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Executive Summary

NASA develops, runs, and maintains software systems for which security is of vital impor-
tance. Therefore, it is becoming an imperative to develop secure systems and extend the
current software assurance capabilities to cover information assurance and cybersecurity
concerns of NASA missions.

The research work presented in this report was funded by the NASA Software Assurance
Research Program (SARP). The results are based on the information provided in the issue
tracking systems of one ground mission and one flight mission. The extracted data were
used to create three datasets: Ground mission IV&V issues, Flight mission IV&V issues,
and Flight mission Developers issues. In each dataset, we identified the software bugs that
are security related and classified them in specific security classes. This information was
then used to create the security vulnerability profiles (i.e., to determine how, why, where,
and when the security vulnerabilities were introduced) and explore the existence of common
trends, with specific emphasis on identifying the dominant types of vulnerabilities.

The main findings of our work include:

• Code related security issues dominated both the Ground and Flight mission IV&V
security issues, with 95% and 92%, respectively. Therefore, enforcing secure coding
practices and verification and validation focused on coding errors would be cost effec-
tive ways to improve mission’s security. (Flight mission Developers issues dataset did
not contain data in the Issue Category.)

• In both the Ground and Flight mission IV&V issues datasets, the majority of security
issues (i.e., 91% and 85%, respectively) were introduced in the Implementation phase.
This was expected, having in mind that the overwhelming majority of security issues
were code related. In most cases, the phase in which the issues were found was the
same as the phase in which they were introduced. The most security related issues of
the Flight mission Developers issues dataset were found during Code Implementation,
Build Integration, and Build Verification; the data on the phase in which these issues
were introduced were not available for this dataset.

• The location of security related issues, as the location of software issues in general,
followed the Pareto principle. Specifically, for all three datasets, from 86% to 88% the
security related issues were located in two to four subsystems.

• The severity levels of most security issues were moderate, in all three datasets.

• Out of 21 primary security classes, five dominated: Exception Management, Memory
Access, Other, Risky Values, and Unused Entities. Together, these classes contributed
from around 80% to 90% of all security issues in each dataset. This again proves the
Pareto principle of uneven distribution of security issues, in this case across CWE
classes, and supports the fact that addressing these dominant security classes provides
the most cost efficient way to improve missions’ security.

The findings presented in this report uncovered the security vulnerability profiles and
identified the common trends and dominant classes of security issues, which in turn can be
used to select the most efficient secure design and coding best practices compiled by the part
of the SARP project team associated with the NASA’s Johnson Space Center. In addition,
these findings provide valuable input to the NASA IV&V initiative aimed at identification
of the two 25 CWEs of ground and flight missions.
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1 Introduction

NASA’s portfolio of IT assets includes systems that control spacecrafts, collect and process
scientific data, and enable NASA personnel to collaborate with colleagues around the world
[1]. NASA currently makes extensive use of domestic and international internet connectivity.
The use of public internet instead of previously used dedicated circuits, on one side, resulted
in significant cost savings and large increases in performance. On the other side, it exposed
NASA systems to cyberattacks. Based on the information provided by the Office of the
Chief Information Officer [2], in a typical week NASA experiences 29,000 malicious incidents
against its systems, 17,500 suspicious e-mails, and 250 unique incidents against its Web
sites. Among these are sophisticated cyberattacks known as advanced persistent threats
(APTs) [3]. The individuals behind APTs are typically well organized and well-funded
and often target high profile organizations like NASA. Examples include the 2007-2008
hacking attempts against NASA’s Landsat-7 and Terra AM-1 satellites. The hacker used
the internet connection to get into the ground station’s information system [4]. Although
the responsible party achieved all steps required to command the satellite, the commands
were not sent to the satellites.

Nowadays, space missions provide valuable services to the society - from navigation, to
earth observation, weather forecasting or communication. Consequently, space is becoming
another critical element of the US infrastructure. Cyber threats to space missions are
expected to continue to grow in the future [5]. Even more, increased complexity of missions,
coupled with ambitious operational scenarios and cooperation between government agencies
and commercial enterprises, are likely to lead to increased number of security vulnerabilities.
NASA’s multi-tiered approach that aligns cybersecurity management to mission assurance
integrates the IT service security, Data and Application security, and Infrastructure security
[2]. This report is focused on Application security throughout the software life cycle. This is
an important aspect of the overall cybersecurity because once an attacker has gained access
to internet-accessible computer, he/she could use the compromised computer as a means to
exploit vulnerabilities on mission computers that could significantly disrupt NASA’s space
flight operations and/or steal sensitive data [1]. Therefore, it is becoming an imperative
to extend the current software assurance capabilities to cover information assurance and
cybersecurity concerns of NASA missions.

The goal of our research work funded by the NASA Software Assurance Research Pro-
gram (SARP) was to build security vulnerability profiles of mission ground and flight soft-
ware, and to integrate the findings with the Secure Design and Coding Best Practices
developed by part of the SARP project team associated with the NASA’s Johnson Space
Center (JSC) [6]. These Secure Design and Coding Best Practices are aimed to reduce the
number of vulnerabilities and improve missions’ resilience to cyberattacks.

A security vulnerability is defined as a weakness in a system, application, or network that
could be subject to exploitation or misuse that would allow an attacker to compromise any
aspect of cybersecurity (i.e., confidentiality, integrity, availability, authentication, autho-
rization, and non-repudiation). Our research is based on utilizing the information provided
in issue tracking systems of pilot NASA missions to explore the vulnerability landscape,
that is, to identify the vulnerability profiles of ground and flight software, with specific em-
phasis on identifying the dominant types of vulnerabilities. Whenever possible, our study
assessed the vulnerabilities throughout the lifecycle.

In general, a profile is defined as “a set of data portraying the significant features of
something.” In this work, we introduce the term security vulnerability profile which is
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defined as a set of data that allows NASA missions to determine how, why, where, and
when the security vulnerabilities were introduced. Uncovering the security vulnerability
profiles and underling trends helps developers and IV&V analysts to focus their efforts
on preventing and eliminating the vulnerabilities in the most effective ways, at the most
effective time. The results presented in this report are based on data extracted from three
NASA issue tracking systems, which were used to create three datasets. In each datasets, we
identified the software bugs that are security related and classified them in specific security
classes. This information was then used to create the security vulnerability profiles and
explore the existence of trends. Our main research questions are as follows:

RQ1 What are the dominating types of vulnerabilities in NASA ground and flight software
systems?

RQ2 Are dominating types of vulnerabilities consistent across missions and mission types?

The rest of this report is organized as follows. In main terms used in this report are
defined in section 2. Section 3 summarizes the related works on characterization of software
bugs in general and software security vulnerabilities in particular. Section 4 presents the
description of the datasets, used classification schema and classification approach, and the
results on security vulnerability profiles. In section 5 we compare the results across the
three datasets and identify the dominating types pf vulnerabilities and common trends.
The threats to validity are enumerated in section 6 and the report is concluded in section
7.

2 Key Terms

This section introduces the terminology used in the report related to software quality and
cybersecurty fields.

A failure is a departure of the system or system component behavior from its required
behavior. A fault is an accidental condition, which if encountered, may cause the system
or system component to fail to preform as required. Thus, faults represent problems that
developers see, while failures represent problems that the users (human or computer) see.
Not every fault corresponds to a failure since the conditions under which fault(s) result
in a failure may never be met. It should be emphasized that faults can be introduced at
any phase of the software life cycle, that is, they can be tied to any software artifact (e.g.,
requirements, design, and source code). Throughout this report we use the terms ‘fault’
and ‘bug’ interchangeably. Note that in some cases the term ‘defect’ is used to refer only
to faults, but in other cases to refer collectively to faults and failures. To avoid confusion,
the term ‘defect’ is not used in this report.

