Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

Dongming Zhu, Gustavo Costa, Bryan J. Harder, Valerie L. Wiesner, Janet B. Hurst, Bernadette J. Puleo

Materials and Structures Division
NASA John H. Glenn Research Center
Cleveland, Ohio 44135

Advanced Ceramic Matrix Composites:
Science and Technology of Materials, Design, Applications, Performance and Integration
An ECI Conference, Santa Fe, NM
November 5-9, 2017
NASA Environmental Barrier Coatings (EBCs) and Ceramic Matrix Composite (CMC) System Development

- **Emphasize material temperature capability, performance and long-term durability** - Highly loaded EBC-CMCs with temperature capability of 2700°F (1482°C)
 - 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
 - 2700°F (1482°C) EBC bond coat technology for supporting next generation
 - Recession: <5 mg/cm² per 1000 h
 - Coating and component strength requirements: 15-30 ksi, or 100-207 Mpa
 - Resistance to Calcium Magnesium Alumino-Silicate (CMAS)

Temperature Capability

- **2800°F combustor TBC**
- **2500°F Turbine TBC**

Increase in \(\Delta T \) across T/EBC

- **3000°F+ (1650°C+)**
- **2700°F (1482°C)**
 - 2700°F SiC/SiC CMC airfoil and combustor technologies
 - 2700°F SiC/SiC thin turbine EBC systems for CMC airfoils
 - **2700°F (1482°C) Gen III SiC/SiC CMCs**

Ceramic Matrix Composite

- **Gen II – Current commercial**
- **Gen III**
- **Gen. IV**

Single Crystal Superalloy

- **2400°F (1316°C) Gen I and Gen II SiC/SiC CMCs**
- **2000°F (1093°C), PtAl and NiAl bond coats**
Outline

• Environmental barrier coating (EBC) development: the CMAS relevance and importance

• Some generalized CMAS related failures

• CMAS degradation of environmental barrier coating (EBC) systems: rare earth silicates
 – Ytterbium silicate and yttrium silicate EBCs
 – Some reactions, kinetics and mechanisms

• Advanced EBCs, HfO$_2$- and Rare Earth - Silicon based 2700°F+ capable bond coats
 – Compositions, and testing results

• Summary
EBC-CMAS Degradation is of Concern with Increasing Operating Temperatures

- Emphasize improving temperature capability, performance and long-term durability of ceramic turbine airfoils

 • Increased gas inlet temperatures for net generation engines lead to significant CMAS-related coating durability issues – CMAS infiltration and reactions

Calcium Magnesium Alumino-Silicate (CMAS) Systems Used in Laboratory Tests

- Synthetic CMAS compositions, in particular, NASA modified version (NASA CMAS), and the Air Force Powder Technology Incorporated PTI 02 CMAS currently being used for advanced coating developments
- CMAS SiO$_2$ content typically ranging from 43-49 mole%; such as NASA’s CMAS (with NiO and FeO)
Calcium Magnesium Alumino-Silicate (CMAS) Systems Used in Laboratory Tests - Continued

- NASA modified version (NASA CMAS)
- CMAS SiO\textsubscript{2} content typically ranging from 43-49 mole%; such as NASA’s CMAS (with NiO and FeO)

NASA CMAS Compositions

<table>
<thead>
<tr>
<th>Method</th>
<th>Content (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Designed/Targeted)</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>33.8</td>
</tr>
<tr>
<td>MgO</td>
<td>9.0</td>
</tr>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>6.7</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>46.0</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3}</td>
<td>3.0</td>
</tr>
<tr>
<td>NiO</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Measured by ICP-OES	
CaO	38 ± 2
MgO	9.0 ± 0.5
Al\textsubscript{2}O\textsubscript{3}	6.9 ± 0.3
SiO\textsubscript{2}	41 ± 2
Fe\textsubscript{2}O\textsubscript{3}	3.8 ± 0.2
NiO	1.37 ± 0.07

Measured by EDS	
CaO	36 ± 1
MgO	8.4 ± 0.3
Al\textsubscript{2}O\textsubscript{3}	7.5 ± 0.2
SiO\textsubscript{2}	43 ± 1
Fe\textsubscript{2}O\textsubscript{3}	3.9 ± 0.1
NiO	1.5 ± 0.1

DSC traces of CMAS during heating and cooling up to 1500 °C at 5 °C/min.
CMAS Related Degradations in EBCs

