

A Ka-Band (26 GHz) Circularly **Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed Rainee Simons Andrew Chrysler**

Cynthia Furse University of Utah Félix Miranda NASA Glenn Research Center

Motivation & Objective

- Design a 26 GHz, K_a band Reflector Antenna Feed to support next-generation SCaN architecture
 - Lightweight
 - Small
 - Durable
 - Circular Polarized

Circular Polarized (CP), Truncated Corner Patch Antennas

Haneishi, M. and S. Yoshida, "A Design Method of Circularly Polarized Rectangular Microstrip Antenna by One-Point Feed," in Microstrip Antenna Design, K.C. Gupta and A Benalla (Eds.), Artech House, Norwood, MA, 1988, pp. 313 -321

Originally from 1981, Reprinted in 1988

P. Sharma and K. Gupta,

"Analysis and optimized design of single feed circularly polarized microstrip antennas," in *IEEE Transactions on Antennas and Propagation*, vol. 31, no. 6, pp. 949-955, November **1983**.

???

2017, Millimeter wave frequencies

Explore changes that occur in the antenna design as the frequency is increased to 26 GHz

Major Topics

Single Element, Truncated Corner, Circular Polarized Patch Antenna

- Feed Network
- 2x2 Sub Array

Major Topics

Single Element, Truncated Corner, Circular Polarized Patch Antenna

- Feed Network
- 2x2 Sub Array

Truncated Corners create Circular Polarization (CP) in the Patch Antenna

Truncation and S₁₁ Design

Rogers 5880

- Low Loss, $\varepsilon_r = 2.2$
- Many Thickness Available
- Common Substrate

Truncation Amount, a

- Known Relationship to S₁₁
- Unknown Relationship to Axial Ratio (AR)

10 mil, Rogers 5880 ($\epsilon_r = 2.2$) Truncation Varied, 50 Ω Microstrip Feed

10 mil, Rogers 5880 ($\epsilon_r = 2.2$) Truncation Varied, 50 Ω Microstrip Feed

10 mil, Rogers 5880 ($\epsilon_r = 2.2$) Truncation Varied, 50 Ω Microstrip Feed

The Best AR and the Best S₁₁ do not occur at the same frequency

Effect of

- Substrate Thickness
- Substrate Dielectric Constant
- Antenna Design Frequency

Substrate

Thickness, t

Effect of Substrate Thickness Substrate Dielectric Constant Design Frequency

Substrate Thickness Variation at the K_a Band (26 GHz)

Rogers 5880

AR & S11 Mismatch

Effect of Substrate Thickness Design Frequency Substrate Dielectric Constant

Surface Current at Center Frequency 10 mil, Rogers 5880

S Band 2.5 GHz K_a Band 25.5 GHz AR < 1 dB

Left Hand and Right Hand CP K_a Band

LHCP

RHCP

Substrate Thickness Variation Over Several Frequency Bands (Simulation)

Effect of Substrate Thickness Design Frequency Substrate Dielectric Constant

10 mil, Rogers 6006 ($\epsilon_r = 6.15$)

 λ_d Frequency L а t/λ_d [GHz] [mm] [mm] [mm] 2.5 (S Band) 24.2 0.67 48.4 0.0052 6 (C Band) 10.1 0.44 20.2 0.013 10 (X Band) 6.0 0.34 12.1 0.021 15 (Ku Band) 4.0 0.29 8.1 0.032 26 (Ka Band) 2.3 0.22 4.7 0.055 40 (V Band) 3.0 1.4 0.18 0.084

All Antennas Fed with 50 Ω All Truncations designed for -10 dB

Sub-Topics

Single Element, Truncated Corner Patch Antenna

- Patch Design
- Initial Measurements
- Effect of:
 - Substrate Thickness
 - Substrate Dielectric Constant
 - Design Frequency
- Design Suggestion to Eliminate S₁₁ & AR Mismatch

AR & S11 Mismatch

Possible Method for High Frequency S_{11} and AR Alignment

Frequency [GHz]

Asymmetric Patch Matched With $\lambda/4$ Transformer

Feed Network

2x2 Sub Array

Feed Network Design

- Circular Polarization
 Improved
 - Sequential Rotation
 - A 90° Geometric Rotation
 - Sequential Phase
 - A 90° Phase Rotation

Footprint: 199 mm²

Footprint: 375 mm²

Clever Use of λ/4 Line Lengths Allows Uniform Line Width and Compact Design

Unwieldy Feed Lines and $\lambda/4$ Transformers Increase Footprint and may Restrict *n* x *n* Array Design

S. K. Lin and Y. C. Lin, "A Compact Sequential-Phase Feed Using Uniform Transmission Lines for Circularly Polarized Sequential-Rotation Arrays," in *IEEE Transactions on Antennas and Propagation*, vol. 59, no. 7, pp. 2721-2724, July 2011.

Compact Feed Network

Traditional Feed Network

Electrical Distance From First Tee Junction

ELECTRICAL COMPUTER

ENGINEERING

Single Element, Truncated Corner Patch Antenna

Feed Network

2x2 Sub Array

2 x 2 Sub Array, 10 mil, Rogers 5880 *a* = 0.530 mm

ELECTRICAL AND COMPUTER ENGINEERING

2 x 2 Sub Array, 10 mil, Rogers 5880 *a* = 0.530 mm

LHCP

27.1 GHz

RHCP 27.1 GHz

Conclusion & Future Works

- Ideal antennas will have good overlap in S₁₁ and AR bandwidth
- In addition to the known design equations, good choice in substrate thickness and dielectric constant is required
- The compact sub-array offers a nice size reduction, but coupling may reduce the CP performance

Questions?

RHCP 27.1 GHz

Andrew Chrysler andrew.chrysler@utah.edu