

Automatic Dependent Surveillance Broadcast: µADS-B Detect-and-Avoid Flight Tests

Ricardo Arteaga NASA Armstrong Flight Research Center AIAA, Jan 08-12 Kissimmee FL

Introduction to ADS-B

Automatic Dependent Surveillance Broadcast

- Replacing radar for tracking aircraft worldwide

 Prevent collisions
- Sharing position, altitude, velocity, etc. with air traffic control and other aircraft
 - ADS-B Out = Transmit
 - ADS-B In = Receive
- FAA-mandate by Jan. 1, 2020

Operational View

LEGEND

Detect and Avoid (DAA Technologies)

Air Traffic Services

ADS-B Ground Stations and Network Legacy Command and Control (C2) Links

ACRONYMS

ADS–B: Automatic Dependent Surveillance—Broadcast DAA: Detect and Avoid NAS: National Air Space

Manned aircraft

ADS-B ground stations

Research ground control station

Air traffic services (terminal)

Cooperative aircraft

Communications satellite

Detect and Avoid ^{Radar and electro-optic}

Non cooperative aircraft

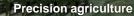
SAA Datalink SAA Datalink

Unmanned aircraft

Human Systems

ntegration

Air traffic services (en route)

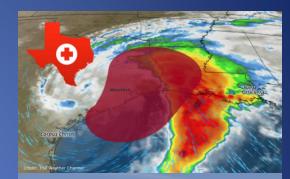

UAS ground control station

Command

and Control

Small UAS Detect and Avoid

Humanitarian Aid


UAS Restricted-Use Certification

Operational Use Cases

- Urgent need to safely integrate UAS into the National Air Space (NAS)
 - Search-and-rescue missions
 - First responders and firefighters
 - Monitoring and/or fighting forest fires
 - Package delivery (Amazon[®], Domino's[®], FedEx[®])
 - Surveying farmland, borders, pipelines
- Consumer/Commercial demand for UAS likely to explode in the next decade
 – (42,000 dropos operating by 2021 (E4/)
 - 442,000 drones operating by 2021 (FAA)¹
- Drone safety incidents are averaging 250 a month, up by more than 50% than last year²

[1] <u>https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/Unmanned_Aircraft_Systems.pdf</u> accessed on October 20, 2017 [2] https://www.bloomberg.com/news/articles/2017-10-13/surge-in-drone-safety-reports-prompts-emergency-action-at-faa



Flight Test Goals

- Demonstrate a µADS-B Detect and Avoid system on DJI Phantom 4 platform(s) for BVLOS operations
- Demonstrate DAA Display System for Pilot-in-the-Loop
 Collision Avoidance Object

 $\mu \textbf{ADS-B} \, \textbf{Transceiver}$

Object detection and collision avoidance

11/7/2017

Architecture

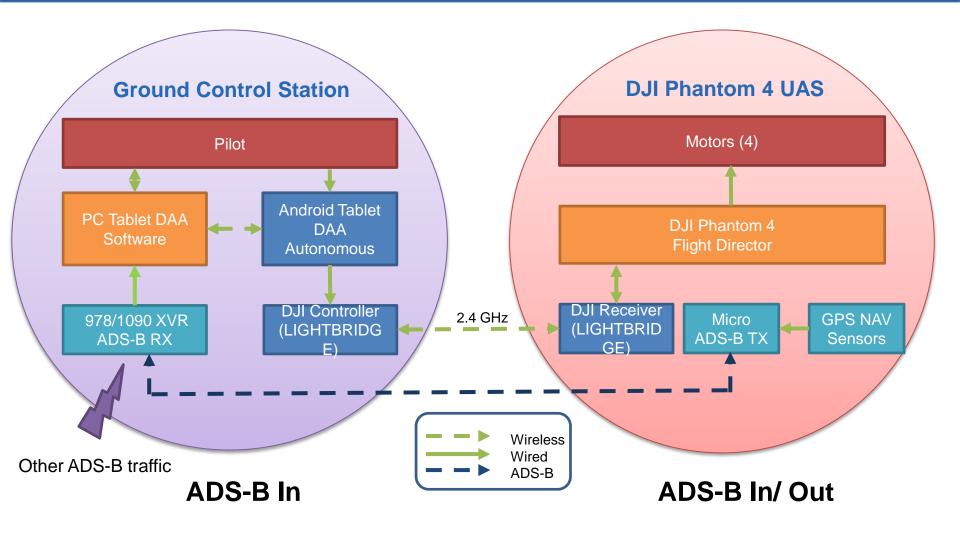


Fig. 2. ADS-B system architecture (US Patent Serial No. 9,405,005).²

Airborne DAA Hardware

		www.statistics.co	
u	ADS	-B	-
00-2828	ADS-8 Transcelv Class A15 SYTUATO16	FC	

Components Dual ADS-B transceiver (978 and 1090 MHz)

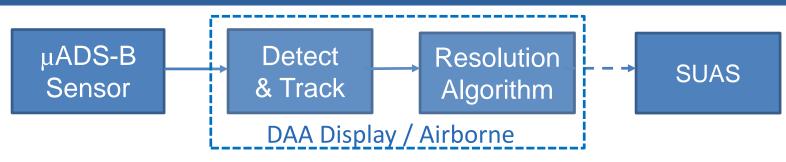
- Meets MOPS DO-282B
 - μADS-B transceiver
 - ADS-B Out
 - ADS-B In
 - GPS NAV Receiver
 - UAT 978 Omni Antenna

