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ABSTRACT

Computational fluid dynamics is now considered to be an indispensable tool for the design and development
of scramjet engine components. Unfortunately, the quantification of uncertainties is rarely addressed with
anything other than sensitivity studies, so the degree of confidence associated with the numerical results
remains exclusively with the subject matter expert that generated them. This practice must be replaced
with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role
in the system design, development, and flight certification process. Given the limitations of current hyper-
sonic ground test facilities, this expanded role is believed to be a requirement by some in the hypersonics
community if scramjet engines are to be given serious consideration as a viable propulsion system. The
present effort describes a simple, relatively low cost, nonintrusive approach to uncertainty quantification that
includes the basic ingredients required to handle both aleatoric (random) and epistemic (lack of knowledge)
sources of uncertainty. The nonintrusive nature of the approach allows the computational fluid dynamicist
to perform the uncertainty quantification with the flow solver treated as a “black box”. Moreover, a large
fraction of the process can be automated, allowing the uncertainty assessment to be readily adapted into
the engineering design and development workflow. In the present work, the approach is applied to a model
scramjet isolator problem where the desire is to validate turbulence closure models in the presence of un-
certainty. In this context, the relevant uncertainty sources are determined and accounted for to allow the
analyst to delineate turbulence model-form errors from other sources of uncertainty associated with the
simulation of the facility flow.

INTRODUCTION

A dual-mode scramjet engine (see Fig. 1) is composed of four main components: inlet, isolator, combustor,
and exit nozzle. The inlet captures the air mass for the engine and conditions (compresses) the flow for
subsequent combustion. The role of the isolator is to separate the combustion effects (i.e., combustion-
induced pressure rise) from the inlet, providing sufficient margin to prevent engine unstart. The combustor
houses the fuel injection devices through which fuel is introduced and subsequently mixed with the incoming
air allowing for combustion. Finally, the nozzle expands the resulting exhaust gases to produce thrust for
the vehicle. At low hypersonic Mach numbers, the heat release associated with the combustion process can
lead to (or at least approach) thermal choking of the engine flow, resulting in elevated pressure levels in the
combustor. The adverse pressure gradient that forms under these conditions leads to the formation of a pre-
combustion shock train within the isolator. This flow is characterized by regions of massive flow separation
due to the adverse pressure gradient and the multiple shock/boundary layer interactions that result from
†Approved for public release; distribution is unlimited.



this shock system. The isolator length required to contain the pressure rise induced by the combustion
processes is of critical importance to the engine designer, since this drives the size (and weight) of the
isolator section.

Figure 1: Dual-mode scramjet engine flowfield characteristics

Reynolds-Averaged Simulations (RAS) have been used almost exclusively as the high-fidelity tool of choice
for the engineering design and development cycle of scramjet components due to the enormous compu-
tational resources required to perform scale-resolved calculations such as Large Eddy Simulation (LES).
Unfortunately, the epistemic uncertainties (i.e., systematic uncertainties) associated with imperfect physical
models used within a RAS framework are often found to dominate the overall uncertainty in simulations
of scramjet flowpaths.1, 2 If Computational Fluid Dynamics (CFD) is to be used as a predictive tool in the
design and analysis of scramjet components, these model-form uncertainties must be well quantified. The
quantification of these uncertainties will require that the models in question be validated for their intended
purposes (i.e., for realistic geometries in representative flow environments). To date, while the use of CFD
is prevalent, very few efforts have been undertaken that truly attempt to validate models for component
level simulations. Instead, the current state-of-the-art relies heavily on the experience of the CFD practi-
tioner to estimate the model-form uncertainty associated with their simulations through simple sensitivity
studies. This practice will have to be replaced with a formal uncertainty quantification (UQ) process if CFD
is to play an expanded role in the design and development research engineering community, development
test and evaluation community, and ultimately certification for flight. This is especially true with hypersonic
air-breathing propulsion systems due to the environment, scale, and duration limitations of ground test
facilities.

The work performed here describes a process for uncertainty quantification that has been present in the
literature for years,3 but has perhaps not been readily adopted due to the perceived costs associated with
a straight-forward application of the approach. The present effort uses reduced-order modeling as a cost
savings tool to allow these concepts to be efficiently incorporated into the workflow process to illustrate
how the chosen UQ process can affordably be incorporated into realistic research problems of interest to
the hypersonics community. The model problem chosen involves a scramjet isolator, where the desire is to
validate turbulence closure models in the presence of uncertainty. Accounting for uncertainties related to
modeling of the facility environment, as well as those specific to the numerical simulation (but independent
of the turbulence closure) allows the analyst to isolate the turbulence model deficiencies from other sources
of uncertainty. In doing so, more informed decisions can be made concerning the level of model fidelity
required for the application, while illuminating other error (or uncertainty) sources that may require resources



to address and/or reduce. This relatively simple (but relevant) model problem was selected over a more
comprehensive task, e.g., ground-to-flight mapping, in order to emphasize the UQ process without getting
too bogged down into the details of a complex application of the process. However, a recipe that describes
how this framework could be applied to more complex scenarios, in particular ground-to-flight mapping, is
also provided.

UNCERTAINTY QUANTIFICATION FRAMEWORK

Given the prevalence of numerical simulations in the current research and engineering environment, where
the trend has shown an ever increasing reliance on numerical data (with subsequent reduced reliance
on test data), some sort of uncertainty quantification process should be expected as a standard practice.
However, the trend in programmatic development (at least in the hypersonics community) has tended to
utilize nearly all of the allotted computational resources (i.e., time and people) in a deterministic fashion with
the goal of maximizing the coverage of the design space, with less emphasis on quantifying the uncertainties
associated with the analysis. Given the current balance of data provided from simulations relative to data
provided by ground tests, this philosophy can no longer be justified. Hence, a change in culture is required;
a prospect that as a general rule evolves slowly over time. As a result, even though there have been several
recent government funded activities in uncertainty quantification methodology development,4, 5 as well as
the development of guides related to uncertainty quantification,6 these ideas have not consistently found
their way into the engineering development workflow. With this reality in mind, the framework described
here is intended to be a minimalist approach (in terms of both complexity and time), that still retains the
important basic features that those in the uncertainty quantification community tend to emphasize. In other
words, the goal here is to document an approach that is within the reach of CFD practitioners that are not
experts in uncertainty quantification, so that the benefits of a UQ-centric approach (i.e., one that provides a
means to communicate the confidence present in the CFD data) can be realized.

