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1. Introduction 

Air transportation networks are being disrupted with increasing frequency by failures in their cyber- 
(computing, communication, control) systems [1-3].  Whether these cyber- failures arise due to 
deliberate attacks human errors, or equipment failure, they can have far-reaching impact on the 
performance of the air traffic control and management systems.  For instance, a computer failure in the 
Washington DC Air Route Traffic Control Center (ZDC) on August 15, 2015, caused nearly complete 
closure of the Center’s airspace for several hours.  This closure had a propagative impact across the 
United States National Airspace System, causing changed congestion patterns and requiring placement 
of a suite of traffic management initiatives to address the capacity reduction and congestion. A snapshot 
of traffic on that day clearly shows the closure of the ZDC airspace and the resulting congestion at its 
boundary, which required augmented traffic management at multiple locations.  Cyber- events also 
have important ramifications for private stakeholders, particularly the airlines.  During the last few 
months, computer-system issues have caused several airlines’ fleets to be grounded for significant 
periods of time: these include United Airlines (twice), LOT Polish Airlines, and American Airlines. Delays 
and regional stoppages due to cyber- events are even more common, and may have myriad causes (e.g., 
failure of the Department of Homeland Security systems needed for security check of passengers, see 
[3]).   

The growing frequency of cyber- disruptions in the air transportation system reflects a much broader 
trend in the modern society: cyber- failures and threats are becoming increasingly pervasive, varied, and 
impactful.  In consequence, an intense effort is underway to develop secure and resilient cyber- systems 
that can protect against, detect, and remove threats, see e.g. [4] and its many citations.  The outcomes 
of this wide effort on cyber- security are applicable to the air transportation infrastructure, and indeed 
security solutions are being implemented in the current system [5,6].  While these security solutions are 
important, they only provide a piecemeal solution.  Particular computers or communication channels 
are protected from particular attacks, without a holistic view of the air transportation infrastructure.   
On the other hand, the above-listed incidents highlight that a holistic approach is needed, for several 
reasons.  First, the air transportation infrastructure is a large scale cyber-physical system with multiple 
stakeholders and diverse legacy assets.  It is impractical to protect every cyber- asset from known and 
unknown disruptions, and instead a strategic view of security is needed.  Second, disruptions to the 
cyber- system can incur complex propagative impacts across the air transportation network, including its 
physical and human assets. Also, these implications of cyber- events are exacerbated or modulated by 
other disruptions and operational specifics, e.g. severe weather, operator fatigue or error, etc.    These 
characteristics motivate a holistic and strategic perspective on protecting the air transportation 
infrastructure from cyber- events.  
The analysis of cyber- threats to the air traffic system is also inextricably tied to the integration of new 
autonomy into the airspace [24].  The replacement of human operators with cyber functions leaves the 
network open to new cyber threats, which must be modeled and managed.  Paradoxically, the 
mitigation of cyber events in the airspace will also likely require additional autonomy, given the fast 
time scale and myriad pathways of cyber-attacks which must be managed.  The assessment of new 
vulnerabilities upon integration of new autonomy is also a key motivation for a holistic perspective on 
cyber threats. 



Very recently, a few research efforts have begun to consider on the holistic implications of cyber- 
threats and other man-made disruptions on the air traffic system, among other infrastructure networks 
[7-9].  The long-term goals of these research efforts are to: 
1) Analyze the NAS-wide impacts of cyber- failures and attacks, as well as other disruptions (e.g. space 
vehicle operations, integration of unmanned vehicles, human operator error/fatigue). 
2) Identify critical vulnerabilities in the cyber- network, such as software components, communication 
links, or data sources whose failure may incur wide impact; and, likewise, identify critical physical-world 
vulnerabilities. 
3) Develop protection schemes for these critical vulnerabilities. 

These holistic analysis and design tasks are challenging.  Analysis of NAS-wide impacts requires 
appropriate models that capture the traffic network, cyber system, and human assets in a way that is 
tractable yet descriptive.  The interfaced model is necessarily high-dimensional, and detailed analyses of 
wide-area transient responses are needed for threat evaluation.  Hence, effective simulation and formal 
analysis techniques are needed.   Identification and protection of critical vulnerabilities is even more 
complicated, since it requires comparing and evaluating a large pool of potential threats over variable 
weather and traffic states.   