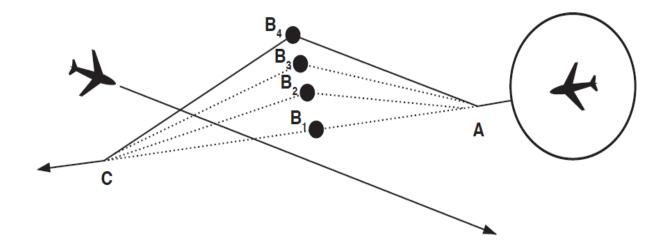
Technical Specifications

Specification	Value			
Input Power	6-29V 500mW Ave.			
	30W Peak (400us)			
Size	25x39x12mm			
Weight	20grams			
SDA	3			
	Receiver			
MTL 1090MHz	-88dBm			
Dynamic Range	-79 to 0dBm			
MTL 978MHz	-93dBm			
Dynamic Range	-90 to -3dBm			
Supp	orted Interfaces			
Host Serial	57600bps			
Nav Serial	115200bps			
	Transmit			
1090MHz	S/W disabled.			
978MHz	20W (43dBm)			
	Options			
Nav D	0-229D GPS with Barometer			

GCS DAA Display / ADS-B In Sensor

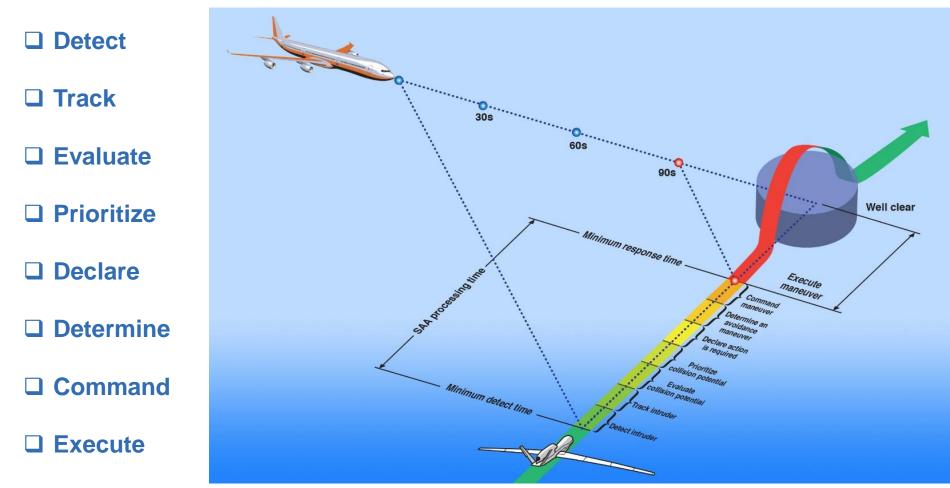
- ADS-B Detect and Avoid Display
 - FlightHorizon software provides the pilot with situational awareness and detect and avoid capabilities.





Stratway+ Conflict Resolution Algorithm

Stratway – strategies are iterated.