A security vulnerability is defined as a weakness in a system, application, or network
that could be subject to exploitation or misuse that would allow an attacker to compro-
mise any aspect of cybersecurity (i.e., confidentiality, integrity, availability, authentication,
authorization, and non-repudiation). This work is focused on security vulnerabilities in soft-
ware applications, specifically in case studies based on NASA missions’ ground and flight
software. We define a security vulnerability profile as a set of empirical data that allows
software projects to determine how, why, where, and when the security vulnerabilities were
introduced into the system.

An issue tracking system is a software application that allows a project to record
and follow the progress of every issue that developers and/or software system users identify
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until the issue is resolved. Issues can belong to multiple categories, such as (software
or hardware) bugs, improvements, and new functionality. We believe that issue tracking
systems are valuable sources of information that hold high potential for conducting empirical
studies that benefit both the practitioner and research communities. In this report, we are
focused on studying a subset of software issues related to software bugs and specifically
identifying and studying software bugs that are security vulnerabilities. Note that the terms
vulnerability, security issue, and security related bug are used interchangeably in this
report.

The Common Weakness Enumeration (CWE) taxonomy aims at creating a catalog
of software weaknesses and vulnerabilities. It is maintained by the MITRE Corporation with
support from the Department of Homeland Security [7]. Each individual CWE represents
a single vulnerability type or category. For example, CWE 121 is “Stack-based Buffer
Overflow”, CWE 78 is “OS Command Injection” and so on. The CWEs are organized
in a hierarchical structure with broad category CWEs at the top level. These top level
CWEs may have multiple children. Each child CWE may have one or more parents and
zero or more children. The further down this hierarchy one goes the more specific the
vulnerabilities become. A CWE View is a particular perspective (or view) to the CWE
taxonomy. Different views organize, categorize, or group individual CWEs within the overall
taxonomy differently.

Common Vulnerabilities and Exposures (CVE) stands for a dictionary of common
names for publicly known cybersecurity vulnerabilities and exposures. CVE’s common
identifiers are assigned by CVE Numbering Authorities from around the world, with a goal
to support data exchange between security products and provide a baseline index point for
evaluating coverage of tools and services [8]. Note that CVE is sponsored by US-CERT
in the Office of Cybersecurity and Communications at the U.S. Department of Homeland
Security.

National Vulnerability Database (NVD) is the U.S. government repository of stan-
dards based vulnerability management data represented using the Security Content Au-
tomation Protocol. NVD includes databases of security checklists, security related software
flaws, misconfigurations, product names, and impact metrics [9].

3 Related Work

Studies focused on software faults can be dated back to the mid 1970s. However, there
continues to be a dearth of published data relating to the quality and reliability of real-
istic commercial software systems. Even less studies have been focused on the types and
characteristics of software security vulnerabilities.

First, we summarize the papers that explored the characteristics of software faults in
general [10–19]. Fenton and Ohlsson empirically studied a large software-intensive telecom-
munication application from Ericsson Telecom AB [10]. This work was focused on a range
of software engineering hypotheses related to the Pareto principle of distribution of faults
and failures, the use of early fault data to predict later fault and failure data, and metrics
for fault prediction. The results confirmed that small number of modules contain most of
the faults discovered in pre-release testing and that a very small number of modules contain
most of the faults discovered in operation. However, the fault proneness of the modules
could not be explained using their size or complexity. The authors claimed that the most
surprising result was that the most fault-prone modules pre-release were among the lease
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fault-prone post-release.
Our previous research work, which was based on data extracted from a large NASA

mission with over 8,000 files and two millions lines of code, was focused characterizing and
quantifying relationships among faults, failures and fixes. Over 1,200 failures, recorded
during development and operation in a period of over ten years, were extracted from the
change tracking system. The fact that the mission kept detailed records on the changes
made to fix fault(s) associated with each failure allowed us to close loop from failures to
faults that caused them and changes made to fix the faults. Our results showed that software
failures are often associated with faults spread across multiple files [11]. Our results further
showed that a significant number of software failures required fixes in multiple software
components and/or multiple software artifacts (i.e., 15% and 26%, respectively), and that
the combinations of software components that were fixed together were affected by the
software architecture [12]. More recently, we studied the types of faults that caused software
failures, activities taking place when faults were detected or failures were reported, and the
severity of failures [13]. Our results showed that components that experienced more failures
pre-release were more likely to fail post-release and that the distribution of fault types
differed for pre-release and post-release failures. Interestingly, both post-release failures
and safety-critical failures were more heavily associated with coding faults than with any
other type of faults. Last but not least we systematically explored the effort associated
with investigating and reporting the failures (i.e., investigation effort), as well as the effort
associated with implementing the fix to correct all faults associated with an individual failure
(i.e., fix implementation effort), with special focus on factors that affect them [14]. We also
proposed a data mining approach for predicting the level of fix implementation effort using
the data provided in the software change requests, when the failure was reported.

Another empirical study based on space mission software data conducted by Grottke et
al. analyzed 520 anomalies, each of which represented a unique fault in the flight software
of eighteen JPL space missions [15]. The authors defined Bohrbugs as bugs that are easily
isolated and removed during software testing, and Mandelbugs as bugs that appear to be-
have chaotically, and reported that 61% of bugs were Bohrbugs and 37% were Mandelbugs.
Furthermore, they determined that there is a significant relationship between the fault type
and the failure risk. Alonso et al. analyzed the mitigation associated with the Bohrbugs
and Mandelbugs and concluded that both types of bugs were most frequently mitigated via
fixes instead of other measures such as proactive reboots [16]. In addition, earlier missions
had lower frequencies of fixes/patches than the more recent missions.

Several papers explored some aspects of software bugs for different application domains.
Motivated by the increasing popularity and capabilities of open source operating systems for
hand-held devices, Maji et al. utilized bug reports, bug fixes, developer reports, and failure
reports to explore the manifestation of failures in Android [17]. This work was focused on
the frequency of failures and the persistence of faults. The results showed that over 90% of
the faults were permanent in nature, the kernel layer was sufficiently robust but much effort
is needed to improve the middleware layer. Furthermore, it was found that between 11%
and 50% of bugs were due to the customizability of Android and that most bugs required
only minor changes for correction (e.g., update of configuration parameters). Frattini et al.
analyzed a small dataset of 146 bug reports from Apache Virtual Computing Lab, which
is an open source cloud platform [18]. This analysis identified the components where bugs
were likely to be found in future releases, the phases of the life cycle during which such
bugs may be discovered, and the modification required to fix them. Xia et al. utilized
the bug databases and code repositories for open source software applications Ant, Maven,
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CMake, and QMake containing 199, 250, 200, and 151 bug reports respectively [19]. Each
sample was manually classified into several categories and the results showed that 21% of
bugs belonged to the external interface category, 18% belonged to the logic category, and
13% belonged to the configuration category.