In this paper, we introduce a layered network modeling framework for assessing cyber- threats to the air 
traffic management system, and advocate for a network control theory approach for threat assessment 
using the model.  The described network-theoretic approach builds on a growing literature on graph- 
and network- theoretic approaches to air traffic management [11,25,26].  Relative to this literature, the 
main innovation here is to study the spatiotemporal impacts of disruptions from a graph-theory and 
network-controls perspective, and to develop models and analyses for meshed cyber, traffic, and 
weather dynamics.  The research described here also connects to a broader effort to evaluate threats to 
cyber-physical systems from a network-controls perspective, but achieves a keener analysis focused on 
the specific models used in air traffic management (e.g., [19,27-29]).  

Specifically, a flow- and queueing- centered modeling paradigm is proposed (Section 2).  To assist in 
identification of vulnerabilities, a linearized approximation is also considered (Section 3). Several 
exploratory analyses are conducted, that show how the proposed state-space modeling frameworks can 
allow threat assessment from a control theory perspective (Section 4).   

 

 

2. Layered Network Model 

A network model with three layers is envisioned: 1) a traffic layer which captures air traffic at the 
resolution of major flows and also major controls (e.g. traffic management  initiatives such as GDPs and 
AFPs); 2) a cyber- layer that abstractly represents the information flow among stakeholders (airline 
dispatch offices, Centers, ATCSCC) required for operations, and the impacts of this information flow on 
traffic; and 3) a weather layer that tracks forecasted severe weather impacts on traffic and capacities.   
The model as whole comprises a multi-layer nonlinear flow and queueing network model, which has 
structured interfaces between the layers (Figure 1).   

The models for traffic flow and weather, and their interface, were developed in our previous studies [10-
12]. These studies are part of a research thrust on flow-level or Eulerian modeling of air traffic (e.g., 



[13,14]).  The main innovation in this work is to develop a network model for the cyber (communication, 
computing, decision-support) architecture of the airspace system, and to interface it with the traffic 
layer so as to form the full layered-network model.  The cyber- layer may be viewed abstractly as 
modeling the availability and flow of information required for the air traffic system to function.  Attacks 
and failures serve to corrupt information or prevent information flow:  a percolation-type model for the 
propagative impact of attacks is envisioned here [15]. 

Since the traffic and weather models were described in previous work, we only briefly overview them 
here, and refer the reader to the literature for details.  The model for the traffic and management layer 
that we use here was introduced in [11].  The model falls within the broad class of flow- and queueing- 
models, or Eulerian models, that represent aggregate flow densities or traffic counts rather than 
individual aircraft positions [11,13,14,20].  The particular model considered here represents traffic at the 
resolution of inter-Sector flow densities in an area of interest with high congestion or severe weather, 
and at a lower resolution outside the area of interest.  Specifically, traffic is modeled using overlaid flow 
networks for different origin-destination (OD) pairs, see Figure 1a.  Structured queueing elements are 
used to represent traffic management initiatives such as ground-delay programs, airspace flow 
programs, miles-in-trail or minutes-in-trail.  Queues also are used to model intrinsic capacity restrictions 
on airspace resources (e.g., Sector capacities, arrival and departure rate constraints).  Demand is 
modeled as having a deterministic component which represents scheduled traffic, and a stochastic 
component which reflects schedule uncertainty and pop-up traffic [21].  Resource capacities are 
modulated by forecasted weather dynamics, see discussion on the weather layer below.  Model 
parameters – including the flow-network structure, demand profiles, possible traffic management 
initiatives, and nominal capacities – are obtained from archived data along with day-of-operations data. 
The queueing model has been evaluated for several historical bad-weather days, and has been shown to 
provide adequate forecasting of traffic characteristics.  The model has also proved effective for tuning of 
traffic management initiatives, so as to optimize multi-objective cost metrics [22,23].  We refer the 
reader to [11] for a mathematical formulation of the model. 