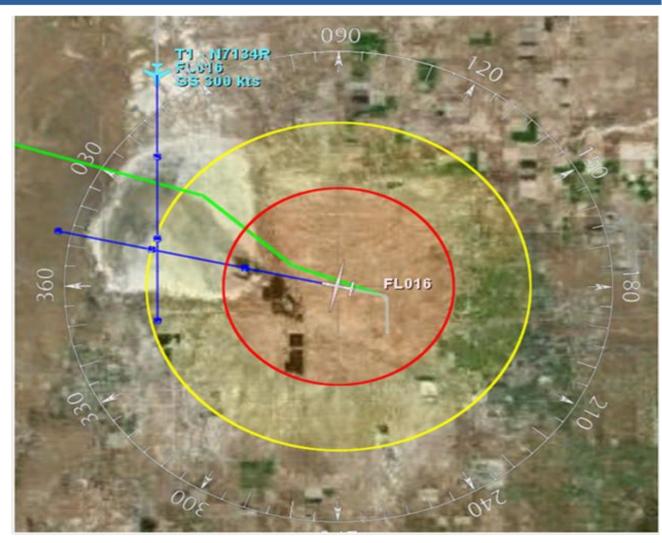


Detect-and-Avoid sub-functions

µADS-B Detect and Avoid system provides an integrated DAA solution for SUAS

NASA ADS-B DAA Display

LEGEND


Target aircraft transmitting ADS-B

Ownship's resolution advisory

Aircraft's nominal trajectory

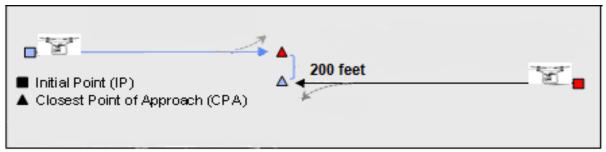
Traffic alert advisory

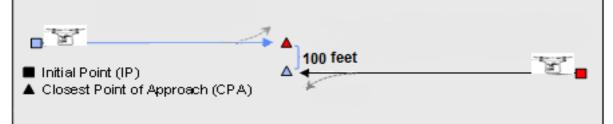
Traffic threat advisory

NASA Patent (US Patent Serial No. 9,405,005)²

Detect and Avoid Flight Test Plan

<u>Vertical</u>	<u>Scenario</u>	<u>Priority</u>	<u>Speed</u> <u>Knots</u>	<u>Aimpoint Offset</u>	<u>Phantom 1</u>	<u>Phantom 2</u>	<u>Objective</u>	<u>Planned</u>	<u>Advisory</u>	<u>Automatic</u> <u>Response</u> <u>to RA</u>	Loss Link	Loss Link
<u>Profile</u>	Desigation			<u>CPA</u>	<u>Altitude AGL</u>	<u>Altitude AGL</u>		Vertical Seperation	<u>RA Type</u>		Phantom 1	Phantom 1
" 00 <u>–</u>	Scenario X11	1	20	1 (200 ft Vert)	250	50	Ensure miss & safety pilot fam	200	No Advisory	No	LL1	LL2
eries ios ;	Scenario X12	1	20	1 (200 ft Vert)	250	50	No activation & safety pilot fam: No RA	200	No Advisory	No	LL1	LL2
10 Series icenarios 200 foot Level	Scenario X13	1	30	1 (200 ft Vert)	250	50	No activation & safety pilot fam: No RA	200	No Advisory	No	LL1	LL2
С С С	Scenario X14	1	30	1 (200 ft Vert)	250	50	No activation & safety pilot fam: No RA	200	No Advisory	No	LL1	LL2
<u> </u>	Scenario X21	1	20	2 (100 ft Vert)	150	50	Approach at head on, expect "Climb"	100	"Climb, Climb" 1000 fpm	Yes	LL1	LL2
20 Series icenarios 100 foot Level	Scenario X22	2	20	2 (100 ft Vert)	150	50	Approach at head on, expect "Climb"	100	"Climb, Climb" 1000 fpm	Yes	LL1	LL2
20 S enar oot I	Scenario X23	2	30	2 (100 ft Vert)	150	50	Approach at head on, expect "Climb"	100	"Climb, Climb" 1000 fpm	Yes	LL1	LL2
°°°	Scenario X24	2	30	2 (100 ft Vert)	150	50	Approach at head on, expect "Climb"	100	"Climb, Climb" 1000 fpm	Yes	LL1	LL2
_ 20 <u>_</u>	Scenario X31	2	20	3 (50 ft Vert)	125	75	Approach at head on, expect "Climb"	50	"Climb, Climb" 1000 fpm	No	LL1	LL2
30 Series Scenarios 50 foot Level	Scenario X32	1	20	3 (50 ft Vert)	125	75	Approach at head on, expect "Climb"	50	"Climb, Climb" 1000 fpm	No	LL1	LL2
30 S senal	Scenario X33	1	30	3 (50 ft Vert)	125	75	Approach at head on, expect "Climb"	50	"Climb, Climb" 1000 fpm	No	LL1	LL2
°°°	Scenario X34	1	30	3 (50 ft Vert)	125	75	Approach at head on, expect "Climb"	50	"Climb, Climb" 1000 fpm	No	LL1	LL2
ä	Scenario X51	3	20	4 (0 ft Horiz)	100	150	0 degree approach, expect "Turn Left"	50	"Turn Left, Turn Left"	Yes	LL1	LL2
Scenarios50\foot Level	Scenario X52	3	20	4 (0 ft Horiz)	100	150	45 degree approach, expect "Turn Left"	50	"Turn Left, Turn Left"	Yes	LL1	LL2
nario: vel	Scenario X53	3	30	4 (0 ft Horiz)	100	50	60 degree approach, expect "Turn Left"	50	"Turn Left, Turn Left"	No	LL1	LL2
	Scenario X54	3	30	4 (0 ft Horiz)	100	50	90 Degree approach, expect "Turn Right"	50	"Turn Right, Turn Right"	Yes	LL1	LL2
Series	Scenario X55	3	30	4 (0 ft Horiz)	100	50	135 degree approach, expect "Turn Left"	50	"Turn Left, Turn Left"	No	LL1	LL2
20 8	Scenario X56	3	30	4 (0 ft Horiz)	100	50	180 degree approach, expect "Turn Right"	50	"Turn Left, Turn Left"	No	LL1	LL2





Types of DAA Encounter Scenarios (CA)

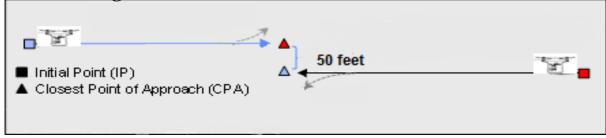
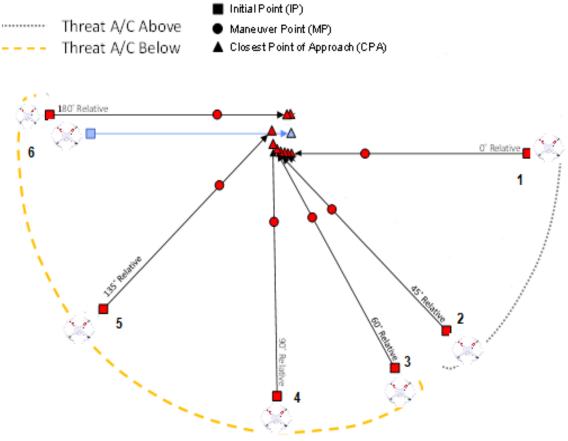