The uncertainty quantification framework chosen for this effort is that of Roy et al.3 This framework was
chosen because it is nonintrusive (i.e., code modifications are not required to the CFD flow solver), and
it properly handles both aleatoric and epistemic uncertainty sources. This framework has also been suc-
cessfully adapted to other efforts aimed at quantifying uncertainty in complex engineering settings.7, 8 The
first crucial step in this UQ process is the determination and characterization of each source of uncer-
tainty. The determination of potentially relevant uncertainty sources should not be taken lightly because
the impact of any important uncertainty source missed here will not be accounted for, compromising the
uncertainty quantification efforts. Hence, all members of the design and development team should be in-
volved at some level during this critical initial stage of the process. Once the potential sources of uncertainty
have been identified, the next step is the classification of each uncertainty as being either aleatoric or epis-
temic. Aleatoric uncertainty is any uncertainty source that can be considered as inherently random. These
sources of uncertainty are typically not readily reducible, and are treated mathematically using probability
distribution functions. Examples of aleatoric uncertainty sources for the present isolator simulations are
the facility conditions (inflow stagnation conditions, outflow back pressure, etc.) and geometry variability
due to manufacturing tolerances. Epistemic uncertainty sources can typically be regarded as some sort
of bias error. These sources are commonly represented as being interval-bound with no belief that any
single value within the interval is more likely to occur than any other value within the interval. Examples of
epistemic uncertainties for the isolator simulations performed here are turbulence closure assumptions, on-
set of laminar to turbulent transition, and discretization error. These uncertainties, unlike aleatoric sources,
can often be reduced as additional knowledge is gained. For example, turbulence closure uncertainties
may be reduced by utilizing higher fidelity models, and discretization errors can be reduced by increasing
the resolution of the computational grids employed in the simulations. The proper characterization of each
uncertainty source can not be overemphasized. It may be tempting to employ what is referred to as a
first-order uncertainty analysis where all sources of uncertainty are treated as aleatoric, however, treating
epistemic uncertainties as aleatoric often leads to a drastic underprediction of their impact on the quantity
of interest. The consequence of treating all uncertainty sources as aleatoric was illustrated in Ref. 9, where



the uncertainty in the prediction of radiative heat transfer of a reentry vehicle increased from 6% to 30%
when the epistemic uncertainty sources were properly classified.

Once the uncertainties have been identified and classified, the next step is to perform a sensitivity analysis
to estimate their influence on the system response (or output quantity of interest). The purpose of this
step is to rank the relative importance of each uncertainty source toward the prediction of the system
response. This information is used to potentially reduce the dimension of the uncertainty space by removing
uncertainty sources that are deemed to have a negligible impact on the system response variability. Where
this line is drawn is a function of the computational resources available to the CFD practitioner and the time
that the “customer” is willing to accept for the additional information provided by an uncertainty analysis.

Given the set of relevant uncertainty sources being considered, the next step is to propagate them through
the model to determine their impact on the system response. The manner in which this is done is depen-
dent on the characterization of the uncertainty sources. As discussed previously, aleatoric parameters are
random in nature and sampled based on an assigned probability. If multiple aleatoric uncertainty sources
are considered, then each aleatoric parameter is independently sampled based on its Probability Density
Function (PDF). These values are then passed to the computational model to obtain a single value for the
quantity of interest. This process is repeated “Na” times to obtain a random set of system response values
from which a Cumulative Distribution Function (CDF) is formed. The CDF is a nondecreasing function that
provides the probability that a random variable (in this case, the system response) will take on a value less
than or equal to some chosen value. This function is formed by first sorting the system responses from its
smallest to largest value forming the abscissa of Fig. 2. The CDF is then constructed by assigning a prob-
ability of 1/Na to each response and adding them up as one traverses the abscissa from left to right. The
end result is an “S” curve, as shown in the left image of Fig. 2. A steeper curve implies that the variability
about the mean value (i.e., the variance of the response) is relatively small and vice versa.

Figure 2: Representative CDF (left) and probability box (right) images

Epistemic parameters have no probability associated with them and instead one treats any value within the
assumed interval as having an equal possibility of occurring. Therefore, propagating randomly sampled
epistemic values (in the absence of any aleatoric uncertainties) simply results in a bounded interval for the
system response, so that all system responses between the minimum and the maximum value obtained af-
ter propagation of “Ne” samples of the epistemic uncertainties are considered equally probable. The typical
scenario in real-world problems is the situation where both aleatoric and epistemic uncertainty sources are
present. In this case, one independently samples from each of the epistemic parameters prior to perform-
ing the uncertainty analysis for the aleatoric parameters as described in the previous paragraph to produce
a CDF that represents a conditional probability. In other words, this CDF provides the probability of the
system response “conditioned” on the specific epistemic samples that were chosen. Repeating the process
for a different set of epistemic parameters would yield (in general) different CDFs. Therefore, when both



aleatoric and epistemic uncertainty sources are present, a second-order uncertainty analysis is required
where a nested loop structure is formed with the epistemic parameters sampled in the outer loop, and the
aleatoric parameters sampled in the inner loop. This process generates a family of conditional CDFs with
the bounding curves representing a probability box, as shown in the image on the right of Fig. 2. The end
result of this process is an interval-valued probability representation for the system response.

The computational expense of performing the process outlined above would be excessive if one attempted
to propagate the uncertainties directly through the CFD software. A cost effective means of circumventing
this difficulty is to construct a metamodel for the system response. Metamodeling is a technique by which a
system response is approximated using a limited set of data over a defined design space (in this case, the
aleatoric and epistemic parameters). This technique is also known as reduced-order modeling or emulation,
but metamodeling is the preferred term here. The use of a metamodel is advantageous in situations where
many calls to the computational model are required (e.g., uncertainty propagation). Directly accessing the
high-fidelity CFD solver in an on-demand manner during the uncertainty propagation process would simply
not be practical due to the time required to obtain steady-state solutions from the discretized Navier-Stokes
equations. Instead, a finite number of CFD simulations are performed at predefined locations within the
design space. The metamodel is then formed by fitting the system responses extracted from the CFD
solutions as some function of the design space.