The number of studies that were specifically focused on studying software vulnerabili-
ties is even smaller and includes only several works [20–22]. Alhazmi et al. used density
of vulnerabilities, fraction of software bugs that are security related, the dynamics of vul-
nerability discovery, and the vulnerability discovery rate to estimate the magnitude of the
undiscovered vulnerabilities still present in the system [20]. The analysis was based both
on commercial and open-source systems and the results revealed that the vulnerability den-
sities fell within a range of values, similar to fault density for general faults. The authors
also investigated if it is possible to predict the number of vulnerabilities that can poten-
tially be present in a software system, but may not have been found yet and claimed that
the vulnerability discovery can be modeled using logistic model, which can sometimes be
approximated by a linear model as a function of time. Venter et al. proposed an approach
aimed at standardization of vulnerability category using self-organizing maps (SOMs) and
data extracted from CVE [21]. This work, however, did not provide quantification of the
results. Younan analyzed the vulnerabilities reported from 1998 to 2012 [22] based on the
CVE information provided in the NVD databases. One of the finding was that despite the
progress in mitigating attacks against buffer overflows, they remain one of the top ranking
vulnerabilities. Furthermore, it appeared that while fewer vulnerabilities were reported in
the last couple of years, the percentage of more critical vulnerabilities has increased. Results
also showed that Microsoft products have improved significantly within the last couple of
years and their browser and mobile operating systems were better than their competitors’
in terms of vulnerabilities discovered. When it comes to mobile OS, iPhone had significant
lead in vulnerabilities, while Android had very few. On the contrary, Safari had the fewest
vulnerabilities compared to the other browsers, while Chrome ranked as one of the highest
for vulnerabilities.

4 Vulnerability Profiles

In this section, we first describe the datasets used in this study and then present the
rationale behind the choice of the classification schema and the approach used for manual
classification (i.e., labeling) of software issues, followed by the analysis of the vulnerability
profiles of the three datasets.

4.1 Description of the Datasets

The three main datasets from NASA utilized for this work were created by extracting
relevant information from a ground mission IV&V issues, flight mission IV&V issues, and
flight mission developers issues. For all three datasets only the “closed” issues from their
corresponding issue tracking systems were included. The details about these datasets are
provided next.

The first dataset was extracted from the IV&V issue tracking system of a NASA ground
mission and in this report is referred to as Ground mission IV&V issues. The ground
mission software consist of approximately 1.36 million source lines of code and the issue
tracking system contained 1,779 issues created over four years. Since this is a recent mission,
the IV&V analysts specifically considered the impact of each issue on security, and as

5



a result 350 (i.e., 20%) of the issues were marked as potentially security related. Most
issues contained very detailed descriptions, titles, and comments. In addition, the issue
descriptions contained security related information, making this a very good dataset for our
research. The fields in the IV&V issue tracking system are detailed in Appendix A, Table
4.

The second dataset consists of the IV&V issues extracted from the issue tracking sys-
tem of a NASA flight mission and is referred to as Flight mission IV&V issues. The flight
mission software had approximately 924 thousand source lines of code, and the issue track-
ing system contained 506 issues created over four years. After removal of issues marked
as “Withdrawn” or “Not an Issue,” 383 issues remained. Although this dataset was also
created by IV&V analysts, security aspects of issues were not specifically and consistently
considered. Consequently, issue descriptions contained very little security related informa-
tion. Rather, descriptions were mainly focused on system operation. The Flight mission
IV&V issues were extracted from the same tracking system as the Ground mission IV&V
issues and therefore had the same fields shown in Table 4.

The third dataset consists of developer issues extracted from the issue tracking system
of the same NASA flight mission as flight mission IV&V issues and is referred to as Flight
mission Developers issues. This issue tracking system consisted of 1,947 Developer Change
Requests (DCRs) created over five and a half years. The analysis presented in this report is
based on 573 of these DCRs that were marked as “Defects”. (The others issues were marked
as “Change Requests” or some other non bug related category, and are not included in the
analysis.) This dataset originated from the developers instead from the IV&V analysts,
resulting in much greater focus on software operation than security aspects. The fields of
this issue tracking system are detailed in Appendix A, Table 5.

4.2 Classification Schema

In order to classify the issues, a classification schema is needed. Common problems among
classification schemas are undefined levels of specificity, very complicated structure, and
non-hierarchical structure. This section explores several software vulnerability and/or weak-
ness classification schemas along with their strengths and weaknesses, which are then used
to select a classification schema for software vulnerabilities.

Common Weakness and Enumeration (CWE) is a taxonomy of software weakness types
aimed at serving as a common language for describing software security weaknesses in ar-
chitecture, design, or code [7]. The CWE serves as a standard measuring stick for software
security tools targeting these weaknesses, and to provide a common baseline standard for
weakness identification, mitigation, and prevention efforts [7]. Each individual CWE rep-
resents a single vulnerability type or category. The CWEs are organized in a hierarchical
structure with broad category CWEs at the top level. The further down this hierarchy, the
more specific the vulnerabilities become. The CWE taxonomy has 1004 CWEs and rather
complex structure; each CWE may have one or more parents (expect the top level CWEs)
and zero or more children. Therefore, using the complete CWE taxonomy for classification
of software vulnerabilities is not very practical, which is the reason why a number of views
(as defined in Section 2) have been developed to ease the grouping of similar CWEs and pro-
vide simpler, more generalized structure. Next we discuss several CWE views: CWE-2000,
CWE-1000, CWE-888, CWE-700 and CWE-699.

CWE-2000 is the Comprehensive CWE Dictionary View which covers all elements in
CWE. It contains 1004 total CWEs with no particular grouping or classification [23]. CWE-
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2000 offers no classifying advantage as there is no attempt to ease the complex structure and
large number of CWE categories. Therefore, this view is not suitable for use as classification
schema in our work.

CWE-1000 is the Research Concepts view and was created with the intent to facilitate
research of weaknesses, including their inter-dependencies [24]. It classifies weaknesses in a
way that largely ignores how they can be detected, where they appear in code, and when
they are introduced in the software development life-cycle. Instead, it is mainly organized
according to the abstractions of software behaviors. It uses a deep hierarchical organization
which provides many levels of abstraction and specificity. CWE-1000 explicitly identifies
relationships that form chains and composites, which have not been a formal part of past
classification efforts. This classification schema contains a total of 723 CWEs, grouped
into 11 main classes. One drawback of this classification schema is the deep hierarchical
structure and the fact than the level of specificity is not the same across all depths.

CWE-888 is the Software Fault Pattern (SFP) view and is a classification schema de-
veloped by the Department of Defense (DoD) sponsored project through KDM Analyt-
ics [25,26]. This view provides a formal specification of software weaknesses/vulnerabilities
that enable automation through focusing on characteristics that are discernible in code,
while also ensuring systematic coverage of the weakness space. The classification schema
contains 705 CWEs, grouped into 21 primary and 62 secondary classes. Furthermore, every
CWE within this view is classified to exactly one primary and one secondary class, creat-
ing a three level hierarchical view. The CWE-888 structure does not have the specificity
problem of CWE-1000. The three levels have well defined levels of specificity, with the
primary class being the most general, and the third level (individual CWEs) being the most
granular. This, along with the very intuitive structuring, makes the CWE-888 view a very
good classification schema for our work.

CWE-700 is the Seven Pernicious Kingdoms View which originated from Cigital [27,28].
The creators argued that other security taxonomies are too complex and, motivated by
the belief that people on average are good at keeping track of seven (plus or minus two)
things, created a taxonomy with only seven primary categories. CWE-700 follows a two
level hierarchical structure and contains only 97 CWEs, grouped into seven primary classes.
It appears that this schema is too simplistic and not sufficiently specific for use in our work.

CWE-699 is the Development Concepts view which organizes weaknesses around con-
cepts that are frequently used in software development [29]. Accordingly, this view aligns
closely with the perspectives of developers, educators, and assessment vendors. It borrows
heavily from the organizational structure used by Seven Pernicious Kingdoms, but it also
provides a variety of other categories that are intended to simplify navigation, browsing, and
mapping. This classification scheme contains 756 CWEs, organized in a hierarchical struc-
ture similar to CWE-1000. There are six primary classes, which contain different number
of CWEs, subclasses, or nested subclasses. This schema, however, has the same specificity
problem as CWE-1000 and therefore is not suitable for our work.