- Horizontal & Vertical Encounters
- 200, 100, 50, -50, -100, -200 feet offsets

Fig. 7. Vertical Profile for Series 10 Encounters

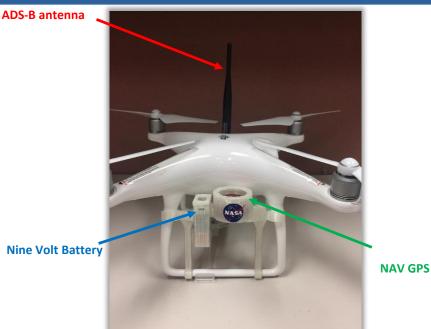
Fig. 8. Vertical Profile for Series 20 Encounters

Fig. 9. Vertical Profile for Series 30 Encounters



Types of DAA Encounter Scenarios (CA)

- Horizontal & Vertical Encounters
- Head On, Crossing, 45, 60, 90, 135, 180 degree.


Fig. 10. ADS-B DAA Scenario Geometrics

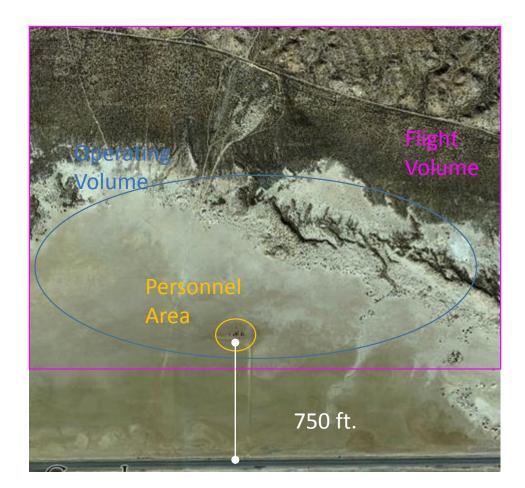
Unmanned Vehicles

Test Aircraft (Ownship) SUAS: Phantom 4 Pro Intruder

- •Gross Weight: 4.02 lbs
- •Length/Wingspan: 1.9 / 1.9 feet
- •Service Ceiling: 500 AGL feet
- •Cruise Speed: 22 39 knots
- •µADS-B DAA System: 1000 fpm
- •18 Fully Charged LiPo Batteries