Weather significantly modulates en route and terminal area air traffic, and hence modeling the traffic 
management system requires modeling of forecast weather.  At the strategic decision-making horizon, 
weather is subject is significant uncertainty, and hence appropriate statistical forecasts of weather are 
needed. The described queueing-network model, in particular, requires estimates of en route (Sector) 
capacities as well as airport arrival and departure rates, both of which depend on weather; a weather 
layer is envisioned in our modeling framework to generate these capacities.  Although statistical 
weather forecasting tools are available in the public domain (e.g. ensemble forecasts [30]), these tools 
often do not output weather data at the proper resolution for traffic management, and also do not 
capture the regional-scale variabilities and uncertainties in forecast weather.  In our previous work, we 
have used a stochastic automaton network known as the influence model [31] to represent the 
spatiotemporal progression of severe convective weather, so as to forecast en route capacity impacts 
[32-34].  The main idea is to parameterize the influence model to statistically match public-domain 
forecasts at snapshot times, whereupon the model can be run and analyzed to get interpolated 
forecasts at desired resolutions and to capture small-scale variabilities in weather evolution.  The 
convective coverage predicted by the model can then be translated to a reduction in the en route 
capacity.  Meanwhile, airport capacity trajectories can be obtained from local wind, ceiling, and 
convection variables obtained from ensemble forecasts (or derived influence models), or alternately 
from terminal aerodrome forecasts (e.g., [35-37]).  The weather layer of the proposed model includes 
the spatiotemporal models for weather evolution, and their translation to airport and en route 



capacities, see Figure 1b.  The weather layer is interfaced with the traffic layer in that it sets en route 
and terminal area capacities. 

a)  

b)  
Figure 1: The traffic and cyber layers of the air transportation system are diagrammed.  a) The traffic 
layer can be modeled using a flow and queueing network, or a linear approximation which takes the 
form of an RC circuit.  b) The cyber- layer is modeled in terms of necessary information content (blue 
dots), with attacks implicating a propagative disruption this information (red dots). 

 

Since the focus of this work is on evaluating cyber threats to the air traffic system, the cyber- system 
which is used for air traffic control and management is explicitly modeled in this work.  The modern air 
traffic system uses numerous networked cyber assets for traffic control and management. Relevant to 
this effort, control of aircraft for collision avoidance is undertaken by human controllers located in about 
20 regional offices, known as Air Route Traffic Control Centers (ARTCCs or Centers), which are each 
responsible for a partition of the United States’ airspace.  At each Center, a small group of controllers 
(typically 3-5) are assigned to each Sector in the Center’s airspace, and are responsible for the control of 
aircraft in the Sector.  The controllers for each Center rely on a number of cyber- systems, including 
radar displays of aircraft and weather, collision alert tools, and computer systems that provide directives 
from traffic managers.    In similar fashion, controllers for the Terminal Radar Approach Control facilities 
(TRACONs) associated with major airports, as well as airport-control tower personnel, have numerous 
cyber tools which provide radar data, filed flight plans, and relevant weather data.  Meanwhile, wider-
area and longer-term traffic management is undertaken via coordination of traffic managers at the 
regional offices, the central command center (Air Traffic Control Strategic Command Center or ATCSCC), 
and major commercial airlines.  The personnel involved in traffic management also use numerous cyber 
tools, including weather and traffic data sources, telephone as well as web-based communication, 
simulators, etc.   

Holistically, the cyber system acting in support of the air traffic system can be viewed as transmitting the 
information that is necessary for effective traffic management and control, see Figure 2a.  This cyber 



system comprises a mixture of specialized information transfers for the air traffic system and generic 
information gathering from the broader Internet (e.g., public-domain weather forecasts).  The cyber 
systems used by traffic managers are very often networked to the broader web, whether for required 
data transmission or for convenience.  To the best of our knowledge, cyber systems used in the airspace 
system use only standard protection technologies (e.g., standard firewalls and virus-checking software, 
limited or no encryption).  The cyber system may be subject both to failures and to deliberate software 
and hardware attacks, and indeed both types of threats have been observed [1-3]. 

 

a)  

b)  
Figure 2:  

 

In this work, we abstractly model the cyber system as a network of information resources that are 
necessary for control and management of traffic, see Figure 2b.  Under nominal conditions, each piece 
of information is modeled as being present, which then allows control and management.  The main 
purpose of our cyber-layer model is to represent disruptions to the needed information resources 
(which are the nodes in our network model).  These disruptions then cause changes to the traffic 
network, which are modeled as the interface between the cyber and traffic layers (also see Figure 2b).   

Formally, an information network with 𝑚𝑚 nodes labelled 𝑖𝑖 = 1, … ,𝑚𝑚 is considered, which each node 
represents an information resource needed for traffic management and control (e.g., a radar screen 
used by the controllers for a particular Sector, or the flight manifest data that are needed by a Center’s 
traffic managers, etc).  Each node is modeled has having a nominal state `Normal’ or `N’, which indicates 



that the information content is available and uncorrupted.   During a particular operational period of 
interest, each node may transition to a failed state (`Failure’ or `F’) which indicates that the information 
content associated with the node is unavailable, whether due to a failure or an attack. The state of node 
𝑖𝑖 during the period of interest is referred to as 𝑥𝑥(𝑖𝑖). 