Based on the above discussion, we selected CWE-888 Software Fault Pattern (SFP)
View as classification schema of NASA mission software vulnerabilities. CWE-888 includes
a three level hierarchical structure of which the first two levels (primary and secondary
classes) were used for our classification. Namely, each security related software issue was
assigned a primary (more general) class and a secondary (more specific) class. The primary
and secondary classes of CWE-888 are given in Table 6 in Appendix 7. The specific CWEs
and their descriptions can be found at [25].
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4.3 Classification Approach

In order to be able to build the vulnerability profiles, for each of the three datasets we
first needed to manually classify (i.e., label) each software issue into one of the CWE-888
primary and secondary classes if it was security related or as non-security related. We did
the labeling based on the information provided in the following fields from the issue tracking
systems: “Title,” “Subject,” “Description,” “Recommended Actions,” and “Solution.”

Several examples of classification of issues to the CWE-888 primary and secondary
classes are as follows:

• An issue with description “. . . Line 277: Null pointer dereference of ‘getServiceStatus-
Info(...)’ where null is returned from a method,” was labeled with the primary cluster
of “Memory Access” and the secondary cluster of “Faulty Pointer Use.”

• An issue with description “. . . The stream is opened on line 603 of file1. If an exception
were to occur at any point before line 613 where it is closed, then the ‘try’ would exit
and the stream would not be closed,” was labeled with the primary class of “Resource
Management” and the secondary class of “Failure to Release Resource.”

• An issue with description “. . . Table 1-11 lists XYZ as a unidirectional interfaces, but
Figure 1-4 shows this connection as bidirectional,” was labeled as non-security related.

Similarly to the labeling done by static code analysis tools, we adopted a conservative
labeling (i.e., classification) approach that treats as security related every issue to which
a CWE class could be assigned. Note that we did not have access to the code and other
necessary information to determine if the security related issues could be exploited or what
the overall security related impact on the system would be. These aspects are out of the
scope of our work.

Upon completion of the labeling, we analyzed each dataset. The results are detailed in
the following sections.

4.4 Ground Mission IV&V Issues

Of the 1,779 issues in this dataset, 350 (20%) were tagged as potentially security related by
the IV&V analysts. After labeling, it was determined that 133 of the 350 (38%) could be
assigned a specific CWE. The remaining security issues were tagged by the IV&V analysts
as testing issues; they were related to problems with the testing system instead of problems
with the mission software being tested. Since no CWEs exist that cover such a case and
testing issues are not dealing with the the actual system under investigation, these issues
were not considered in the further analysis of security related issues.

Figure 1 shows the distribution of security and non-security issues across the different
Issue Categories (i.e., Concept, Requirements, Design, Code, Test). As shown, the Code
category contained 95.5% of all security issues (i.e., 127 out of 133). Even though the Design
category had the highest number of issues, only 2.3% (i.e., three out of 133) of all security
issues belonged to this category.

Figure 2 shows the distribution of security and non-security issues across different Issues
Types, which provide more detailed categorization than the Issue Category. Four dominat-
ing issue types were Incomplete Design, Incomplete Code, Incorrect Code, and Incomplete
Test Article. Together, the code related issues types Incomplete Code and Incorrect Code
contained 84% (112 of 133) of security related issues.
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Figure 1. Ground Mission IV&V Issues - Distribution across Issue Categories

Figure 2. Ground Mission IV&V Issues - Distribution across Issue Types
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Figure 3 shows the breakdown of security and non-security issues across Capabilities,
ordered from the Capability that contained the highest total number of issues to the Capa-
bility with the least total number of issues. Four out of eight Capabilities (i.e., Capabilities
1, 2, 3, and 4) held all of the security issues. These four Capabilities were responsible for
82% of all issues and had similar ratios of security to non-security issues. Capability 3 had
the most security issues, specifically 40% (i.e., 53 out of the 133), followed by Capability 2
with 26% (i.e., 34 of 133) of all security issues.

Figure 3. Ground Mission IV&V Issues - Distribution across Capabilities

Figure 4 shows the distribution of security and non-security issues across Subsystems,
ordered from the subsystem with the highest total number of issues to the subsystem with
the least issues. Subsystem 1 and 2 contributed 86% of all security issues and 70% of all
issues, which shows that Pareto principle1 applies to both the security and total number
of issues. This result is consistent with related works focused on fault characterization in
general [10], [11], [13], and [30].

Figure 5 shows the distribution of security and non-security issues with respect to the
analysis method used to detect the issues. The largest proportion of total issues (30%
of all issues) was found using Design Analysis; however this method did not uncover any
security issues. The vast majority of security issues were discovered using Implementation
Analysis (Static Code Analysis). Specifically, this method was used to discover 91% of
all security related issues. Interestingly, the analysis method of Security Analysis (Verify
Security Control Implementation) turned up almost no issues.

It should be emphasized here that the amount of time and effort invested in using each
Analysis Method affect the number of issues (including security related issues) detected by
that method. Unfortunately, the time and effort used for each Analysis Method were not
tracked, and therefore we cannot draw conclusions about the effectiveness of the Analysis
Methods based on the results presented in Figure 5.

1Pareto principle indicates a skewed distribution of software faults, that is, that majority of faults (e.g.,
raphly 80%) are located in small percent ((e.g., 20%) of software units (e.g., Subsystems or files.
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Figure 4. Ground Mission IV&V Issues - Distribution across Subsystems

Figure 5. Ground Mission IV&V Issues - Distribution across Analysis Methods

The distribution of security and non-security issues across different Severity levels is
shown in Figure 6. NASA’s Severity levels range from 1 to 5, with 1 being the most severe.
As shown in Figure 6, the majority of all issues (72%) were of severity 3. Similar trend was
observed for security related issues as well; specifically, 86% of all security related issues
had severity level 3.

Figures 7 and 8 detail the phase in which each issue was introduced and found, re-
spectively. The majority of security issues (91%) were introduced in the Implementation
Phase, which again shows how hard implementing secure code is compared to determining
the requirements and design from a security standpoint. This result also shows that efforts
to enforce secure coding methods (e.g., secure coding standards, check lists, etc) would lead
to cost effective improvements of NASA missions security. Comparing Figures 7 and 8 can
be observed that the phase in which issues were found closely followed the phase in which
they were introduced, which illustrates the effectiveness of the IV&V activities.
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Figure 6. Ground Mission IV&V Issues - Distribution across Severity level

Figure 7. Ground Mission IV&V Issues - Distribution across Phase Introduced

Figure 8. Ground Mission IV&V Issues - Distribution across Phase Found

Next, we focus on the distribution of the security related issues across different CWE-
888 classes, with a goal to identify the dominating type of vulnerabilities. As can be seen in
Figure 9 the security issues of the NASA ground mission belonged to only 11 out of the total
21 CWE-888 primary classes. The Memory Access dominated the security related issues,
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containing 53% of all security issues. Furthermore, only five Primary classes (i.e., Memory
Access, Unused entities, Exception Management, Risky Values, and Resource Management)
contained around 92% of all security issues. Interestingly, this result shows that the Parato
principle applies to the distribution of the security issues across Primary classes as well.