Flight Operations Area

Flight Volume

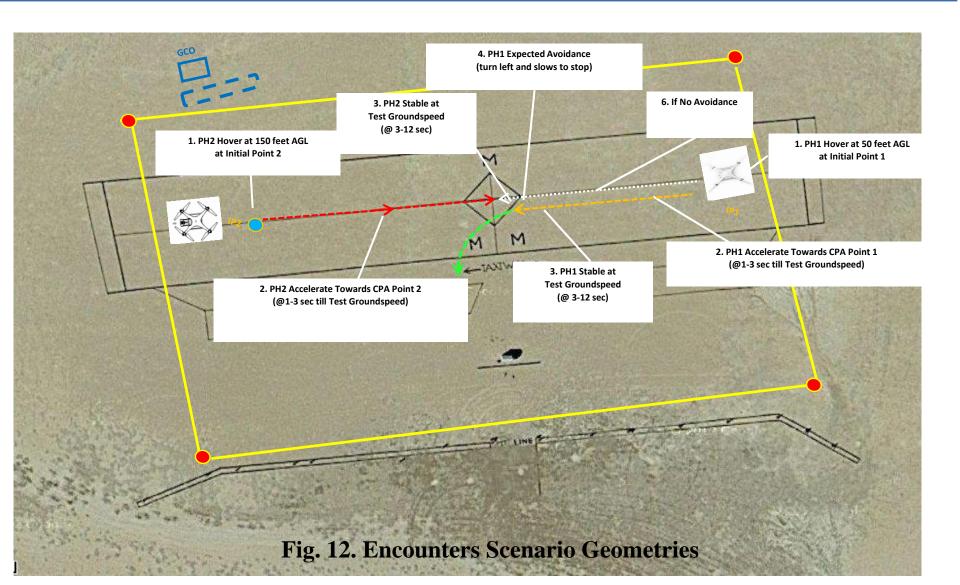

- Muroc Model Masters
- All flights below 500' AGL
- Day VMC

Operating Volume

- BVLOS operations
- FPV flight operations
- Geofenced operations

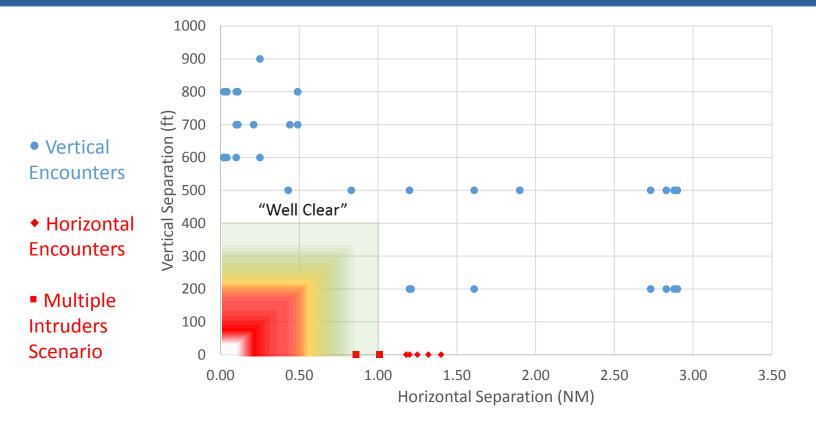
Personnel Area

- Flight Test Crew
- Visual Observers


Fig. 11. Flight Operations Area

Vertical Profile for Series 20 Encounters

ADS-B Detect and Avoid Performance Simulation

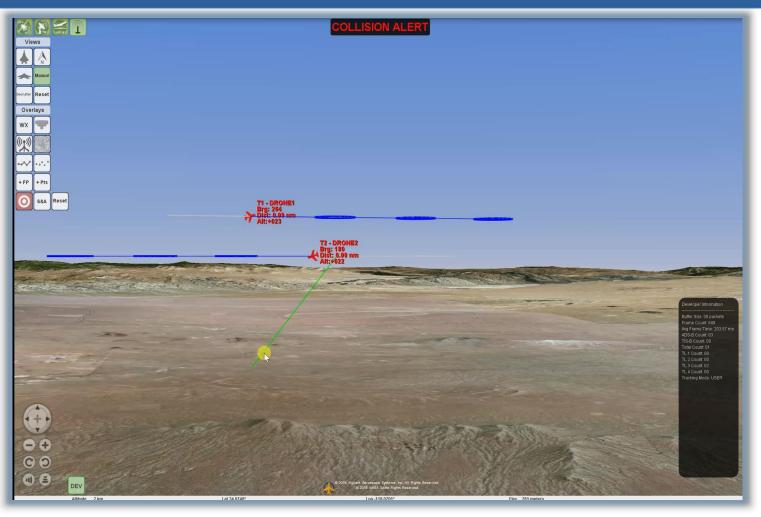

Fig. 13. X33 Simulation with Resolution Advisory

DAA Algorithm Performance

- Computational efficiency and performance of DAA algorithm for Large UAS with a CA Threshold of 1 NM and 400 feet (above)
- Performance of DAA algorithm tailored for SUAS maintains "well clear" with a CA Threshold of 0.1 NM and 200 feet

ADS-B DAA Flight 1 - December 6, 2016: Detect and Track intruders using ADS-B

ADS-B DAA Flight 2 - December 7, 2016: Determine if intruder is a collision threat


- Replacement of the 9 volt batteries every 1.5 hours and testing the voltage to verify greater than 6 volts.
- Replacement of the μADS-B transponder updating at only 4 seconds and a UAT antenna.

ADS-B DAA Flight 3 - December 8th 2016: Transmission Issues with hardware

ADS-B DAA Flight 4 - December 9th 2016: Commands maneuver to avoid the collision

ADS-B DAA Flight 5 - May 2017: Commands Avoidance maneuver to safely avoid the collision

ADS-B DAA flights July 2017: Commands Avoidance maneuver to safely avoid the collision

SCLETECH Flight Test Lessons Learned

- Fly, Fix, Fly; don't try to get it totally right the first time, success comes only after overcoming many technical challenges.
- Incrementally integrate the ADS-B hardware and ADS-B DAA software capability.
- Use better ADS-B In receivers and antennas to increase range reception for BVLOS operations at low very altitudes.
- Reset the trajectories when the drone performs a hover (ground speed <3 knots). Halt and hover can be an avoidance maneuver.

Conclusion

- Demonstrated a µADS-B Detect and Avoid system on DJI Phantom 4 platform(s) for collision avoidance and BVLOS UAS operations.
- Vigilant Aerospace Systems, Inc has successfully licensed the NASA ADS-B DAA technology
- NASA will conduct research on a miniaturized radar for detecting uncooperative targets and/or objects.
- To this end, this NASA patented UAS-DAA technology was deployed for FEMA damage and aid assessment missions to help our fellow American's in need.

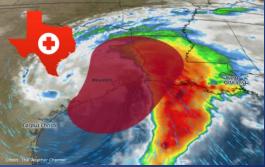


Fig. 19. NASA Armstrong Research Flight Test Team (NASA photo AFRC2016-0365-01)

Hurricane Harvey Humanitarian Aid Video

https://youtu.be/2CdkQJ010Sg

https://www.nasa.gov/centers/armstrong/features/drones_assist_harvey_recovery_efforts.html

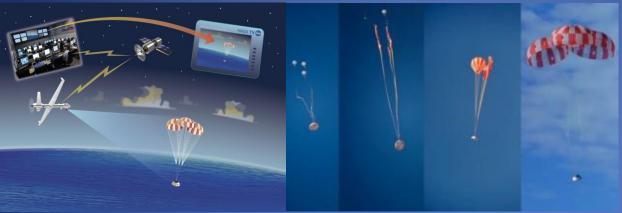
Questions?

https://vigilantaerospace.com/new-90-second-video-nasabeyond-line-sight-detect-avoid-flight-tests-flighthorizon/

Future Applications and Benefits **ADS-B** on Supersonic Vehicles

redits: NASA Graphic

Commercial Applications both inside and outside NASA: Commercial supersonic vehicles with ADS-B Systems will likely emerge in the near future.