FACILITY DESCRIPTION

The measured data used in this effort were obtained from experiments performed in the Isolator Dynamics
Research Laboratory (IDRL) at the NASA Langley Research Center. A photograph and schematic of the
facility hardware are given in Fig. 3. The flowpath is mounted vertically with facility flow directed from
bottom to top. A unique aspect of this facility is the ability to translate and/or rotate the rig during facility
operation. This capability was desired to simplify the application of advanced laser-based diagnostics for
flowfield interrogation. The ability to move the test apparatus allows the diagnostic equipment to be set-
up and aligned only once, so that the diagnostic components never have to be relocated. Air is supplied
via 4 flexible hoses to a settling chamber that houses a honeycomb flow straightener to remove large-
scale swirl and reduce freestream turbulence levels. The settling chamber connects to a two-dimensional
Mach 2.5 nozzle that was designed using an inviscid method-of-characteristics code coupled with a two-
dimensional full Navier-Stokes solver. The 24-inch isolator test section has a height (h) of 1-inch and a
width (w) of 2-inches, and is assembled with interchangeable glass and metallic side walls. Hence, both wall
measurements and laser-based in-stream measurements can be obtained simultaneously. The metal walls
were installed for this effort, allowing for a total of 213 static pressure measurements in the arrangement
shown in Fig. 4. The flow exits the isolator test section and enters a 15-inch long cylindrical expansion
section that is machined with a 45◦ chamfer on the downstream end to mate with a back-pressure plug.
The back-pressure plug is mounted in the spool section to a linear actuator that positions the plug with a
precision of 1/1000 of an inch. The back-pressure plug simulates the thermal choking effect caused by
combustion in a dual-mode scramjet engine, providing a means of creating the back-pressured isolator
flowfield of interest. A detailed discussion of the facility is given in Ref. 10.

SIMULATION DESCRIPTION

The computational domain for this effort spans the region from the facility nozzle plenum to the end of the
24-inch isolator duct. The geometrical symmetry present in this flowpath, and the fact that only steady-state
simulations are to be performed, permitted the use of only one quarter of the facility flowpath, as shown in
Fig. 5. A structured grid with a total of 85,196,800 cells was created for the simulations with 18,636,800 cells
placed in the nozzle block (560 × 160 × 208) and the remaining 66,560,000 cells (2000 × 160 × 208) in
the isolator duct. Two coarser grids (10,649,600 and 1,331,200 cells) were obtained from this parent grid



Figure 3: Photograph (left) and schematic (right) of the Isolator Dynamics Research Laboratory hardware

Figure 4: Instrumentation layout for the metallic isolator side walls (flow direction would be left to right):
static pressure ports (blue), thermocouples (red), high frequency pressure ports (green)



via a factor of 2 coarsening in each coordinate direction to allow for an assessment of the numerical errors
associated with the simulations. The grid points were clustered near the walls such that the maximum y+

value at any cell center adjacent to the surface was no greater than 1 (approximately) for the coarsest grid
utilized. The grid was also clustered in the streamwise direction at the nozzle throat (∆x = 0.0025 h) with
the spacing gradually increased to 0.01 h at the nozzle exit. The streamwise spacing was held fixed at 0.01
h for the front half of the isolator to resolve the region where the shock train was expected to reside, and
was stretched in the second half of the isolator to a value of 0.025 h at the isolator exit. The maximum grid
spacing in the vertical (y) and spanwise (z) directions was 0.01 h (adjacent to the planes of symmetry). The
entire grid was split up into a total of 1280 grid blocks, which yielded 95% or better load balance statistics
for up to 438 processors.

Figure 5: Grid created for the nozzle/isolator assembly (every other point removed for clarity): nozzle section
(top), first half of isolator section (middle), second half of isolator section (bottom)

All of the CFD simulations were obtained using the VULCAN-CFD (Viscous Upwind aLgorithm for Complex
flow ANalysis) Navier-Stokes code.11 This CFD package is developed and maintained by researchers in the
Hypersonic Airbreathing Propulsion Branch at the NASA Langley Research Center, with the development of
this software being driven predominantly by the needs of the scramjet community. The CFD data obtained
in this effort were acquired by integrating the Reynolds-Averaged Navier-Stokes equations until steady-state
conditions were achieved. The solutions were advanced in pseudo-time via an incomplete LU factorization
scheme (with planar relaxation) using a Courant-Friedrichs-Lewy (CFL) number of 100. The inviscid fluxes



were evaluated using the Low-Diffusion Flux Splitting Scheme of Edwards,12 with cell interface variable
reconstruction achieved via the κ=1/3 Monotone Upstream-centered Scheme for Conservation Laws. The
Koren flux limiter13 was utilized to avoid spurious oscillations during this reconstruction process. The viscous
fluxes were evaluated using 2nd-order accurate central differences with the viscosity of air computed from
the polynomial fit of McBride.14, 15 The Menter baseline (BSL) closure for the Reynolds stress tensor was
the turbulence model chosen for this validation study, and the molecular and turbulent Prandtl numbers
were set to 0.72 and 0.9, respectively.

The boundary condition imposed along all solid surfaces was an adiabatic no-slip condition. The subsonic
nozzle plenum inflow condition was specified by fixing the plenum pressure and temperature, with Mach
number extrapolated from the interior. Finally, all properties were extrapolated at the subsonic exit of the
isolator with the exception of the static pressure. The surface pressure at the isolator exit was defined
by averaging the 20 surface pressure measurements taken around the periphery of the isolator duct at
the x = 22 h station. This station was highly instrumented with pressure taps for the specific purpose of
providing a well characterized outflow boundary condition. The static pressure profile applied at the exit of
the isolator was then set according to the following relationship to account for the influence of the turbulence
kinetic energy on the static pressure profile:

P = Ps −
2
3
ρiki (1)

where Ps is the experimentally obtained surface pressure, and ρiki is the product of density and turbulence
kinetic energy extrapolated from the interior.

Solution Verification

Numerical errors are denoted here as spatial discretization errors and iterative convergence errors. Tem-
poral discretization errors are of no consequence for this study since only steady-state simulations were
performed in this effort. The most compelling proof of iterative convergence is the situation where the resid-
ual norms have been reduced to machine accuracy. Unfortunately, this situation is rarely realized in practice,
particularly when simulating complex flows with shock waves and regions of flow separation. Alternatively,
the L2 norm of the residual is monitored until it levels out about some acceptably low value. In addition,
the variability of integral properties of interest, such as mass flow rates and surfaces loads, are checked to
offer further assurance that an adequate level of convergence has been achieved. In general, the following
iterative convergence statements were satisfied for each simulation performed in this effort:

• The value of the residual L2 norm was reduced by at least 5 orders of magnitude.