The secondary CWE-888 classes provide more specifics about security issues than the
primary classes. Figure 10 shows the breakdown of security issues across both the primary
and secondary classes, which better represents the types of security issues. This figure shows
that the most of the Memory Access primary class issues (i.e., 63 out of 70) belonged to
the secondary class Faulty Pointer Use. The remaining dominating primary classes Unused
Entities, Exception Management, and Risky Values were comprised mainly of the secondary
classes Dead Code, Ambiguous Exception Type, and Glitch in Computation, respectively.

Figure 9. Ground Mission IV&V Issues - Distribution across CWE-888 Primary Classes.
The numbers in brackets represent the specific CWE numbers of the Primary Classes.

4.5 Flight Mission IV&V Issues

The Flight Mission had a total of 506 issues in the IV&V issue tracking system. After the
removal of issues tagged as “Withdrawn” and “Not an Issue”, 383 issues remained, which
were than manually labeled and further analyzed. Note that, unlike in the case of the
Ground Mission, the IV&V issues of the Flight Mission were not tagged as security related
by the IV&V analysis. We manually labeled these 383 issues using the process described in
section 4.3. The results showed that a total of 157 issues were security related (i.e., 41% of
all issues). This section describes the results of the analysis.

As shown in Figure 11, most of the security related issues were associated with the Code
category, which contributed 92% of all security related issues. This distribution of security
related issues aligns with the results for the Ground mission IV&V issues, with majority of
security issues related to the code implementation, rather than early life cycle phases.
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Figure 10. Ground Mission IV&V Issues - Distribution of security issues across CWE-
888 Primary and Secondary Classes. The numbers in brackets represent the specific CWE
numbers of the Primary and Secondary Classes.

Figure 11. Flight Mission IV&V Issues - Distribution across Issue Categories

Figure 12 shows that security issues are predominately associated with four Issue Types:
Incorrect Code, Incomplete Code, Missing Code, and Extraneous Code. It is not surprising
that these dominating issues types are all code related having in mind that Code issue
category had the most of the security issues (see Figure 11).
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Figure 12. Flight Mission IV&V Issues - Distribution across Issue Types

The Flight Mission IV&V issues had the Defect Categories filed populated. Figure 13
provides a breakdown of security and non-security related issues across Defect Categories.
The three dominating Defect Categories were Algorithms and Processing, Control, Logic
and Sequence, and Data.

Figure 14 depicts the distribution of security and non-security issues across Flight Mis-
sion Capabilities, ordered in decreasing order by the total number of issues. The ratio of
security vs. non-security issues was similar across all capabilities, with approximately 30%
security and 70% non-security issues.
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Figure 13. Flight Mission IV&V Issues - Distribution across Defect categories

Figure 14. Flight Mission IV&V Issues - Distribution across Capabilities

The distribution of issues across Flight Mission subsystems presented in Figure 15 shows
that 88% of all security issues and 88% of all issues fell into three out of five subsystems.
Subsystem 3 had slightly more security issues than Subsystems 1 and 2. (Note that Sub-
systems in Figure 15 are ordered by the total number of issues.)
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Figure 15. Flight Mission IV&V Issues - Distribution across Subsystems

As shown in Figure 16, Severity levels 3 and 4 together contained 79% of all security
issues and 86% of all issues. The fact that not many security issues had high Severity levels
(i.e., 1 and 2) is consistent with the Ground mission IV&V security related issues.

Figure 16. Flight Mission IV&V Issues - Distribution across Severity levels

Figures 17 and 18 also show results consistent with the Ground Mission IV&V issues,
with the majority of security issues introduced (85%) and found (85%) in the Implemen-
tation phase. Again, the phase in which an issue was found closely followed the phase
in which the issue was introduced. The Flight Mission IV&V Issues dataset, in addition
included information on the phase in which the issues were resolved. As can be seem in
Figure 19, 75% of security related issues were resolved in the Implementation phase, and
the remaining 25% were resolved in the Testing phase. Interestingly enough, no security
issues were resolved in the Design phase, even though some were introduced and found in
that phase.
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Figure 17. Flight Mission IV&V Issues - Distribution across Phase Introduced

Figure 18. Flight Mission IV&V Issues - Distribution across Phase Found

Figure 19. Flight Mission IV&V Issues - Distribution across Phase Resolved

Next, we focus on the distribution of security issues across the CSE-888 Primary classes,
which is presented in Figure 20. Similarly as in the case of the Ground Mission IV&V
Issues dataset, IV&V issues of the Flight mission belonged to only 9 of the 21 Primary
classes, with four overwhelmingly dominating classes: Other, Risky Values, Memory Access,
and Unused Entities. Figure 21 shows the distribution of security issues across both the
Primary and Secondary classes. Note that the Secondary classes are more specific than
the Primary classes, and therefore provide more details on the types of security issues
observed in the mission. Thus, of the 59 Other issues, 55 belonged to the Secondary class
Implementation and only 4 belonged to the Secondary class Architecture. The Primary
class Risky Values contained 30 issues, all of which were associated with the secondary class
Glitch in Computation. Of the 20 Memory Access issues, 14 were of the Secondary class
Faulty Buffer Access and remaining 6 belonged to the Secondary class Faulty Pointer Use.
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The primary class Unused Entities contained 23 issues, 18 of which were of the Secondary
class Dead Code and 5 of the Unused Variable.

Figure 20. Flight Mission IV&V Issues - Distribution of issues across CWE-888 Primary
Classes. The numbers in brackets represent the specific CWE numbers of the Primary
Classes.

4.6 Flight Mission Developers Issues

For the Flight mission used as a case study, the issues recorded by the developers were also
made available to us. Of the total 1,947 developers issues, after the removal of issues that
were not tagged as Defect and were not Closed, 569 issues remained to be further analyzed.
The manual labeling of these issues, following the process described in section 4.3, resulted
in 374 issues being marked as security related (i.e., 66% of all issues), which is significantly
higher percentage of security related issues than in the other two datasets.

Figure 22 shows the distribution security and non-security issues across Issue Types2.
The two Issues Types – Incorrect Implementation and Incorrect Operation or Unexpected
Behavior – significantly outnumbered the other Issue Types.

2Note that the values of the Issue Types used in the Flight Mission Developers Change Requests system
are different than the Issues Types used for both the Ground and Flight missions IV&V issues.
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Figure 21. Flight Mission IV&V Issues - Distribution across the Primary and Secondary
CWE-888 Classes. The numbers in brackets represent the specific CWE numbers of the
Primary and Secondary Classes.

Figure 22. Flight Mission Developer Issues - Distribution across Issue Types

Figure 23 presents the distribution of security and non-security issues across the Flight
Mission subsystems. The findings are very similar to the previous datasets, again proving
the Pareto principle, with 88% of all security issues found in only four subsystems (out of
thirteen), which together accounted for 89% of all issues.
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Figure 23. Flight Mission Developer Issues - Distribution across Subsystems

While the severity levels used by the IV&V analysts ranged from 1 to 5, the levels
found in this dataset were: Minor, Moderate, and Critical. As shown in Figure 24, the
results related to the severity of the Flight mission Developers issues were consistent to the
previously analyzed datasets – the moderate severity levels dominated, containing 86% of
the security issues, and 85% of the total number of issues. Only 4% of all issues, and 4% of
security issues were determined to be critical.