Two probabilistic models for failure are considered.  In the simpler model, an attack or failure event is 
modeled as causing the state 𝑥𝑥(𝑖𝑖) of each network node to be `F’ with probability 𝑝𝑝(𝑖𝑖), independently 
of all other nodes.  This simple model for failures is descriptive of independent component failures, 
which cause individual information resources to become unavailable.  The model also encompasses 
structured deterministic failure scenarios where the failure of a fixed set of information resources needs 
to be evaluated (e.g., during post-processing after a failure or event, or for common failure paradigms).  
The model further captures certain types of cyber-attacks, for which information resources are 
independently impacted.  For instance, phishing attacks wherein an attacker sends an e-mail with a 
computer-virus file attached to a long list of recipients may be modeled in this way.  In this scenario, 
personnel who are responsible for traffic control (e.g., controllers, managers, airline’s dispatchers) each 
have some probability of independently receiving and opening the attack e-mail using a particular cyber 
system, hence causing failure of this cyber system for a period of time.  Thus, a model where each cyber 
resource is independently disrupted with some probability is apt. 

A second, more sophisticated model for cyber disruptions is also considered.  This second envisioned 
model reflects that information flows among resources according to a specified network, and hence 
disruptions of information flow may be correlated.  Specifically, the model captures that information 
disruptions may propagate through the cyber network.  This type of propagative disruption in cyber 
systems has been studied widely, in the context of computer-virus spread, cascading failure modeling, 
and other contexts [38-40].  Numerous probabilistic models for propagation or spread have been 
proposed.  Here, a stochastic percolation model for disruption propagation is considered.  Specifically, 
first each node i in the network is modeled as probabilistically being infected (having a failed status) 
with some probability, say 𝑝𝑝0(𝑖𝑖); this is the initial stage (stage k=0) of the infection.  In further stages of 
the infection, each node that has just been infected has some probability of infecting further nodes.  
Specifically, at stage k, each node i that was infected at stage k-1 infects any neighboring node j with 
probability 𝑝𝑝𝑘𝑘(𝑗𝑗, 𝑖𝑖), where the neighbors of a node are specified by the digraph Γ.  The infection process 
continues until no new infections are produced.  We notice that the percolation model generalizes the 
simple probabilistic-failure model, by capturing cascading impacts of failures in the information-flow 
network.  The percolation model is useful when the failure of one cyber system implicates an impact on 
other information resources used in traffic control and management: for instance, the failure of systems 
which store flight manifests may simultaneously impact information resources at multiple Centers. 

The cyber- layer of the model is interfaced with the traffic layer as follows.  Each information resource is 
viewed as being necessary for operation of some airspace resources over a time period of interest– for 
instance, a major flow or jet route, a sector or group of sectors, or one airline’s traffic.   Thus, 
information-resource failures modulate the associated traffic resources’ parameters for their nominal 
values. Specifically, airspace resources such as Sector or flow capacities may be curtailed, demand 
patterns may be altered, traffic management initiatives parameters (e.g., rates, scope) may be modified, 
etc.  Thus, the traffic models parameters and inputs are changed over an interval in reflection of the 
information-layer failures.  More sophisticated interfaces between the cyber and traffic layers are also 
envisioned, which can capture deliberate attacks by sophisticated sentient adversaries.  Specifically, to 
capture such attacks, we model failure of an information resource as permitting commandeering the 
information set by the adversary.  In this case, the failure can allow for an arbitrary time-varying 
parametric or actuation signal that is set by the adversary. 



In sum, a layered network model has been proposed, which includes: 1) a flow and queueing model for 
traffic and its management; 2) an influence model-based weather simulator; and 3) a percolation model 
for disruptions to information resources.  The different layers are coupled in structured ways.  
Specifically, the weather and cyber layers both modulate parameters in the traffic layer. 