• The integrated surface load time histories were unchanged (to at least 5 significant digits) over the
last 5000 iteration cycles.

• The mass flow rate was constant at every streamwise grid plane to at least 4 significant digits.

The Grid Convergence Index (GCI)16 was used to quantify the spatial discretization (i.e., grid convergence)
error. The GCI is a grid convergence estimator derived from the generalized Richardson Extrapolation
formula, and can be written as follows:

GCI = Fs
| f2 − f1|
rp − 1

(2)

where f2 - f1 is the difference of some functional, f , evaluated using two different grid resolutions (with
refinement ratio r); p is either the observed order of accuracy of the numerical scheme or taken to be the
theoretical value (2 for the 2nd-order schemes used here); and Fs is a “factor of safety” with recommended
values of 3 (if the observed order of accuracy is taken to be the theoretical value) or 1.25 (if the observed
order of accuracy has been rigorously determined). The spatial discretization error estimates were found
to be orders of magnitude larger than the iterative convergence errors, so the iterative convergence errors
were omitted from the uncertainty assessment.



RESULTS AND DISCUSSION

A sample image of the simulated isolator flowfield is presented in Fig. 6. The global isolator shock train
structure (visualized by the velocity divergence) consists of leading oblique shock waves followed by alter-
nating expansions and quasi-normal shocks. The top image shows static pressure contours superimposed
on an isosurface of the total pressure (Po = 300 kPa). This image provides a visual of the core flow displace-
ment caused by the interactions between the shock waves and the turbulent boundary layer that engulfs
the isolator walls. The area blockage caused by the separated flow in the corners is a dominant feature
that dictates (to a large extent) the shock train flow structure. The Mach number contours show a boundary
layer structure on the vertical side walls that is notably thicker near the center of the side wall. This feature
is a result of the crossflow pressure gradients imposed on the flat sidewalls of the facility nozzle, and makes
this particular boundary layer more susceptible to large-scale flow separation. Mach disks are also seen in
the center of the duct, and while it is difficult to visualize in this image, the interaction of the leading oblique
shock wave and the Mach disk results in the formation of a shear layer. The flow in the isolator initially sepa-
rates in the corners of the duct where the shear forces are weakest. This flow separation results in a conical
shock that spreads diagonally across the isolator, diverting the flow toward the center of the duct. The high
pressure that is produced in the corners also drives the boundary layer fluid away from the corners along
the adjacent walls. The side walls (z = constant vertical surfaces) are half the width of the top and bottom
walls (y = constant spanwise surfaces), so the effect of the adverse pressure gradient formed in the corners
influences the center of the vertical walls more quickly than their spanwise counterparts. The additional
width offered by the spanwise surfaces allows sufficient space for a second separation region to form at
the z=0 centerplane of the duct. This separation bubble forms a strong oblique shock followed by a strong
expansion as this separation zone reattaches to the surface. The resulting flow remains attached along the
isolator centerplane even after further shock reflections downstream. The separation zones that originate
in the corners, however, gradually extend across the side walls and persist for several duct heights further
downstream. Moreover, the increased turbulence levels present in these separated flow zones do not dissi-
pate as the flow progresses downstream. The eventual result of this unbalanced production of turbulence is
a very large “effective” viscosity across the entire width of the duct that is 20,000 times larger than the local
fluid viscosity. The net effect is a flowfield that exits the isolator with properties representative of a Reynolds
number that is 4 orders of magnitude lower than the flow entering the isolator. These extreme values for
the turbulent viscosity allow the Reynolds-averaged simulations to produce a steady-state solution for what
would otherwise be a dynamic flow.

Turbulence Model Validation

The conditions of interest for the validation exercise are isolator conditions that result in a pressure ratio
across the isolator shock train that approaches the operability bound of dual-mode scramjets. The IDRL
isolator shock train length (Liso), plotted as a percentage of the normal shock pressure ratio (based on the
nominal isolator entrance Mach number of 2.5), is given in Fig. 7. The shock train length is defined as the
distance from the location of the incipient shock-induced surface pressure rise to the exit of the isolator.
This plot shows that the ability of an isolator to hold a given pressure ratio diminishes rapidly as the normal
shock pressure ratio is approached. For these isolator conditions, a 9% increase in the back pressure from
82.25% to 89.82% of the normal shock pressure rise changes the shock train length by 8.6 x/h (or 35% of
the available isolator length). The sensitivity of the shock position to the back pressure value in this regime
is clearly a challenge for any simulation effort to accurately predict. This sensitivity also explains why dual-
mode scramjets have historically been designed to limit the total combustor-induced pressure rise during
low-speed operation to approximately 80% of the normal shock value based on the isolator approach flow
Mach number.

The back-pressured facility isolator conditions chosen for the validation exercise are the experimental condi-
tions provided in Table 1. The measured conditions in this table, and the measured surface pressures in the
plots that follow, are an ensemble average of measurements taken over an approximate 5 second test in-



Figure 6: Isolator flowfield characteristics: (a) total pressure isosurface colored by static pressure con-
tours, (b) Mach number contours (c) velocity divergence contours, (d) turbulent to molecular viscosity ratio
contours



Figure 7: Isolator shock train length as a function of the normal shock pressure rise for a Mach 2.5 flow
(dashed portion of the line represents an operability range beyond that of current designs)

terval. The values in parenthesis represent the RMS deviation in the measured values relative to the mean
value obtained over the 5 second averaging interval. Note also that the isolator exit pressure measure-
ments were taken at the x = 22 h station. The computational domain exit is located at the x = 24 h station,
so the back pressure applied at the outflow boundary was increased slightly to 311.56 kPa to account for
the additional pressure rise over the final 2 duct heights of the isolator.