Figure 24. Flight Mission Developer Issues - Distribution across Severity levels

This dataset contained information about the phase in which the issues were found, but
no information on when they were introduced or resolved. Also note that the values of the
Phases Found are more granular than the ones in case of the IV&V issues of both the Flight
and the Ground mission. As shown in Figure 25, most issues were found were during the
following there phases listed in decreasing order: Build Verification, Build Integration, and
Code Implementation
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Figure 25. Flight Mission Developer Issues - Distribution across Phase Found

Next we focus on the classification of the security related issues using the CWE-888
view. Similarly as for the other two datasets, as shown in Figure 26, only 13 of 21 Primary
class were observed, with three dominating classes (i.e., Risky Values, Exception Manage-
ment, and Memory Access). Figure 27 shows the distribution of security issues across both
the Primary and Secondary classes. The previous two datasets mostly exhibited a sin-
gle dominating Secondary class within each Primary class, which is not always the case
with this dataset, as it can be observed in Figure 27. The Primary class with the most
issues was Risky Values, with the only Secondary class Glitch in Computation. However,
the next largest Primary class Exception Management, had two approximately equal Sec-
ondary classes: Incorrect Exception Behavior and Unchecked Status Condition, with 48 and
42 security issues, respectively. Similarly, the Primary class Memory Access consisted of 22
security issues in the Secondary class Faulty Buffer Access and the remaining 12 security
issues in the Secondary class Faulty Pointer Use.
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Figure 26. Flight Mission Developer Issues - Distribution across CWE-888 Primary classes

Figure 27. Flight Mission Developer Issues - Distribution across CWE-888 Primary and
Secondary classes
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5 Comparison of the Results

This section presents a comparison of the results across all datasets. We start with com-
paring the distribution of security issues across the CWE-888 Primary classes, extracted
from the results presented in subsections 4.4, 4.5, and 4.6, which are summarized in Ta-
ble 1. Figure 28 depict the same information in a graphical form. As can be seen from
Table 1 and Figure 28, even though there are fifteen (out of 21) Primary classes that had
nonzero security issues for at least one dataset, the vast majority of security issues were
distributed among five dominant Primary classes: Exception Management, Memory Access,
Other, Risky Values, and Unused Entities. Specifically, these five Primary classes together
contained 90%, 87%, and 72% of the security issues in the Ground mission IV&V, Flight
mission IV&V and Flight mission Developers issues, respectively. Interestingly, Primary
classes which had zero security issues in one or two datasets made up for only very small
proportion (from 0.4% to at most 7%) of the security issues in the dataset they appeared
in.

Table 1. Comparison of Primary classes across the three datasets. Only the Primary classes
with nonzero security issues at least in one of the datasets are shown. The corresponding
NASA’s Top 25 ground and flight mission CWEs are also shown.

Primary CWE-888 Class
Ground Mission Flight Mission

IV&V
Issues

Top 25 CWEs
IV&V
Issues

Developer
Issues

Top 25 CWEs

API (887) 242,676 1.9% 676
Authentication (898) 798 0.9%
Channel (902) 353,290,421 2.7% 6.0% 290
Exception Management (889) 10.8% 8.2% 27.2% 391,665,754
Memory Access (890) 54.6% 119, 787, 122, 121,

788, 805, 131, 496,
170

18.3% 12.8% 119, 121, 122, 787,
120, 788, 805, 476,
170, 131, 129

Memory Management (891) 0.4% 415,762
Other (907) 1.5% 464 24.5% 7.1% 464
Predictability (905) 0.8% 326
Privilege (901) 1.2%
Resource Management (892) 6.9% 399,770 3.0% 399,401,404,416,770
Risky Values (885) 8.5% 835, 468, 681, 682,

192, 457
21.8% 28.3% 457, 835, 467, 681,

682, 192, 190, 193,
197, 195, 562

Synchronization (894) 0.8% 667, 964, 833, 367 3.4% 667, 764, 833
Tainted Input (896) 1.5% 77, 88, 134, 20, 79,

78, 692
8.2% 3.8% 20, 134, 176

UI (906) 0.9% 1.1%
Unused Entities (886) 14.6% 14.5 3.8%
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Figure 28. Distribution of security issues across CWE-888 Primary classes, for all three
datasets

Table 2 shows the dominating CWE-888 Primary classes along with their corresponding
Secondary classes, which provide more detailed information on the nature of security issues
in the corresponding dominating Primary classes. The Secondary classes under the Excep-
tion Management Primary class included: Ambiguous Exception Type, Incorrect Exception
Behavior, and Unchecked Status Condition. Memory Access was another dominating Pri-
mary class, consisting of Faulty Buffer Access and Faulty Pointer Use. These categories
include common programming errors such as null pointer dereferences and buffer overflows.
As shown by Younan [22], buffer overflows continue to be one of the most common vulner-
abilities in software systems.

The next dominating Primary class was Other, with the Secondary classes Design and
Implementation. Design class consists of weaknesses dealing with insufficient control flow
management or reliance on data/memory layout. Implementation class is based around
weaknesses such as coding standards violation or containment errors. These Secondary
classes were assigned to issues which had security problems related strictly to their design
or implementation and could not be placed into any other class.

Another dominating Primary class was Risky Values. This Primary class consists of
the Secondary class Glitch in Computation, which deals with calculation errors. These
involve everything from a divide by zero error to a function call with an incorrect order
of arguments. The Flight mission Developers issues dataset had the highest percentage of
these errors, which was closely followed by the Flight mission IV&V issues.

The last dominating Primary class was Unused Entities, consisting of the Dead Code
and Unused Variable Secondary classes. These issues were were found much more often in
the IV&V datasets, both for the Ground and the Flight mission.
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Table 2. Comparison of the Secondary Classes, only for the five dominant Primary classes.
The corresponding NASA’s Top 25 ground and flight mission CWEs are also shown.

Primary Cluster
Ground Mission Flight Mission

IV&V Top 25 CWEs IV&V Developer Top 25 CWEs
Issues Issues Issues
Exception Management (889)

Ambiguous Exception Type (960) 7.7%
Incorrect Exception Behavior (961) 4.5% 14.0%
Unchecked Status Condition (962) 3.1% 3.6% 13.2% 391,665,754

Memory Access (890)
Faulty Buffer Access (970) 4.6% 119, 787, 122,

121, 788, 805
12.7% 8.3% 119, 121, 122, 787,

120, 788, 805, 129
Faulty Pointer Use (971) 50.0% 476 5.5% 4.5% 476

Other (907)
Architecture (975) 0.9%

Design (977) 464 2.6% 464
Implementation (978) 1.5% 23.6% 4.5%

Risky Values (885)
Glitch in Computation (998) 8.5% 835, 468, 681,

682, 192, 457
21.8% 28.3% 457, 835, 468, 681,

682, 192, 190, 193,
197, 195, 562

Unused Entities (886)
Dead Code (561) 14.6% 10.0% 3.4%

Unused Variable (563) 4.5% 0.4%

Tables 1 and 2 also contain columns with the list of the NASA’s top 25 CWEs for the
ground and flight missions. These top 25 CWEs were determined by the IV&V Program
and are maintained at the NASA’s Secure Coding Portal. The top 25 CWEs listed in the
third and sixth columns in Tables 1 and 2 are actually children of the corresponding Primary
CWE class shown in the same row.

Note that the dominant Primary and Secondary classes should not be directly compared
with the top 25 CWEs because they do not reflect the same information. Thus, the dominant
Primary and Secondary classes in this report were identified based on the actual data
extracted from the IV&V and Developers issue tracking systems. On the other side, the top
25 CWEs were identified using the Common Weakness Scoring System (CWSS) [31], which
provides a mechanism for prioritization of software weaknesses. CWSS is organized into
three metric categories: Base Finding, Attack Surface, and Environmental. Each category
contains multiple metrics, which are known as factors. After each factor in the category
is assigned a value (typically a guesstimate based on experience or anecdotal knowledge),
these values are converted to weights and a category sub-score is calculated. The three sub-
scores are multiplied together, which produces the CWSS score. Higher the CWSS score,
higher the priority of the particular software weakness. Note that analyzing the Attack
Surface and Environmental factors was out of the scope of our work.