- **CMAS effects**
 - Significantly reduce melting points of the EBCs and bond coats
 - More detrimental effects with thin airfoil EBCs
 - CMAS weakens the coating systems, reducing strength and toughness
 - MAS increase EBC diffusivities and permeability, thus less protective as an environmental barrier
 - CMAS interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue
 - Reaction layer spallations
 - Accelerated CMC failure when CMAS intact with CMCs

CMAS induced melting and failure
CMAS Related Degradations in EBCs - Continued

- CMAS effects on EBC temperature capability
 - Silicate reactions with NaO$_2$ and Al$_2$O$_3$ silicate

Phase diagrams showing yttrium di-silicate reactions with SiO$_2$, NaO and Al$_2$O$_3$
CMAS Related Degradations in EBCs - Continued

- **CMAS effects on EBC temperature capability**
 - Rare earths generally have limited temperature capability below 1500°C in the RE_2O_3-Al_2O_3-SiO_2 based systems,
 - Smaller ionic size REs have higher melting points

Solidus temperature in $\text{Ln}_2\text{Si}_2\text{O}_7$-$\text{Al}_6\text{Si}_2\text{O}_{13}$-$\text{SiO}_2$ system as function of ionic radius

Rare Earth Dissolutions in CMAS Melts

- Large ionic size rare earths showed higher concentration dissolutions in the CMAS melt for ZrO$_2$-RE$_2$O$_3$ oxide systems

Gustavo and Zhu, International Conference on Advanced Ceramics and Composites, 2016
CMAS Related Degradations in EBC coated CMCs – Laboratory Heat Flux Tests

- CMAS effects on EBC-CMC temperature capability tested in laser high heat flux creep-rupture rig
 - Accelerated failure of CMC in loading high heat flux conditions

EBC coated CVI-MI CMC with NdYb silicate RESi bond coat, tested T_surface 2600°F; T_back 2450°F
Selected EBC systems
- HfO$_2$-RE-Si, along with co-doped rare earth silicates and rare earth alumino-silicates, for optimized strength, stability and temperature capability
- CMAS infiltrations can reduce the strength

![Graph showing strength vs. temperature for different EBC systems]
EBC CMAS Surface Initial Nucleation, Dissolution Reactions

- Ytterbium- and yttrium-silicate silicates reactions and dissolutions in CAMS
- More sluggish dissolution of ytterbium as compared to yttrium

Ytterbium di-silicate surface CMAS melts: 50 h 1300°C

Ytterbium di-silicate surface CMAS melts: 5 h 1500°C

Yttrium mono-silicate surface CMAS melts: 50 h 1300°C

Yttrium silicate surface CMAS melts: 5 h 1500°C

Rare Earth Apatite Grain Growth

- Grain growth of apatite phase at 1500°C at various times

Ytterbium silicate system

Yttrium silicate system
Rare Earth Dissolution in CMAS Melts

- Non stoichiometric characteristics of the CMAS – rare earth silicate reacted apatite phases – up to 200 h testing
- Difference in partitioning of ytterbium vs. yttrium in apatite
 - Average AEO/RE$_2$O$_3$ ratio ~ 0.68 for ytterbium silicate – CMAS system
 - Average AEO/RE$_2$O$_3$ ratio ~ 0.22 for yttrium silicate – CMAS system

Advanced NASA EBC Developments

NASA advanced EBC systems emphasizing high stability HfO$_2$- and ZrO$_2$-RE$_2$O$_3$-SiO$_2$ EBC system, RE$_2$Si$_{2-x}$O$_{7-2x}$, such as (Yb,Gd,Y)$_2$Si$_{2-x}$O$_{7-2x}$ - Controlled dissolution and maintaining coating stability.

(Yb,Gd,Y)$_2$Si$_{2-x}$O$_{7-2x}$ in CMAS, 1300°C
CMAS Resistant Tests

- JETs test of more advanced coating systems at 2700F

Plasma sprayed \((\text{Gd,Y})_2\text{Si}_2\text{O}_7\), 2450 cycles

Special processed \(\text{Yb}_2\text{Si}_2\text{O}_7\), spalling at 450 Cycles

EB-PVD \((\text{Yb,Gd,Y})_2\text{Si}_2\text{O}_7\), total 4450 JETS cycles, 100h

Hybrid Hf-rare earth aluminate silicate, completed 4450 cycles, 100h

Hybrid Hybrid Zr-rare earth silicate, completed 4450 cycles, 100h
High Stability and CMAS Resistance are Ensured by Advanced High Melting Point Coating, and Multi-Component Compositions