 

3. Linearized Approximation and Control-Theory Perspective on Threat Assessment 

To assist in threat assessment, a linearized approximation of the layered model is also considered, which 
preserves the network’s topological structure but simplifies modeling of the flow processes and 
interfaces. The linearization of the traffic layer is developed using the techniques described in [10,16,31], 
which consider a stochastic linearization around a predicted operating conditions and achieve an 
equivalence with a linear circuit model.  The linearization of the queueing network model represents a 
significant abstraction from the detailed operations of the air transportation system, but preliminary 
studies have shown that the linearized model can adequately capture wide-area ripples in traffic flow, 
and represent essential connections between the network’s topology and disruption impacts [16].  
Linear and jump-linear approximations of layered weather and traffic models have also been proposed, 
see e.g. [10,41].  These analyses draw on the moment-closure properties of the influence model [31] 
along with the stochastic linearization approaches used for the traffic model.  In similar fashion, linear 
approximations for probabilistic infection models, such as those used for the cyber layer, are available in 
the literature [38-40] and can be used in our framework.  The interfaces between the cyber layer and 
physical layer can similarly be approximated as linear using the arguments given in [31], or alternately 
cyber events can be modeled as actuating or modifying the traffic network’s topology. 

The linearized model is useful for threat assessment for several reasons.  First, it enables rapid 
simulation and formal statistical analysis of wide-area impacts of disruptions, and hence potentially also 
simplify design of mitigation schemes.  Second, the model strips away operational details and highlight 
the essential connection between the network’s graph topology and disruption impacts, which can allow 
development of simple graph-theoretic rubrics for analysis and design.  Third, because the linear model 
permits explicit mathematical expression in state-space form, it allows concrete description of the 
threat assessment problem in control-theory and (specifically) network-control-theory language.  We 
develop this control-theoretic interpretation next. 

We argue, specifically, that deliberate manipulation of the cyber network by a deliberate sentient 
adversary can be viewed as a reachability problem for the linearized model, while tolerance of natural 
disruptions or blunt attacks may be phrased as a robustness analysis. These reachability and robustness 
formulations can be addressed using a mixture of simulation and formal analysis, and also are a useful 
stepping stone for obtain topological insights into attacks.  Formally, the linearized model with the 
traffic and cyber layer can be written as follows: 
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� 𝑢𝑢[𝑘𝑘], where 𝑥𝑥𝑡𝑡[𝑘𝑘] and 𝑥𝑥𝑐𝑐[𝑘𝑘] are states of 

the traffic network (flows, congestion levels) and cyber network (information resource failure statuses 
or probabilities) respectively, 𝛤𝛤 specifies the networks’ graph (including inter-network interactions and 
interfaces between the networks), and u[k] captures an attack or disruption initiation which may couple 
into the cyber or traffic dynamics additively via 𝐵𝐵𝑐𝑐 or 𝐵𝐵𝑡𝑡, or may modify the network’s graph. We note 
here that the weather layer has been suppressed to simplify the presentation, but can also 
straightforwardly be included using an extended state vector, if desired.  For sophisticated cyber-attacks, 



the reachability question of interest is to understand whether and how the input u[k] can be designed to 
manipulate the physical system’s state away from its nominal trajectory.  Meanwhile, for blunt attacks 
and natural disruptions, the robustness of the dynamics to stochastic or impulsive disruptions is of 
interest. Formal algebraic analyses of these problems can be completed by applying and building on 
control-theory techniques. These analyses then give a starting point for developing topological insights 
into threat impact, using recent results that tie network structure to reachability and robustness levels 
[17-19].  They also bring forth interesting new questions regarding reachability and robustness in 
networks with layered structures, as well as reachability using sign-definite inputs.  We envision that 
these reachability and robustness analyses will also enable identification of critical vulnerabilities and 
eventually design of protection schemes, based on actuator-placement techniques in the controls 
literature. 

 
A comprehensive general treatment of the posed reachability and robustness problems is beyond the 
scope of this paper.  However, we pursue an exploratory analysis of one threat-assessment problem 
that can be approached using the modeling framework.  Specifically, we consider the robustness or 
vulnerability assessment for cyber attacks/failures that cause restriction of traffic flows (local network 
topology changes), as measured by the overall impact on traffic that they implicate. 

 

4. Threat Assessment: Exploratory Flow-Vulnerability Analysis 

The proposed layered network model and its linearization are appealing for threat assessment because 
they permit evaluation of the propagative impacts of weather and cyber threats on traffic.  Because the 
models represent weather, traffic, and cyber systems, they can support a variety of analyses on the 
potential impacts of cyber-attacks and failures as well as the interactions among technological and 
natural disruptions.  Crucially, the model allows evaluation of the wide-area impact on air traffic of local 
disruptions.  Here, we discuss one exploratory analysis using the model, focused on 1) identifying 
vulnerable traffic flows and 2) using the vulnerability analysis to gauge the impact profiles of cyber-
attacks and to determine overall network robustness. This analysis is meant to illustrate how the 
nonlinear and linear modeling frameworks can be used in tandem with network-controls concepts for 
threat assessment.  