It is important to note that the results related to the dominating vulnerability classes
identified in this report provide useful, evidence-based input to the current process used to
create the top 25 Ground mission and Flight mission vulnerabilities.

6 Threats to Validity

Any empirical study have threats to validity. In this section we briefly discuss the threats
to validity to our study.

It should be noted that the number and classes of identified security issues depend on
the quality of software artifacts, including the level of provided details related to security
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(if any). It appears that each dataset contained a small amount (15% or less) of issues that
did not contain sufficient information for classification. These issues, which lacked security
related information and did not fit in any CWE description, were classified as not-security
related. Furthermore, the types of security issues (and consequently the identified Primary
and Secondary classes) may depend on the validation and verification (V&V) methods used,
as well as the amount of time and effort expended on using these methods.

Another threat to validity was due to the fact that some issues could be correctly classi-
fied into multiple CWE classes. This was partially mitigated by the hierarchical structure of
the CWE-888 view. Furthermore, the number of issues fitting into multiple CWE classes was
small, and for these cases the most relevant of the possible classes was selected. Therefore,
the effect of this treat to validity on creation of vulnerability profiles was likely insignificant.

In the case of the Ground mission IV&V dataset, as described in Section 4.4, there was
a significant number of security related issues that were tagged as testing related. Since no
CWE exists that covers such a case, these testing related security issues were not considered
in the further analysis.

7 Conclusion

This report focuses on exploring the security related issues, that is, vulnerabilities present
in NASA missions based on the information provided in issue tracking systems. While
some prior work exists on characteristics of software faults (i.e., bugs) and failures, very
little work has been published on analysis of software vulnerabilities, in NASA projects
and in general. The most interesting empirical findings from our study are summarized in
Table 3. The percentage of security issues was the lowest in the Ground mission IV&V
dataset (9% if testing issues are excluded, 20% if they are included) followed by the Flight
mission IV&V dataset (41%) and it was the highest in the Flight mission Developers dataset.
One explanation for the lowest proportion of security related issues in the Ground mission
IV&V dataset may be the fact that this mission is still under development and that the
testing phase has not yet begun. Unfortunately, the Ground mission Developers issues were
not available to the research team, so we cannot confirm the trend observed in the Flight
mission, which exhibited higher proportion of security issues in the Developers dataset than
in the IV&V dataset.

Interestingly, the Code related security issues dominated both the Ground mission IV&V
security issues, as well as the Flight mission IV&V security issues, with 95% and 92%, re-
spectively. This is an important finding because it indicates that even when requirements
and design are done adequately, significant number of vulnerabilities are introduced during
the implementation. Therefore, enforcing secure coding practices and verification and vali-
dation focused on coding errors (for example by using check list for inspection) would be a
cost effective way to improve mission’s security. (Note that the Flight mission Developers
issues dataset did not contain the data in Issue Category.)

In both the Ground mission IV&V issues dataset and the Flight mission IV&V issues
dataset for which the information was available, majority of issues (i.e., 91% and 80%, re-
spectively) were introduced in the Implementation phase. This is consistent with the fact
that majority of security issues were code related. It is important that software vulnerabil-
ities (i.e., security related issues) are fixed in a timely manner. The good news is that in
most cases the phase in which the issues were found was the same as the phase in which they
were introduced. The most security related issues of the Flight mission Developers issues
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dataset were found during Code Implementation, Build Integration, and Build Verification,
which is consistent with the other datasets. However, the data on the Phase these issues
were introduced were not available for the Flight mission Developers issues dataset.

The location of security issues, as the location of issues in general, followed the Pareto
principle. Specifically, from 88% to 90% the security issues were located in three to four
subsystems for all three datasets.

With respect to severity, the results showed that the security issues, as the majority of all
issues, were with moderate severity across all three datasets. It should be noted, however,
that in the case of the Flight mission datasets (both the IV&V issue and Developers issues)
the security aspects of software bugs were not explicitly addressed in the issue tracking
system and it is possible that the potential security implications were not accounted for.

The final row in Table 3 lists the five dominating Primary CWE-888 classes (out of 21
classes), which together contributed from around 80% to 90% of all security issues in each
dataset. This again proves the Pareto principle of uneven distribution of security issues
across CWE classes and supports the fact that addressing these dominant security classes
provides the most cost efficient way to improve the mission security.

Table 3. Main findings across all datasets
Ground mission IV&V issues Flight mission IV&V issues Flight mission Developers is-

sues
% Security Is-
sues

9% (20% if Testing security
issues are considered)

41% 66%

Security Issues
Category

95% Code (39% Code and
53% Testing related if test-
ing security issues are consid-
ered.)

92% Code Data not available

Phase Intro-
duced

91% in the Implementation
Phase

85% in the Implementation
Phase

Data not available

Phase Found Followed closely the phase in-
troduced distribution

Followed closely the phase in-
troduced distribution

Most found during Code Im-
plementation, Build Integra-
tion, and Build Verification

Subsystem 86% found in two subsystems
(70% of all issues)

88% in three subsystems
(88% of all issues)

88% in four subsystems (90%
of all issues)

Severity of Se-
curity Issues

Level 3 dominated (86%) Levels 3 and 4 dominated (to-
gether 78%). 7% were level 2

Moderate dominated (84%)

Five (out of 21)
most frequent
Primary Classes

Exception Management 10.8%
Memory Access 54.6%
Other 1.5%
Risky Values 8.5%
Unused Entities 14.6%

Total 90%

Exception Management 8.2%
Memory Access 18.2%
Other 24.5%
Risky Values 21.8%
Unused Entities 14.5%

Total 87%

Exception Management 27.2%
Memory Access 12.8%
Other 7.1%
Risky Values 28.3%
Unused Entities 3.8%

Total 79%
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Appendix A

Table 4: IV&V issue tracking system field descriptions

Field title Description Is field used?

Issue ID
An ID is assigned to each issue and recorded in this
field

Yes

Project Contains the project name that the issue is from Yes

State
The current state of the issue (i.e. Closed, Submitted,
Withdrawn, etc)

Yes

Subject The subject or title of the issue Yes

Attachments N/A No

Capability
General Grouping of Functionality - A capability is
made up of several subsystems which is made up of
several software components

Yes

Comments
Updates about the progression and search for solution
of the issue

Yes

Count N/A Yes

Data Restrictions N/A Yes

Defer Date N/A No

Defer Issue N/A No

Defer Notify Recipients N/A No

Description The full description of the issue Yes

Impact
The projected or observed impact of the issue on the
system

Yes

Issue Category
The category the issue falls into (i.e. Code, Design,
etc.)

Yes

Issue Type
The type of issue, more specific than Issue Category
(i.e. Incomplete Design, Incorrect Code, etc.)

Yes

Severity How sever the issue is Yes

Method The analysis method used to detect the issue Yes

Originator N/A Yes

Phase Found The project phase in which the issue was found Yes

Phase Introduced The project phase in which the issue was introduced Yes

Phase Resolved The project phase in which the issue was resolved No

Recommended Actions
The action that the analyst recommends taking in re-
sponse to the issue

Yes

References Any material that can be reference to support the issue Yes

Related Issues Any issues highly related to the current issue Yes

Resolution Chronology A history of the solution of the issue Yes

Technical Framework
Level 1

N/A Yes

Technical Framework
Level 2

N/A Yes

Technical Framework
Level 3

N/A Yes

31



Field title Description Is field used?