NASA is a world class leader in cutting edge astronautics technology.

- **Complies with FAA** certification for ADS-B Out
- ADS-B represents the backbone technology for NextGen.
- Provides tracking from \bullet ground station
- Manned supersonic detect and avoid

Future Applications and Benefits ADS-B on Space Craft Vehicles

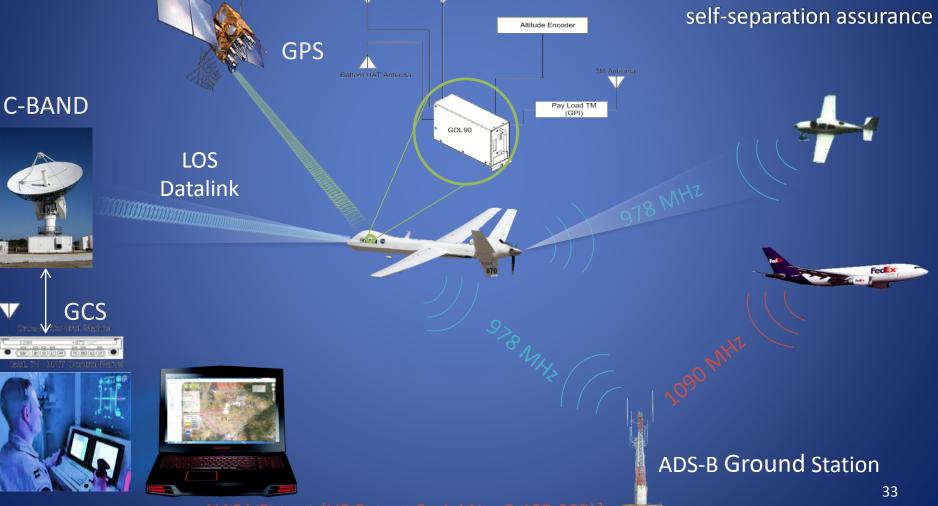
Commercial Applications both inside and outside NASA: Commercial space vehicles with ADS-B Systems will likely emerge in the next decade.

NASA is a world class leader in cutting edge astronautics technology.

- Complies with FAA
 certification for ADS-B Out
- ADS-B represents the backbone technology for NextGen.
- Provides re-entry tracking from ground station/UAS for space vehicle recovery

National Aeronautics and Space Administration

Backup Slides


New Technology

- ADS-B OUT
- ADS-B IN
- ADS-B Sense and Avoid

UNMANNED ADS-B AIRCRAFT SYSTEMS

 ADS-B system coupled to an unmanned aerial vehicle for increased situational awareness and self-separation assurance

NASA Results and Benefits

- ADS-B Out: March 2012
 - First time a UAS as large as the MQ-9 had flown equipped with ADS-B
- ADS-B In: May 2012
 - 2 Flight Tests at Dryden with successful traffic surveillance

Benefits

ational Aeronautics and pace Administration

- Complies with FAA certification for ADS-B Out (5.7 feet position accuracy, FAA independent analysis)
- Provides backbone technology for NextGen
- Increases safety by ensuring safe separation
- Increases pilot awareness, situational and traffic
- Other technical benefits
 - Provides 3D synthetic views
 - Loss link of UAS telemetry uses FAA Tech Center ADS-B data for redundancy

NASA Patent (US Patent Serial No. 9,405,005)²

NASA's Successful Flight Tests

- Various sizes: Ikhana, DROID, Phantom 4 Pro
- Performance: 5.7 ft. accuracy (304 ft. mandate)
- Traffic surveillance: Up to 17 real-time tracks
- Record-setting: First time large UAS had flown with ADS-B

Dryden Remotely Operated Integrated Drone (DROID)