The exploratory flow-vulnerability analysis is undertaken as follows.  First, simulations of the linearized 
traffic-network model for constructed examples are used to conceptualize which flows are vulnerable 
(Section 4.1).  Based on these simulations, a network-theoretic calculation of flow vulnerability is 
proposed and evaluated (Section 4.2). Using this calculation, a network-theoretic metric for overall 
robustness to cyber-attacks is proposed, and the metric is tested using the linearized layered model 
(Section 4.3).  Finally, the developed network-theoretic calculations and metrics are applied to a realistic 
small-scale case study, and the results are tested using the detailed (nonlinear) layered model (Section 
4.4). 

 

4.1. What-If Analysis of Vulnerability: Simulations and Concepts 

As a first step toward assessing the vulnerability of flows, simulations of the linearized traffic network 
model are undertaken to gain insight into the propagative impacts of disruptions.  These simulations 
may be viewed as a ``what-if” analysis of the attack impact.  That is, we seek to understand the  



consequences of a significant-duration 
stoppage or constriction of different traffic 
flows, whatever the cause of the disruption.  
Since a what-if analysis is conducted, the cyber 
and weather layers of the model are 
suppressed for the simulations in this 
subsection, and only the propagative impact in 
the traffic layer is considered.  The linearized 
model is used for the simulations in this section, 
so as to provide a pathway toward developing 
graph-theoretic and analytical insights into 
vulnerability. 

The linearized flow model is simulated on a 
constructed network with 30 waypoints, see 
Figure 3.  The flow network was constructed by placing 30 vertices in the unit square which correspond 
to the 30 waypoints, and allowing flows between waypoints whose corresponding vertices are 
sufficiently close.  Traffic to three destination airports from 10 origin points (which may represent either 
origin airports or points at which flows enter from outside the modeled region) is considered.  The 
linearized flow model, which is analogous to an RC network model, is simulated for the 30-waypoint 
network.  The nominal flow densities on the links are shown in Figure 3. 

The spatial impacts on 
network-wide traffic of 
two individual flow 
disruptions are shown in 
Figure 4.  Specifically, 
Figure 4a shows the 
changes in steady-state 
flow densities due to 
blockage of a particular 
flow, while Figure 4b 
shows the transient 
response on a nearby 
flow.  Similarly, Figures 
4c and 4d show the 
steady-state and 
transient impacts due to 
the blockage of another 
flow.  The simulations 
indicate that the most 
drastic steady-state 
changes occur on flows 
that are proximal to 
impacted flow, and 
particularly on routes that are alternatives of the blocked flow.  The transient responses indicate a 
traveling-wave phenomenon, wherein alternative routes are quickly impacted, immediate downstream 

 
Figure 3: 

a) b)  

c) d)  
Figure 4: 



flows show a fast bimodal response (i.e., decrease followed by increase), and locations further away 
have a more limited and slower transient. 

In Figure 5, the total impact of blocking each 
flow in a persistent way is compared.  The 
impact of blocking a flow is measured as follows.  
For each other flow, the absolute deviation 
between the nominal and modified flow value is 
determined.  These deviations are summed as a 
total measure of impact.  Figure 5 shows that 
blocking a particular flow has large impact if: 1) 
the nominal traffic on the flow is large, and 2) 
there are few alternative routes for the flow 
traffic (equivalently, the flow is on a weak cut of 
the network’s graph).  Thus, the most 
vulnerable flows are large flows which offer few 
alternative routes. 

The comparison of blockage impact is shown for a second constructed network in Figure 6.  Again, large 
flows which have few alternative routes are seen to cause disproportionate impact to network-wide 
traffic, or equivalently to be the most vulnerable.  This example shows that the vulnerability may be 
particularly large if the alternative routes are long.  It also highlights that routes on weak cuts tend to 
have large nominal flows since few alternatives are available.    

