 File : C:\NETZSCH\Proteus\data5\Costa\Samples\G62.dd8 Remark : Third DSC run since Oct 2014.  1x evac/backfill
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Temperature /°C
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Main

 exo

DSC traces of CMAS during heating and cooling up 

to 1500 C at 5 C/min.
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CMAS Related Degradations in EBCs
− CMAS effects

• Significantly reduce melting points of the EBCs and bond coats

• More detrimental effects with thin airfoil EBCs 

• CMAS weakens the coating systems, reducing strength and toughness 

• MAS increase EBC diffusivities and permeability, thus less protective as an environmental 
barrier

• CMAS interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue
─ Reaction layer spallations

─ Accelerated CMC failure when CMAS intact with CMCs

Such as yttrium silicate

EBC and degradations

CMAS induced melting and failure

Coating surface

Cross-section

50 mm
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Phase diagrams showing yttrium di-silicate reactions 

with SiO2, NaO and Al2O3

8

CMAS Related Degradations in EBCs - Continued
− CMAS effects on EBC temperature capability

• Silicate reactions with NaO2 and Al2O3 silicate
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CMAS Related Degradations in EBCs - Continued
− CMAS effects on EBC temperature capability

• Rare earths generally have limited temperature capability below 1500°C in the RE2O3-
Al2O3-SiO2 based systems,

• Smaller ionic size REs have higher melting points

Solidus temperature in Ln2Si2O7-Al6Si2O13-

SiO2 system as function of ionic radius

Y. Murakami and H. Yamamoto, J. Ceram. Soc. Jpn., 101 [10] 1101-1106 (1993).
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ZrO2-3.0Y2O3-1.5Sm2O3-1.5Yb2O3

ZrO2-3.0Y2O3-1.5Nd2O3-1.5Yb2O3-0.3Sc2O3

ZrO2-9.6Y2O3-2.2Gd2O3-2.1Yb2O3

Ionic potential trend of RE

Radius size trend of RE

10

Rare Earth Dissolutions in CMAS Melts

− Large ionic size rare earths showed higher concentration dissolutions in the 

CMAS melt for ZrO2-RE2O3 oxide systems

ZrO2-REO1.5 - Hf more endothermic

Gustavo and Zhu, International Conference on Advanced Ceramics and Composites, 2016
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CMAS Related Degradations in EBC coated CMCs –

Laboratory Heat Flux Tests
− CMAS effects on EBC-CMC temperature capability tested in laser high heat 

flux creep-rupture rig

• Accelerated failure of CMC in loading high heat flux conditions

EBC coated CVI-MI CMC with NdYb silicate RESi bond coat, tested Tsurface 2600°F; Tback 2450°F

Front CMAS side

Front heated CMAS side Back cooled side



National Aeronautics and Space Administration

www.nasa.gov

Strength Results of Selected EBC and EBC Bond Coats

- CMAS Reaction Resulted in Strength Reduction in Silicates

Selected EBC systems

– HfO2-RE-Si, along with co-doped rare earth silicates and rare earth alumino-

silicates , for optimized strength, stability and temperature capability

– CMAS infiltrations can reduce the strength

12
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EBC CMAS Surface Initial Nucleation, Dissolution Reactions
– Ytterbium- and yttrium-silicate silicates reactions and dissolutions in CAMS

– More sluggish dissolution of ytterbium as compared to yttrium

13

Ytterbium di-silicate surface CMAS melts: 50 

h 1300°C

Ytterbium di-silicate surface CMAS melts: 5 h 

1500°C

Yttrium mono-silicate surface CMAS 

melts: 50 h 1300°C

Yttrium silicate surface CMAS melts: 5 h 

1500°C
Ahlborg and Zhu, Surface & Coatings Technology 237 (2013) 79–87.
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Rare Earth Apatite Grain Growth

– Grain growth of apatite phase at 1500°C at various times

50 hr 150 hr 200 hr

50 hr 200 hr150 hr

Ytterbium silicate system

Yttrium silicate system
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Rare Earth Dissolution in CMAS Melts

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted 

apatite phases – up to 200 h testing

– Difference in partitioning of ytterbium vs. yttrium in apatite
• Average AEO/RE2O3 ratio ~ 0.68 for ytterbium silicate – CMAS system

• Average AEO/RE2O3 ratio ~ 0.22 for yttrium silicate – CMAS system

Ahlborg and Zhu, Surface & Coatings Technology 237 (2013) 79–87.