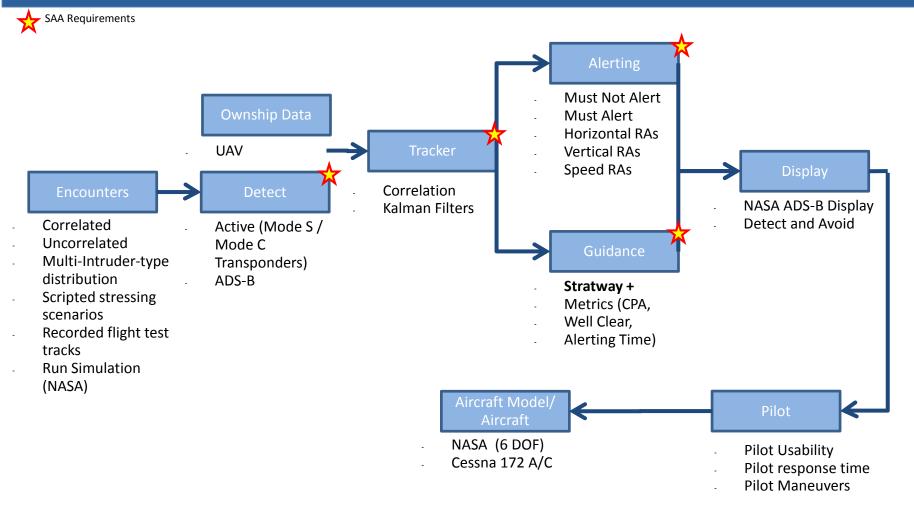
Phantom 4 Pro

http://www.nasa.gov/centers/armstrong/Features/armstrong_engineers_honored.html, accessed on October 15, 2104

µADS-B Detect and Avoid System

Sub-Functions	μADS-B Detect and Avoid				
Cooperative Surveillance	ADS-B active Air-to-Air Surveillance				
Threat Alert Logic	Full range of large and small UAS vertical and horizontal vehicle performance Collision Avoidance Threshold : Range base scalable				
Advisories	Traffic Alerts: Traffic & Threats Vertical Resolution Advisories Horizontal Resolution Speed Resolution Advisories Automatic RA response				

Software & Electrical Connection Architecture


From	То	Wireless/Wired	Type/Protocol	Purpose	
μADS-B IN EFB (uavionix)	PC running DAA Software	Wired	USB Serial / raw AVR	A raw ADS-B RX	
PC running DAA Software	Tablet running DAA Autonomous App	Wireless	2.4ghz WIFI / TCP	Communicate conflict avoidance maneuvers to DJI Drone through controller	
Tablet running DAA Autonomous App	DJI Controller	Wired	USB Serial / DJI Proprietary	Tablet is allowed to communicate to drone through DJI MOBILE SDK	
DJI Controller	DJI Rx on DJI Phantom 4	Wireless	2.4ghz, 5.8ghz/ DJI Proprietary	DJI Controller communicates with drone and allows the pilot to fly the drone	
ADS-B Traffic from other aircraft and ground station	μADS-B IN EFB (uavionix)	Wireless	978 Mhz, 1090 Mhz / ADS-B IN	ADS-B data of aircraft position, speed, and heading	
μADS-B TX	Any ADS-B RX Air-to Air Surveillance	Wireless	978 Mhz / ADS-B OUT	ADS-B data of aircraft position, speed, and heading	

Model Elements Used To Develop and Validate Requirements

Fig. 14. DAA Verification and Validation Methodology

Detect and Avoid Scenario X33 Flight Test Cards

DAA Scr	ipted		AIRCR	AFT: Pha	ntom 1	S/N:	181	VER	SION 4	DAA Scr	ipted	A/C: Phan	tom 2	S/N:	181	VERSION 4
CARD	# Scenario X33							ow	NSHIP	CARD	#	Scenar	rio 🛛	X33	}	
				CF	PA1						and the second	IPG T	PIP5			2IP3
12	5			1	25						19 St.			1		
IP1				50	A				a -	Reall -	- IDD=1	<u> </u>	CORAN			- series
				CF	PA2			5	IP2	-		~				
1. TC an	nounces (COMEX t	ime.				LOST		SSION:	1. TC ani	nounces COMEX t	ime.	and the second line	and in case of the second	Contraction in the local data	
2. Setup	Vehicle a	at IP1, H	over at Ta	arget Alti	tude			1		2. Setup	Vehicle at IP, Ho	ver at Target Altit	ude			
3. Accel	erate Airo	aft On co	ondition a	at least 2	0 second	s prior to	CPA1			3. Accele	erate Aircaft On o	ondition at least 2	0 second	ls prior to	CPA2	
4. Perfo	rm Resolu	ution Adv	visory Ma	nuver or	hover at	CPA1	DECO	NFLICTI	ON ALT:	4. Hover	at CPA2.				DECO	NFLICTION ALT:
5. TC calls "terminate" when run complete.							125		5. TC calls "terminate" when run complete.					50		
6. TC an	nounces r	next Card	l Number	r. '							nounces next Car					
ADS-B:		OFF	ON				ABO	RT PROC	EDURE						ABO	RT PROCEDURE
DISPLAY	:			DAA												
MANEUVER:		OFF Ad	Advisory AUTO			125	MAINTAIN					50	MAINTAIN			
SENSOR	SELECT:			ADS-B				HEA	DING							HEADING
COMEX TIME: IP WIND:							COMEX	TIME:		IP WINI	D:		-			
WPT	LATI	LATITUDE LONGITUDE		ALT V/V	DIST MC	KGS	LEG TIME		WPT	LATITUDE	LONGITUDE	ALT V/V	DIST MC	KGS	LEG TIME	
IP1	N34* 52		W118* W118* 0		125 0	0.3	30	0+36		IP2	N34* 52.16' N34* 52' 09.6''	W118* 04.31' W118* 04' 18.7''	75 0	0.3	30	0+36
LL1	N34* 52			4 40.38"	25					LL2	N34* 52 07.80"	W118* 04 40.10*	50		30	
CPA1	N34* 52	52.13'	₩118*	W118° 04.67' 125 0.0 W118° 04' 40.3'' 0 084 30			CPA2	N34* 52.13' N34* 52' 07.9''	W118* 04.67' W118* 04' 40.3''	75	0.0	30	1			
NOTES:	Ownship				~					NOTES:	Expect Ownship			20.		1
			nds and								- peer ownomp					
			dance. Fo				UEO	Luc .	Check							
	DAA C				HA Ma	neuver:	TES	NO	Check							