- Generally improved CMAS resistance of NASA RESi System at 1500°C, 100 hr
- Silica-rich phase precipitation
- Rare earth element leaching into the melts (low concentration ~9mol%)
Advanced EBC-CMC System Demonstrated 300 hr High Cycle and Low Fatigue Durability in High Heat Flux 2700°F Test Conditions

- A turbine airfoil EBC with HfO$_2$-rare earth silicate and GdYbSi bond coat on CVI-MI CMC substrate system selected for heat flux durability testing
- Laser high heat flux rig High Cycle and Low Cycle Fatigue test performed at Stress amplitude 10 ksi, fatigue frequency 3 Hz at EBC, and 1 hr thermal gradient cycles
- Tested EBC surface temperature 1537°C (2800°F) and T bond coat temperature 1482°C (2700°F), with CMAS
- Demonstrated 300 hour durability at 2700°F+
- Determined fatigue-creep and thermal conductivity behavior of the EBC-CMC system

Test Condition Summary
- EBC/CVI-MI, Fatigue loading 10 ksi (69 MPa), R=0.05, with 1 hr Thermal LCF
- $T_{\text{EBC-surface}}$ 1537°C (2800°F)
- $T_{\text{bond coat}}$ 1482°C (2700°F)
- $T_{\text{back CMC surface}}$ 1250°C (2282°F)
Advanced EBC-CMC Fatigue Test with CMAS and in Steam Jet: Tested 300 h Durability in High Heat Flux Fatigue Test Conditions

- Advanced Hf-NdYb silicate-NdYbSi bond coat EBC coatings on 3D architecture CVI-PIP SiC-SiC CMC (EB-PVD processing)

- Further understanding water vapor - environmental interactions necessary
EBC System Designs – Effects of Composites and Clustered Compositions?

- An alternating HfO$_2$-and RE-silicate coatings (EB-PVD processing) – HfO$_2$- layer infiltration and rare earth silicate layer melting

EB-PVD Processed EBCs: alternating HfO$_2$-rich and ytterbium silicate layer systems for CMAS and impact resistance?
Summary

• CMAS degradation remains a challenge for emerging turbine engine environmental barrier coating – SiC/SiC CMC component systems
• CMAS leads to lower melting point of EBC and EBC bond coat systems, and accelerated degradations
• NASA advanced EBC compositions showed initial promise for CMAS resistance at temperatures up to 1500°C in high velocity, high heat flux and mechanical loading, from the laboratory simulated engine tests, demonstrated with various CMC substrates
• Testing helped better understanding of EBC composition designs, CMAS interactions with hafnium, zirconium and rare earth silicates, for significantly improved CMAS resistance
• We are developing better standardized CMAS testing, and working on CMAS induced life debits, helping validate life modeling; controlling the compositions for CMAS resistance while maintaining high toughness also a key emphasis
Acknowledgements

• The work was supported by NASA Fundamental Aeronautics Program (FAP) Transformational Tools and Technologies (TTT) Project.
• The authors are grateful to Dr. Michael Helminiak in the assistant of JETS tests.
CMAS Reaction Kinetics in Bond Coats

- SiO₂ rich phase partitioning in the CMAS melts
- Rare earth content leaching low even at 1500°C
- More advanced compositions are being implemented for improved thermomechanical – CMAS resistance

CMAS Partitioning on RE-Si bond coat, 1500°C, 100hr
High Stability and CMAS Resistance Observed from the Rare Earth Silicon High Melting Point Coating Compositions

- Demonstrated CMAS resistance of NASA RE-Si System at 1500°C, 100 hr
- Silica-rich phase precipitation
- Rare earth element leaching into the melts (low concentration ~9 mol%)
Effect of CMAS Reactions on Grain Boundary Phases

- CMAS and grain boundary phase has higher Al\textsubscript{2}O\textsubscript{3} content (17-22 mole%)
 - Eutectic region with high Al\textsubscript{2}O\textsubscript{3} content ~1200°C melting
 - Loss of SiO\textsubscript{2} due to volatility

Grain boundary final phase – low SiO\textsubscript{2} and high Alumina

Fig. 4. The 10% MgO plane of the system CaO-MgO-Al\textsubscript{2}O\textsubscript{3}-SiO\textsubscript{2} showing the isotherms and fields of primary crystallization. A.T. Prince, J. Amer. Ceram. Soc., 37(9)1954 p402-408