Table 1: Nominal facility flow conditions selected for model validation

Facility Property Operating Condition
Nozzle Plenum Pressure [kPa] 908.68∗ (0.027)

Nozzle Plenum Temperature [K] 292.91 (0.023)
Nozzle Exit Mach Number 2.5∗

Nozzle Exit Pressure [kPa] 53.90
Isolator Exit Pressure [kPa] 304.51 (0.097)

∗ Value computed from isentropic relationships

The wall static pressures obtained from the CFD model at the nominal facility conditions described above
are compared with the measurements in Fig. 8. The computed results shown are those obtained from a
simulation that used the medium (10,649,600 cell) grid. The image on the left compares the pressure along
the z=0 centerline of the top and bottom walls, while the image on the right compares the pressure along
the y=0 centerline of the side walls. In general, the measured pressure distribution along the spanwise
centerline (z=0) shows a monotonic rise, while the simulation does not; indicating a discrepancy in the
separation zone structure along these surfaces. However, the computed side wall y=0 centerline pressure
values display a monotonic rise, which is consistent with the measurements. The simulation has also
reproduced the measured shock train length to within a fraction of a duct height. If one were to use this
single deterministic simulation as the sole basis for assessing the adequacy of the chosen turbulence model,
then one would be inclined to claim that the turbulence model has adequately predicted the shock train



length. However, a multitude of uncertainty sources exist that affect the ability of the simulation to replicate
the measured isolator flowfield. As a result, the validation exercise should be performed in the presence of
these uncertainty sources prior to making any definitive claims on the adequacy of the turbulence model for
the chosen application.

Figure 8: Comparison of measured wall pressure with computed results (medium grid): top and bottom
walls (left), side walls (right)

As mentioned previously, the first step in the uncertainty quantification process is the determination and
characterization of the uncertainties. Given knowledge of the isolator flow physics and the simulation models
employed, the following potential sources of uncertainty were considered to examine their impact on the
isolator effectiveness as defined by the shock train length (Liso):

• spatial discretization error - EPISTEMIC

• onset of laminar to turbulence transition - EPISTEMIC

• facility supply pressure variability - ALEATORIC

• facility supply temperature variability - ALEATORIC

• facility supply turbulence intensity (0.01% to 5%) - EPISTEMIC

• facility wall temperature - EPISTEMIC

• isolator exit pressure variability - ALEATORIC

Given the isolated flow physics targeted by this validation exercise, the sensitivities in this effort were as-
sessed by simply observing the variability in Liso for a one-at-a-time variation of each uncertainty source.
A more thorough process7 would be required for more complicated scenarios, where the CFD practitioner
has little a priori knowledge of how the response might vary with each uncertainty parameter. Based on
the sensitivity assessment, and given the emphasis of illustrating the UQ process (rather than enhanc-
ing the refinement of uncertainty margins), the uncertainty sources considered for this turbulence model
validation exercise were limited to facility supply pressure, isolator exit pressure, transition onset, and nu-
merical discretization error. The uncertainty space was reduced even further by recognizing correlations
in the uncertainty sources. In particular, the ratio of the isolator exit to facility supply pressure was treated
as a single uncertainty source, which was hypothesized through subject matter expertise and justified via
sensitivity studies.



Having defined and characterized the relevant sources of uncertainty, the next step is to build the metamodel
that will be used for the uncertainty propagation. The design space used to construct the metamodel must
include the entire range of allowable values, requiring bounds to be defined for each uncertainty source
considered. The facility pressure ratio uncertainty was assumed to span the range of values between the
mean value and ± 3 σ, where σ is the standard deviation taken from the measured temporal histories. The
onset of transition is an epistemic uncertainty that results from our “lack of knowledge” as to precisely where
the flow transitions in the nozzle. In this effort, transition was assumed to take place somewhere between the
nozzle entrance (i.e., assumed turbulent everywhere) and the streamwise location of the nozzle inflection
point downstream of the throat. If additional measurements were to be taken at the nozzle exit that provided
information on the state of the boundary layer, then these uncertainty bounds could potentially be reduced.
Finally, the spatial discretization error was accounted for as a categoric uncertainty using two grid levels.
This information will later be transformed into a GCI measure to estimate the bounds of the discretization
error. The design space for the metamodel developed for the uncertainty propagation is provided in Table 2.
Note that the metamodel is set up to accept coded inputs (i.e., the actual inputs are scaled to map between
-1 and +1). By doing so, the coefficients of the model provide a more faithful estimate of the relative impacts
of each input parameter.

Table 2: Inputs for the metamodel of isolator shock train length

Metamodel Input Classification Type Valid Settings
Facility Pressure Ratio Aleatoric Continuous [-1, +1]

Transition Location Epistemic Continuous [-1, +1]
Grid Level Epistemic Categorical L2 (-1), L1 (+1)

In the present study, the metamodel inputs were sampled using design of experiments methods. Design of
experiments is a rigorous methodology for sampling a multidimensional design space in order to maximize
the amount of information with a minimal number of samples. The benefits of using design of experiments
become greater as the dimension of the design space increases relative to a full factorial method that utilizes
regularly-spaced sampling. The strategy used in this effort was to first initialize the design space such that
the corners and central locations were explored in an efficient manner. To do so, an I-Optimal design
(which seeks to minimize the average prediction variance over the entire design space) was initialized
with 9 samples in order to provide a perfect model fit with no degrees of freedom remaining for error
characterization. Subsequently, four groups of five space filling samples were defined to gradually refine
the population of samples within the design space to characterize the metamodel error. The space filling
method used for this purpose was the Fast Flexible Filling approach.17 At all times, the correlation between
every design variable combination was kept less than 5% to ensure minimal metamodel correlation due
to the sampling itself. Figure 9 shows the design space sample scatter for the facility pressure ratio and
transition location for all grid level settings. Only the I-Optimal design (i.e., the initial 9 samples) and the first
generation of additional samples are shown because the additional generations were not used to refine the
model in the present work.