Workaround
If issue cannot be solved, what was put in place to
account for it

Yes

Defect
The defect of the issue (i.e. Software Behaviors, Re-
quirements Documentation, etc)

Yes

Defect Category
The category of the defect (i.e. Design, Requirements,
etc.)

Yes

Analysis Method The method used to review the issue Yes

Element

The element that the issue originates from, similar
to the “Subsystem” in the Developer Issue Tracking
System - A subsystem is made up of several software
components

Yes

Date Submitted to POC N/A Yes

Reqt Number N/A No

Developer ITA N/A Yes

Verification Procedure
Review

The procedure used to verify the fix of the issue Yes

Created By
The analyst or developer that entered the issue into
the issue tracking system

Yes

Created Date
The date the issue was entered into the issue tracking
system

Yes

Updated By The last analyst or developer to update the issue Yes

Updated Date The last data the issue was updated Yes
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Table 5: Developers issue tracking system field descriptions

Field title Description Is field used?

Issue ID
An ID is assigned to each issue and recorded in this
field

Yes

DCR Product The product the DCR relates to Yes

Type The project and product of the DCR Yes

DCR Solution The actions taken to resolve the DCR Yes

DCR Severity The criticality of the DCR Yes

DCR Subtype A general category of the problem under concern Yes

DCR/Test Description The description of the DCR Yes

DCR Subsystem

The part of the system the DCR originates from, sim-
ilar to “Element” from the IV&V Issue Tracking Sys-
tem - A subsystem is made up of several software com-
ponents

Yes

DCR Type The type of DCR (i.e. Defect, Change Request, etc.)

DCR Title The title or subject of the DCR Yes

DCR Priority How urgent fixing the DCR is Yes

DCR Application The application the DCR originates from Yes

DCR Closure Notes
Points of interest detailing the solution of the DCR or
deviations from normal routine

Yes

State What lifespan stage the DCR is in Yes

DCR Date Closed With
Defect

N/A Yes

DCR Date In Test The date the DCR is ready for testing Yes

Backward Relationships Any previos DCR’s that the current is related to Yes

DCR Test Procs Used
to Verify

The procedures used to verify the DCR Yes

DCR Date On Hold
If the DCR was put on hold, the data of which this
took place

Yes

DCR Date Test Com-
pleted

The date at which the testing on the DCR was com-
pleted

Yes

DCR Date Ready For
Test

The date the DCR is ready to be tested Yes

DCR Affects FSRL N/A Yes

Attachments
Any attachments that assist with the description, test-
ing, or resolution of the DCR

Yes

DCR Date Closed The date the DCR was closed Yes

Implements
Any other DCR solutions that the DCR under concern
implements

Yes

DCR Build Target N/A Yes

DCR Test Assigned
Tester

The developer assigned to test the DCR Yes

DCR Test Log Init Files
Folder

N/A Yes

Signature Comment N/A No
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Field title Description Is field used?

DCR IRB Comments N/A Yes

DCR Test Outcome Initial test results Yes

DCR Test Tester Com-
ments

Comments left by the testing developer Yes

DCR Date In Work Date when work starts on the DCR Yes

DCR Date Work Com-
pleted

Date the work is finished on the DCR Yes

DCR Phase Found The development phase of which the DCR was found Yes

DCR IRB Comments
History

N/A No

DCR Workflow N/A Yes

Forward Relationships The related DCR’s created after the one under concern Yes

DCR Date Assigned The date the DCR is assigned to a dveloper Yes

DCR Test Log Init Files N/A Yes

DCR Document Type
The type of DCR document (i.e. requirements, algo-
rithms, etc)

Yes

Links to Tests from
DCR

The tests relevant to the DCR Yes

DCR Additional Prod-
ucts Affected

Products other than the one the DCR originated from
that are effected

Yes

Modified Date The last date the DCR was modified Yes

DCR Date Ready For
Closure

The date the DCR is marked as ready to close Yes

Signed By N/A No

Modified By The developers to modify the DCR Yes

DCR Test Verification How was the DCR verified Yes

DCR Date Build Inte-
gration

The date the DCR was integrated Yes

DCR/Test Leads Com-
ments

Project lead comments Yes

DCR Test Log Folder
Verify

N/A Yes

DCR Test Log Files
Verify

N/A Yes

Is Related To Other DCR’s the one under concern is related to Yes

DCR Assigned To The Developer the DCR was assigned to Yes

Created By The creater of the DCR Yes

DCR Build Found The build in which the DCR was found Yes

DCR Test Procs Init
Used

N/A Yes

Assumed Issue Cate-
gory

N/A No
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Appendix B

Table 6: CWE-888 Software Fault Pattern (SFP): Primiary
and Secondary classes

Primary Secondary # of CWEs Total CWEs SFP #

Risky Values
31

Glitch in Computation 31 SFP1

Unused Entities
3

Unused Entities 3 SFP2

API
28

Use of an Improper API 28 SFP3

Exception
Management

27
Unchecked Status Condition 17 SFP4
Ambiguous Exception Type 2 SFP5
Incorrect Exception Behavior 8 SFP6

Memory Access

20
Faulty Pointer Use 3 SFP7
Faulty Buffer Access 11 SFP8
Faulty String Expansion 2 SFP9
Incorrect Buffer Length Computation 3 SFP10
Improper NULL termination 1 SFP11

Memory
Management

5
Faulty Memory Release 5 SFP12

Resource
Management

17
Unrestricted Consumption 4 SFP13
Failure to Release Resource 7 SFP14
Faulty Resource Use 2 SFP15
Life Cycle 4 -

Path Resolution

51
Path Traversal 43 SFP16
Failed chroot Jail 1 SFP17
Link in Resource Name Resolution 7 SFP18

Synchronization

22
Missing Lock 13 SFP19
Race Condition Window 5 4 SFP20
Multiple Locks/Unlocks 3 SFP21
Unrestricted Lock 1 SFP22

Information Leak

96
Exposed Data 76 SFP23
State Disclosure 7 0 -
Exposure Through Temporary File 3 -
Other Exposures 7 -
Insecure Session Management 3 -
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Primary Secondary # of CWEs Total CWEs SFP #

Tainted Input

138
Tainted Input to Command 87 SFP24
Tainted Input to Variable 8 SFP25
Composite Tainted Input 0 SFP26
Faulty Input Transformation 15 -
Incorrect Input Handling 17 -
Tainted Input to Environment 11 SFP27

Entry Points
11

Unexpected Access Points 11 SFP28

Authentication

43
Authentication Bypass 10 -
Faulty Endpoint Authentication 11 SFP29
Missing Endpoint Authentication 2 SFP30
Digital Certificate 6 -
Missing Authentication 2 SFP31
Insecure Authentication Policy 6 -
Multiple Binds to the Same Port 1 SFP32
Hardcoded Sensitive Data 4 SFP33
Unrestricted Authentication 1 SFP34

Access Control

16
Insecure Resource Access 4 SFP35
Insecure Resource Permissions 7 -
Access Management 5 -

Privilege
12

Privilege 12 SFP36

Channel
13

Channel Attack 8 -
Protocol Error 5 -

Cryptography
13

Broken Cryptography 5 -
Weak Cryptography 8 -

Malware
11

Malicious Code 8 -
Covert Channel 3 -

Predictability
15

Predictability 15 -

UI

14
Feature 7 -
Information Loss 4 -
Security 3 -

Other

46
Architecture 11 -
Design 29 -
Implementation 5 -
Compiler 1 -
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