 

4.2. Network-Theoretic Calculation of Flow Vulnerability 

The insights on flow vulnerability developed in the previous subsection, together with network 
analysis/control concepts, suggest a simple graph-theoretic algorithm for identifying flows that are 
especially vulnerable to unknown disruptions like cyber attacks.  The proposed algorithm draws on the 
Laplacian matrix of the network’s graph, which has been widely used for network analysis and control.  
Specifically, the algorithm uses the fact that the eigenvector associated with the subdominant 

 
Figure 5: 

a)   b)  
Figure 6:  



eigenvalue of the Laplacian matrix can be used to measure whether each edge in a network is on a weak 
cut or not.  By combining this information with nominal flow data, a good approximation for the 
vulnerability of each flow can be obtained, which turns out to be especially apt in finding highly-
vulnerable flows. 

Here is the algorithm: 

1) Using the layered traffic and weather model (where a deterministic or average weather forecast is 
assumed), compute the nominal traffic flow between each pair of waypoints (i.e., on each route 
segment or link).  Let us denote the flow by between waypoints 𝑖𝑖 and 𝑗𝑗 by 𝑓𝑓𝑖𝑖𝑖𝑖. 

2) Construct the Laplacian matrix 𝐿𝐿 for the traffic network.  The Laplacian  𝐿𝐿 is a square matrix, and for 
us has dimension equal to the number of waypoints in the traffic network.  The entries in 𝐿𝐿 are filled in 
as follows.  The entry at row 𝑖𝑖 and column 𝑗𝑗 is set to -1 if there is a flow (link) between waypoint i and 
waypoint j under the known operational conditions, and is set to zero otherwise.  The diagonal entries 
are chosen so that each row sums to 0.  We notice that the Laplacian exactly encapsulates the topolog o 
the flow network.  Alternately, if a linearization of the traffic model has been done, the state matrix of 
the linearized traffic model can be used in lieu of the Laplacian matrix.  It is easy to check that the state 
matrix will have the form of a Laplacian or grounded Laplacian matrix.   

3) Provided that the network topology is connected, the Laplacian matrix has a single eigenvalue at 0, 
while the remaining eigenvalues are real and strictly positive. The next step of the algorithm is to find 
the smallest nonzero eigenvalue and corresponding eigenvector 𝒗𝒗. 

4) For each pair of waypoints 𝑖𝑖 and 𝑗𝑗, please find 𝐶𝐶𝑖𝑖𝑖𝑖 = |𝑓𝑓𝑖𝑖𝑖𝑖�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖�|. 

5) The scalar 𝐶𝐶𝑖𝑖𝑖𝑖  is a measure of impact extent due to a blockage of the flow between waypoints 𝑖𝑖 and 𝑗𝑗, 
or equivalently is a measure of the vulnerability of the flow (link).  Thus, to identify vulnerable flows, we 
rank the flows according to  𝐶𝐶𝑖𝑖𝑖𝑖, and identify those that are above a threshold or largest. 

 

The algorithm for identifying vulnerable flows has been applied to the traffic-network examples 
introduced in the previous section.  The algorithm is effective in finding the most vulnerable flows.  For 
instance, the vulnerability metric 𝐶𝐶𝑖𝑖𝑖𝑖  and actual total flow disruption are compared in Figure 7, for the 

a)          b)  
Figure 7:  



second example network.  The metric identifies the four worst vulnerabilities, in order of impact. Also, 
other high vulnerability flows are highlighted by the metric. Likewise, the three most vulnerable flows 
are found, in order of impact, for the first example network (not shown). 

For the linearized flow model, a formal analysis can be used to show that the vulnerability metric 
effectively identifies vulnerable flows, particularly in the case where the smallest nonzero eigenvalue is 
significantly smaller than the remaining eigenvalues.  This spectral gap is present, for instance, for many 
networks with planar graphs such as the typical graph of the air traffic network.  A detailed presentation 
of the formal analysis is left to future work. 

 

4.3. Global Vulnerability Analysis for Cyber Events 

The flow-vulnerability analysis developed in the previous two subsections enables assessment of the 
global susceptibility of the traffic system to cyber- events which impact flows.  Here, the flow 
vulnerability analysis is used to define global metrics for cyber- event vulnerability, and simulations are 
used to evaluate the metrics and also to assess the extent of impact of cyber- attacks, for the two 
examples.   

The two probabilistic models for cyber events described in Section 2 are considered here.  Whichever 
cyber model is used, information disruptions in the cyber system are assumed to block flows in the 
traffic network.  Specifically, each information resource in the failed state is assumed to cause the 
blockage of one or a group of flows in the traffic system.  For this model, each flow in the traffic network 
has a probability of blockage due to cyber events, which can be computed via formal analysis, 
approximation, or simulation of the percolation model.  We use the notation  𝑞𝑞𝑖𝑖𝑖𝑖  for the probability of 
blockage of the flow between waypoints i and j. 