Having defined the points in the uncertainty space to be sampled (14 total), the CFD simulations were
performed to provide the 14 discrete responses (shock train length) to be fit by the metamodel. Without
having a physics-based model form against which to fit the data, the classical approach to metamodeling of
a system response is to use an empirical, 2nd-order model equation of the form:18

R(x) = b0 +

n∑
i

bixi +

n∑
i

biix2
i +

n−1∑
i

n∑
j=i+1

bi jxix j (3)

where n is the number of design variables. Higher-order terms may also be included to model additional
nonlinear effects if desired. While the number of regression coefficients in a model is equal to the minimum
number of samples required to produce a perfect fit with no characterization of error, best practice dictates
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Figure 9: Design space points used to fit the metamodel shown for transition location versus facility pressure
ratio for all grid levels

that a number of additional samples be used to produce a least squares fit representing the mean behavior
of the response along with some modeling error. Thus, the final fitted form of the metamodel is

R̂(X) = [1, x1, x2, . . . , x2
1, x

2
2, . . . , x1x2, . . .]
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+ ε = XT b̂ + ε (4)

which includes an error term to capture scatter of the data about the mean response. The model parameters
fit to this metamodel for shock train length are given in Table 3 along with a measure of the significance of
each term. Smaller values in the 3rd column imply a larger significance. The 1st-order grid level term is the
greatest contributor to the variability of the model (by an order of magnitude), followed by the 1st-order and
2nd-order transition location terms. The interaction between facility pressure ratio and transition location
was of negligible importance, as was the interaction between the facility pressure ratio and the grid level.
The interaction between the transition location and grid level and the 2nd-order facility pressure ratio term
were also insignificant. While these could be removed from the model, thereby yielding additional available
degrees of freedom for characterizing error, they were retained for the subsequent analysis. Pure cate-
gorical terms (e.g., grid level) do not have 2nd-order terms, hence its omission from the table. Appendix A
contains additional information on the processes used to assess the metamodel prediction error (i.e., ε in
Eq. 4) and the adequacy of the metamodel fit. The metamodel prediction error was included in the uncer-
tainty quantification processes as an aleatoric uncertainty (normally distributed about the mean). The mean
contribution of this error was 0.2% of the predicted response (Liso) value.

The metamodel provides a simple low-cost functional relationship between the shock train length and the
uncertainty (design variable) space, allowing for the efficient propagation of the uncertainty sources. This is



Table 3: Metamodel regression coefficients and statistical significance measures for each term

Metamodel Term Regression Coefficient Probability > |t|
Intercept [b̂0] 13.5 < 0.0001

Facility Pressure Ratio [b̂1] 0.0527 0.0012
Transition Location [b̂2] -0.0805 0.0002

Grid Level [b̂3] 0.285 < 0.0001
Facility Pressure Ratio * Facility Pressure Ratio [b̂11] 0.0159 0.281

Transition Location * Transition Location [b̂22] -0.105 0.0005
Facility Pressure Ratio * Transition Location [b̂12] -0.00271 0.791

Facility Pressure Ratio * Grid Level [b̂13] -0.00567 0.5126
Transition Location * Grid Level [b̂23] -0.00838 0.3422

the key cost saving step that enables the use of this UQ framework for real problems of engineering interest.
In addition to the overall uncertainty provided by the formation of the probability box, the metamodel can
also be used to construct conditional CDFs to examine the isolated impact of each epistemic uncertainty
source. For example, the variability in the shock train length due to the uncertainty of where transition occurs
in the facility nozzle is shown in the left image of Fig. 10 with the grid fixed at the L1 level (10,649,600 cells).
This image shows that the shock train length varies by just over 0.2 duct heights depending on the location
assumed for the transition onset. The right image of this figure shows the variability of the shock train
length due to the use of either the L1 or L2 (1,331,200 cells) grid when transition is assumed to occur
immediately (i.e., fully turbulent). Since the grid level was a categoric uncertainty source, there are two
discrete sets of CDFs with nothing in between. This image shows the shock position varies by approximately
0.6 duct heights depending on whether the L1 or L2 grid is used, suggesting that the shock train length
uncertainty due to grid resolution is about 3 times larger than that due to the unknown location of laminar
to turbulent transition. Note that conditional one-at-a-time comparisons are typically used for qualitative
assessments only because the variability of the chosen epistemic parameter is computed assuming that all
other epistemic sources are fixed. In reality, the amount of variability is contingent on the precise values
assumed for the fixed epistemic uncertainty sources.

Figure 10: Conditional CDFs showing shock train length variability due to transition location (left), grid level
(right)

The probability box that maps the design space uncertainties to a system response uncertainty is shown
in the left image of Fig. 11. This plot provides the uncertainty estimate for the shock train length based on



uncertainties in facility pressure ratio, transition onset, metamodel error, and discretization error between
the L1 and L2 grid levels. However, this latter effect only accounts for the numerical error between the two
grid levels. What is really desired is the uncertainty in the shock train length due to discretization error. This
information can be obtained by transforming the uncertainty between the L1 and L2 grid levels to a GCI
measure (see Eq. 2), i.e.,

CDF(L∗) = CDF(L1) + Fs
|CDF(L1) − CDF(L2)|

rp − 1
(5)

A rigorous solution verification exercise has previously been performed19 for this isolator flowfield using the
L1 and L2 grids along with the fine (L0) grid level. The additional grid level allowed tests to be performed
to determine if the output quantities of interest were in the asymptotic convergence range, and the results
of these tests suggested that this was indeed the case. This result allowed for the determination of the
observed order of accuracy, which was performed for several flowfield metrics (including shock train length),
and found to be 1 (i.e., 1st-order) for this shock dominated flow. As a result of formally determining the
observed order of accuracy, the factor of safety, Fs, that appears in Eq. 5 was taken to be 1.25. Moreover,
the fact that this metric was found to be in the asymptotic convergence range allowed the treatment of
discretization error as a true one-sided bias error. Hence, the absolute value of the difference between
the L2 and L1 CDF values in Eq. 5 can be removed. From the perspective of the UQ framework, this
additional knowledge allows this uncertainty source to be treated as a one-sided uncertainty, since it is
known that further grid refinements will reduce the discretization error. The probability box that results from
this transformation is shown in the right image of Fig. 11, where the red CDFs are the result of the GCI
transformation. As a final note, the formal proof of CFD results being within the asymptotic convergence
range is often an impractical task. Instead, one might be tempted to simply examine the CFD results on
more than two grid levels to determine if the quantity of interest is monotonically changing as the grid is
refined. While this provides an indication that the error due to finite grid resolution is continuously decreasing
as the grid is refined, it is not certain. Hence, the CFD practitioner should consider this possibility when
making decisions on how to handle this particular source of uncertainty if the order of accuracy is not
formally assessed.