RE2O3

SiO2

AEO

Composition in apatite (100 hr):

Yttrium Silicate EBC 

Composition in apatite (100 hr):

Ytterbium Silicate EBC 
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Advanced NASA EBC Developments

EBC layer 2 regionEBCs

Mol%Mol%

NASA advanced EBC systems emphasizing high stability HfO2- and ZrO2-RE2O3-

SiO2 EBC system, RE2Si2-xO7-2x , such as (Yb,Gd,Y) 2Si2-xO7-2x

- Controlled dissolution and maintaining coating stability

(Yb,Gd,Y) 2Si2-xO7-2x in 

CMAS, 1300°C

(a)

(b)
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CMAS Resistant Tests

– JETs test of more advanced coating systems at 2700F

Plasma sprayed (Gd,Y)2Si2O7, 2450 cycles

Special processed Yb2Si2O7, spalling at 450 Cycles

EB-PVD (Yb,Gd,Y)2Si2O7, total 4450 JETS cycles, 100h

2450 4450

450

Hybrid Hf-rare earth aluminate silicate, completed 4450 

cycles, 100h

Hybrid Hybrid Zr-rare earth silicate,  completed 4450 

cycles, 100h

2450 4450

2450 with 

CMAS

2450
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High Stability and CMAS Resistance are Ensured by Advanced High 

Melting Point Coating, and Multi-Component Compositions

Area A

Area B

– Generally improved CMAS 

resistance of NASA RESi

System at 1500°C, 100 hr

– Silica-rich phase precipitation

– Rare earth element leaching into 

the melts (low concentration 

~9mol%)

Surface side of the 

CMAS melts

EDS E
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Advanced EBC-CMC System Demonstrated 300 hr High Cycle and 

Low Fatigue Durability in High Heat Flux 2700°F Test Conditions
- A turbine airfoil EBC with HfO2-rare earth silicate and GdYbSi bond coat on CVI-MI CMC 

substrate system selected for heat flux durability testing

- Laser high heat flux rig High Cycle and Low Cycle Fatigue test performed at Stress 

amplitude 10 ksi, fatigue frequency 3 Hz at EBC, and 1 hr thermal gradient cycles

- Tested EBC surface temperature 1537°C (2800°F) and T bond coat temperature 1482°C 

(2700°F), with CMAS

- Demonstrated 300 hour durability at 2700°F+

- Determined fatigue-creep and thermal conductivity behavior of the EBC-CMC system 

- EBC/CVI-MI, Fatigue 

loading 10 ksi (69 MPa), 

R=0.05, with 1 hr Thermal 

LCF

- TEBC-surface 1537°C (2800°F)

- Tbond coat 1482°C (2700°F)

- Tback CMC surface 1250°C 

(2282°F)

Specimen in rig testing

Test Condition Summary

Specimen after 300 h testing
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Advanced EBC-CMC Fatigue Test with CMAS and in Steam Jet: 

Tested 300 h Durability in High Heat Flux Fatigue Test Conditions

- Advanced Hf-NdYb silicate-NdYbSi bond coat EBC coatings on 3D architecture 

CVI-PIP SiC-SiC CMC (EB-PVD processing)

- Further understanding water vapor - environmental interactions necessary

Surface view CMAS 

35mg/cm2)
Back view CMAS 

35mg/cm2)



National Aeronautics and Space Administration

www.nasa.gov

EBC System Designs – Effects of Composites and Clustered 

Compositions?

EB-PVD Processed EBCs: alternating HfO2-rich and ytterbium silicate layer systems for 

CMAS and impact resistance?

- An alternating HfO2-and RE-silicate coatings (EB-PVD processing) – HfO2- layer 

infiltration and rare earth silicate layer melting
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Summary

• CMAS degradation remains a challenge for emerging turbine engine 

environmental barrier coating – SiC/SiC CMC component systems

• CMAS leads to lower melting point of EBC and EBC bond coat 

systems, and accelerated degradations

• NASA advanced EBC compositions showed initial promise for CMAS 

resistance at temperatures up to 1500°C in high velocity, high heat flux 

and mechanical loading, from the laboratory simulated engine tests, 

demonstrated with various CMC substrates

• Testing helped better understanding of EBC composition designs, 

CMAS interactions with hafnium, zirconium and rare earth silicates, for 

significantly improved CMAS resistance

• We are developing better standardized CMAS testing, and working on 

CMAS induced life debits, helping validate life modeling; controlling the 

compositions for CMAS resistance while maintaining high toughness 

also a key emphasis
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CMAS Reaction Kinetics in Bond Coats 

24

CMAS Partitioning on RE-Si 

bond coat, 1500°C, 100hr

RE incorporations

– SiO2 rich phase partitioning in the CMAS melts

– Rare earth content leaching low even at 1500°C

– More advanced compositions are being implemented for improved thermomechanical –

CMAS resistance
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High Stability and CMAS Resistance Observed from the Rare 

Earth Silicon High Melting Point Coating Compositions

– Demonstrated CMAS resistance 

of NASA RE-Si System at 

1500°C, 100 hr

– Silica-rich phase precipitation

– Rare earth element leaching into 

the melts (low concentration ~9 

mol%)

Area A

Area B

Surface side of the 

CMAS melts
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Effect of CMAS Reactions on Grain Boundary Phases

– CMAS and grain boundary phase has higher Al2O3

content (17-22 mole%)
• Eutectic region with high Al2O3 content ~1200°C melting point

• Loss of SiO2 due to volatility

26

200 hr, 1500°C

NASA 

modified 

CMAS

Grain 

boundary final 

phase – low 

SiO2 and high 

Alumina