A metric for the global vulnerability to cyber events can be defined by considering blockage probabilities 
and impacts.  A natural metric is 𝑉𝑉 = ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 |𝑓𝑓𝑖𝑖𝑖𝑖�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖�|, which weights the 
flow-vulnerabilities by the blockage probabilities and then sums them.  Alternately, if a probabilistic 
description of cyber events is unavailable or all flow blockages are equally like, then the metric 𝑈𝑈 =
∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖  is natural. 

A specific cyber- disruption model has been simulated for the two example traffic networks.  For the 
simulation, a single information resource is assumed to be associated with each flow.  Each information 
resource is assumed to be failed with equal probability and independently during the period of interest 
(due to a phishing attack, for instance).  Failure of the information resource is assumed to lead to 
persistent blockage of the associated flow.  We note that the cyber-layer model is overly simplistic: in 
practice, information resource failures would likely disrupt a group of flows (e.g., all of the flows within a 
Sector).  However, even the simple independent-failure model yields complex impacts on traffic flow 
patterns, which allow a basic evaluation of the performance metrics. 

The global vulnerability metrics for the two networks have been computed.  The metric value for 
Example 2 is larger than that for Example 1 by a factor of about 1.5.  To further evaluate cyber-event 
impacts, Monte Carlo simulations of the layered traffic and cyber network models are undertaken, for 
two different information-resource failure probabilities (corresponding to ``more virulent” and ``less 
virulent” attacks).  Histograms of the total flow disruption, as a fraction of the nominal total flow, are 
shown (see Figure 8).  Indeed, the mean impact is significantly larger for the second example as 
compared to the first, primarily because of the significant probability for very impactful disruptions.  



Interestingly, the shape of the histogram changes significantly between the less virulent and more 
virulent attacks and between the two examples, suggesting that the occurrence of larger but rarer 
events is a key concern in evaluating security to cyber- attacks. 

 

The simplicity of the flow-vulnerability calculation supports design of cyber- management strategies to 
mitigate event impacts.  As one simple example, additional protection of cyber systems can be enabled 
for the information resources coupled with vulnerable flows.  For the second example network, we have 
considered the cyber vulnerability when protection resources are provided for the most vulnerable flow, 
so that the probability of blockage of this flow becomes negligible.  Monte Carlo simulations have also 
been completed for the protected network.  The resulting histogram of impacts is shown in Figure 9.  
The additional protection eliminates rare very high impact events, while other characteristics of the 
impact profile remain similar. 

 

4.4. Realistic Small-Scale Case Study 

A preliminary application of the proposed vulnerability assessment to a more realistic case study is 
described.  This case study is adapted from a case study described in [7], which is concerned impact of 

a)   b)  

c) d)  
Figure 8:  



long-duration non-weather disruptions on air traffic in a Center’s airspace.  The case study in [7] itself 
extends a study of weather impact on air traffic using the queueing- model for traffic [11].  The case 
study is roughly inspired by high-altitude traffic characteristics in Atlanta Center (ZTL), however the case 
study is constructed and much distanced from real operations in ZTL. 

The case study is concerned with traffic for four 
origin-designation pairs that traverses a region 
with six high-altitude Sectors.  The demand 
densities, routing fractions, and capacities are 
illustrated in Figure 10.  Limited traffic 
management initiatives are also nominally in 
place in the example, see [11] for details.  The 
detailed queueing-network model has been 
simulated for the case study, to obtain flow 
dynamics, backlog and delay statistics, and 
other performance metrics.  Under nominal 
conditions, a total delay of about 330 minutes 
is imposed on all aircraft using the network; 
thus, the airspace is relatively congested under 
nominal conditions, to the point of causing 
minor delays. 

The eigenvector flow-vulnerability analysis algorithm has been applied to the case study network.  The 
algorithm identifies flows 10-14, 1-4, and 2-10 as the most vulnerable.  Conceptually, the flows 
identified as most vulnerable are reasonable choices.  In each case, blockage of the flow requires 
significant re-routing of traffic via sparse alternate choices.  Additionally, these are large flows whose 
disruption may cause significant impact. Simulations of the queueing model verify that, indeed, blockage 
of these flows cause large impact in terms of increased delay and backlog, and significant modification 
of flow patterns.  !!!Need to expand on last sentence!!! 
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