Figure 11: Probability box showing shock train length variability due to the raw uncertainty space (left) and
GCI transformed uncertainty space (right)

The GCI transformed probability box, shown in the right image of Fig. 11, defines the uncertainty window
of this validation exercise. Hence, if the measured shock train length is completely contained within the
bounding CDFs in this image, then given our current state of knowledge, the turbulence model is validated
with no measurable model-form error. An examination of this probability box shows that, given our current
state of knowledge, the uncertainty in computing the shock train length is approximately 1 duct height. A
significant portion of this uncertainty (nearly 50%) can be removed if the L0 and L1 grids were to be used



for the simulations. However, this grid pair utilizes 85,196,800 cells and 10,649,600 cells as opposed to the
10,649,600 cell L1 and 1,331,200 cell L2 grids, requiring an order of magnitude more cost for each CFD
simulation used to build the metamodel. The extraction of information such as this is made possible by
performing the validation within a UQ framework. The ability to compare costs and benefits is clearly a very
valuable feature when making decisions on where to allocate resources, and what level of improvement to
expect if given the additional resources.

The uncertainty information obtained from this UQ approach can also be displayed in a more conventional
manner as a line plot with uncertainty bars. In this case, we know that the discretization error is a bias error,
so the distance from the right-most CDF of the L1 grid family of curves to the right-most CDF of the GCI
transformed family is solely the result of this bias error. The remaining uncertainty is contained within the
width of the family of L1 CDF curves. This uncertainty space contains the portion of the discretization error
that is mixed in with the rest of the epistemic parameters. Therefore, the uncertainty in this region is taken
to be equally probable. The scenario just described is displayed pictorially in the left image of Fig. 12, and
results in an asymmetric error bar for the CFD simulation performed at the nominal conditions of Table 1.
The uncertainty results displayed in this manner, taken at the 50% aleatory uncertainty level, are shown in
the right image of Fig. 12.

Figure 12: Comparison of measured wall pressure with computed results (L1 grid) with computational
uncertainty shown

An examination of Fig. 12 shows that the measured shock train length is 14 h with an approximate uncer-
tainty of 0.25 h (based on the proximity of adjacent pressure taps). This value lies completely within the
probability box (left image of Fig. 12) of the CFD prediction, indicating that the turbulence closure model has
been validated for this particular isolator condition with no evidence of model-form error. The question then
arises as to how to handle the scenario when the measured results lie outside of the probability box of the
prediction. Roy et al.3 provides a detailed discussion on how this is dealt with, so the present discussion
will be limited to the scenario where only a single instantiation of the measurements is available for valida-
tion purposes (which is commonly encountered in practice). This situation is shown schematically in the
left image of Fig. 13, where the measured value is represented by the vertical red line, i.e., a probabilistic
representation of the measurement is not available, so the measured value is treated as a deterministic
quantity. To assess the degree of disagreement, Roy et al.3 suggests the use of an area validation metric
defined as the area between the probability box and the measurement (shown as the shaded region and
denoted as “A” in this image). This metric provides a measure of the level of disagreement between simula-
tion and measurements in the presence of uncertainty, which can be used to to expand the probability box
to account for model-form uncertainty (as shown in the right image of Fig. 13). This evaluation should be
repeated as additional validation data is gathered to cover the range of conditions that the model is intended



to be validated for. Upon completion of the validation exercise, the largest area validation metric is used
to pad the probability box of the simulations performed for any future predictive purposes. This represents
the model-form uncertainty of the prediction based on the current state of knowledge provided by validation
data.

Figure 13: Schematic of the area validation metric (left) and a padded probability box that accounts for
model-form uncertainty (right)

Ground-to-Flight Mapping

Although not a part of this effort, it is worthwhile stepping through how this same UQ framework might
be applied to more complicated scenarios such as the ground-to-flight mapping of a scramjet propulsion
system developed as part of a flight test program. This process represents the critical step of taking all of the
knowledge gained from ground tests (measurements and simulation data) to estimate the performance and
operability of the propulsion system in the true flight environment. The steps that follow are described in the
context of a typical flight test development program where some combination of direct-connect, semi-freejet,
and freejet tests (typically performed in this chronological order) are employed.

• Exercise the steps documented in this effort to validate the submodels used to simulate the direct-
connect tests of the scramjet propulsion system. This process will inform the choices made for all of
the relevant submodels required to predict the flow physics associated with the direct-connect tests.
At the end of this campaign, a validated CFD model (in the presence of uncertainty) will have been
developed with “best estimates” for the categorical choice of turbulence model, mixing model calibra-
tions (e.g., S ct and Prt values), categorical choice of chemical kinetic model (or perhaps calibration
of a mixing controlled heat release model), etc. If the calibrated CFD model is unable to reproduce
the measured quantities of interest, then model-form uncertainty increments should be added to the
probability box and carried forward into the semi-freejet and freejet testing phases.

• Apply the CFD model validated in the direct-connect testing environment to the freejet (or semi-
freejet) tests. The freejet tests introduce additional physical processes that were not considered in
direct-connect tests (most notably inlet flow distortion), which may result in predictions that are out-
side of the model-form uncertainty estimates determined from the direct-connect tests. Moreover, the
scale of the test apparatus may not match that of direct-connect testing (e.g., 10X propulsion sys-
tem development). The uncertainty environment associated with the new facility will also be different,
potentially introducing new sources of uncertainty and altering the bounds of coexisting uncertainty
sources. Given these new uncertainty inputs and bounds, one would assess (using the UQ frame-
work) whether the CFD model developed in the direct-connect environment predicts the measured



quantities of interest within the uncertainty intervals defined by the freejet environment (including any
model-form uncertainties determined during the direct-connect tests). If not, then either expand the
model-form uncertainty increments, and/or recalibrate the submodel(s) using the more representative
flight environment offered by the freejet tests. The freejet testing stage provides the last opportunity
to add knowledge to the modeling process prior to flight.

• At this stage, one is ready to make preflight predictions and/or develop databases for flight. The
epistemic uncertainty increments associated with the model-form are now fixed, so the CFD model is
simply applied to the flight environment, which has its own set of epistemic and aleatoric uncertainty
sources. These uncertainties are fed into the UQ framework when performing the flight simulations,
so that the product delivered by the CFD practitioner includes a “best estimate” for the predicted
quantities of interest along with uncertainty estimates for these predictions.

SUMMARY

In summary, a nonintrusive uncertainty quantification framework has been described and applied to the
validation process of a turbulence closure model used in a highly back-pressured scramjet isolator flow-
field. The uncertainty framework chosen for this exercise properly handles both aleatoric and epistemic
uncertainty sources, providing the ability to perform a second-order uncertainty analysis. The framework
encapsulates the uncertainty information in the form of a probability box involving an ensemble of cumu-
lative distribution functions. Each cumulative distribution function captures the aleatoric uncertainty for a
given sample of the epistemic uncertainty space. An enabling element in the application of this uncertainty
quantification framework was the development of a metamodel for the propagation of uncertainties. This
resulted in a major cost savings with regard to the computational time required to perform the uncertainty
analysis. A total of only 14 high-fidelity CFD simulations were performed in this effort to build an adequate
metamodel for the uncertainty propagation. Another unique element in the application of this framework was
the treatment of discretization error. This error was treated as a categorical epistemic uncertainty source
between two distinct grid resolution levels, and eventually transformed to a bounding estimate of spatial
discretization error using the grid convergence index. A recipe for how this framework could be applied to
more complex scenarios, in particular ground-to-flight mapping, was also provided.
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Appendix A. METAMODEL ERROR PREDICTION AND ADEQUACY OF FIT

For the purposes of including the prediction error of the metamodel itself in the uncertainty propagation
process, the error was quantified mathematically assuming the underlying assumptions of the least squares
methodology are not violated. The first step is to obtain the metamodel variance throughout the design
space. This can be calculated after determining both the sensitivity of the model coefficients at a given
point in the design space and the metamodel fit variance-covariance matrix, the latter of which is constant
throughout the design space. Equation 1 demonstrates this calculation using the delta method, i.e.,

σ2(X) =

∂R̂
(
b̂,X

)
∂b̂

 Ĉov
(
b̂
) ∂R̂

(
b̂,X

)
∂b̂


T

(1)

Once the metamodel variance is obtained, it can be transformed into a standard error for computing a
confidence interval given the number of points (N) used to construct the metamodel, i.e.,

εstd =
σ
√

N
(2)

The metamodel prediction interval bounds can then be calculated throughout the design space by multiply-
ing the standard error by the Student’s t value and the square root of the number of samples used to build
the metamodel. The resulting expression for the metamodel prediction error is then given by

ε = ± t εstd
√

N (3)

A 95% prediction interval approaches a t value of 1.96 as the number of samples approaches infinity. The
prediction interval was chosen over the confidence interval in this study in order to provide a larger error to
capture the scatter of the data about the mean, rather than the uncertainty in the mean.

Metamodel adequacy checks allow the analyst to understand how suitable the metamodel is in representing
the physics of the system as simulated by the source data. Quantitative and qualitative adequacy checks
were used as indicators of the metamodel adequacy and include R2

adjusted, R2
predicted, actual versus predicted

plots, residual versus predicted plots, and the distribution of studentized residuals. These quantities are
defined as follows:

• R2
adjusted: The adjusted correlation coefficient is related to the correlation coefficient but also includes

penalties to account for the number of modeling terms used, and will therefore always be less than
the unadjusted correlation coefficient. Ideally it should be 0.99 or greater.

• R2
predicted: The predicted correlation coefficient is a cross-validation metric that removes one fit point

from the metamodel at a time and refits the metamodel. It essentially validates the metamodel against
points used to fit the model. Ideally it should be close to the adjusted correlation coefficient to pro-
vide confidence that the metamodel is relatively stable to removing points. This was the only cross-
validation measure obtained for the metamodel, although additional CFD simulations could have been
performed to augment this assessment.

• Actual versus Predicted Plots: The actual versus predicted plots should contain points that run
closely to the 1:1 line with low dispersion about the perfect fit line and have no fanning or any other
nonlinear trends.

• Residual versus Predicted Plots: The residual versus predicted plots should appear to have random
scatter about the zero residual line with no observable trends that would indicate the metamodel is
biased in any particular region of the design space. Ideally, the maximum residual magnitude should
be less than 10% of the minimum response value.



• Studentized Residuals: The least squares methodology assumes that the error is normally dis-
tributed about the mean prediction. Plotting a histogram of studentized residuals of the metamodel
relative to the data fit points is one way to validate this assumption. Ideally, the residuals should have
a normal distribution with zero mean and a standard deviation of unity. The Shapiro-Wilk test20 should
be used to determine the probability that the data does not adhere to a normal distribution.

Metamodel adequacy checks are shown in Fig. A1 for the actual versus predicted and residual versus
predicted metrics. The actual versus predicted trend stays close to the 1:1 line with no visible outliers.
The residual versus predicted plot appears to have random scatter with no trends indicating model bias.
The adjusted correlation coefficient is 0.99 (indicating good capture of the variability in the model), and
the predicted correlation coefficient is 0.88 (which is a relatively high value, but suggests that the model
is not fully converged). In these images, the 1’s indicate sample points from the initial I-Optimal design,
and the 2’s indicate the second set of points used to augment the design. Finally, the studentized residual
plot in Fig. A2 does not indicate the presence of outliers, and normality of the error is not rejected via the
Shapiro-Wilk test.20 This result provides sufficient confidence that the errors can be assumed to be normally
distributed. The measure of adequacy provided by these metrics suggest that the model is suitable for the
subsequent uncertainty propagation process.

13

13.2

13.4

13.6

13.8

14

Sh
oc

k 
Tr

ai
n 

Le
ng

th
 A

ct
ua

l 1211
2

1

121
212

1

1

13 13.2 13.4 13.6 13.8 14
Shock Train Length Predicted

-0.02

-0.01

0.00

0.01

0.02
Sh

oc
k 

Tr
ai

n 
Le

ng
th

 R
es

id
ua

l

1

2

11

2

1

1

2

1

2

1

2

1

1

13 13.2 13.4 13.6 13.8 14
Shock Train Length Predicted

Figure A1: Actual versus predicted response with 95% metamodel significance confidence curves bound-
ing the shaded region (left), Residual versus predicted response showing good, random dispersion in the
results (right).
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Figure A2: A histogram of the studentized residuals of the metamodel with normal distribution fit. An outlier
box plot is also shown, including a confidence interval on the mean (diamond) and the most dense 50% of
observations (red bracket).