Litchi[®] Phantom 4 APP Display

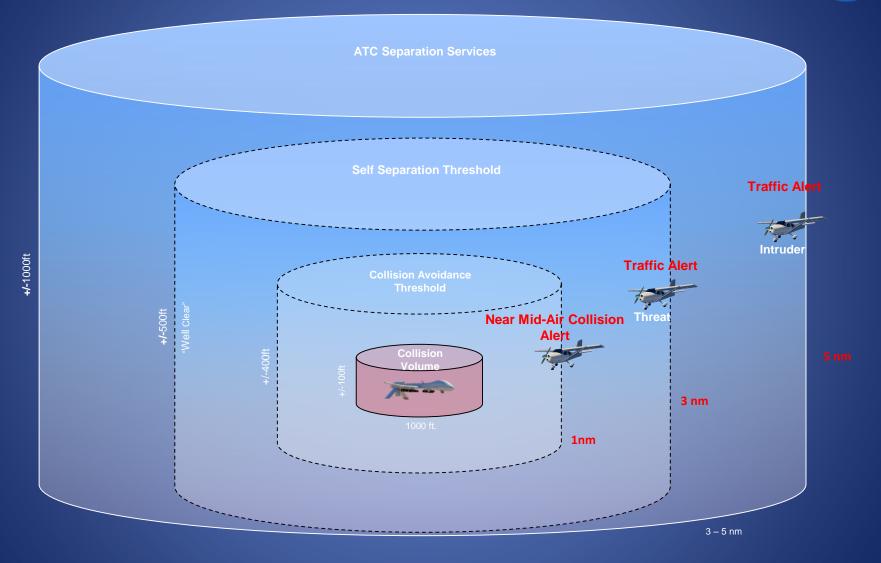

https://flylitchi.com/assets/img/doc/p3/p3_gs.jpg?4

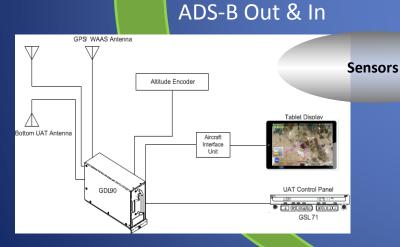
Fig. 4. Litchi[®] Phantom 4 Pro Application

Alerting Logic RISK Collision Volumes

New Technology

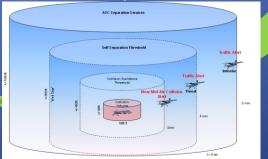
Aircraft

MANNED AIRCRAFT SYSTEMS 4


- **Traffic Conflict Detection** •
- Integrated 2D/3D Weather
- **Integrated 3D Terrain** •
- **NASA Armstrong** 0 developed capability
- **ADS-B Sense and Avoid** •

Architecture

Tablet User Interface


National Aeronautics and Space Administration

- ADS-B Out Broadcasts Ownship ٠
- ADS-B In reception of air-to-air • ADS-B messages from proximate aircraft and ADS-B In traffic information.

ADS-B Data Algorithms Sense and Avoid Self-Separation

- **Detects intruding** aircraft in terms of increasing threat risk
- Alerts pilots of • potential collisions and provides resolution advisories

Displays

NASA Armstrong Flight Research Center Small UAS ADS-B Sense and Avoid System for the DROID and Towed Glider

BACKGROUND

Urgent need to **safely** integrate UAS into the National Air Space (NAS), as these systems are less expensive alternatives for:

and pipelines

• Fire Fighting missions

- Search and rescue missions
- Monitoring forest fires
- Package delivery

Remotely Operated Integrated Drone

Dryden

• Surveying farmland, borders,

What is ADS-B?

sized UAVs

- **ADS-B Out** is the *broadcast* of position information to other aircraft and ground stations.
- **ADS-B In** is the ability to *receive* ADS-B Out transmissions. **Why use ADS-B?**
 - By 2020, all aircraft flying in transponder airspaces will be required to have ADS-B.
 - Provides more reliable tracking of aerial vehicles and increases safety.

OBJECTIVE

• Evaluate SAA Algorithm performance with small and mid-

SYSTEM

ADS-B Hardware

ADS-B Out transponder

- 3.5 x 1.8 x 0.7 inches
- 100 grams (3.5 ounces)

Sense & Avoid Software and Algorithms

The software package is entirely developed by NASA

- World Wind 3D Geobrowser
- Stratway Strategic resolutions for aircraft conflicts
- Sense & Avoid–Alerts pilot of potential collisions to avoid accidents

SYNOPSIS

- Advanced system will be needed to keep drones from colliding with manned aircraft vehicles.
- Validating the software algorithms with flight experiments to improve safety.
- This ADS-B Sense and Avoid product is key to safety.

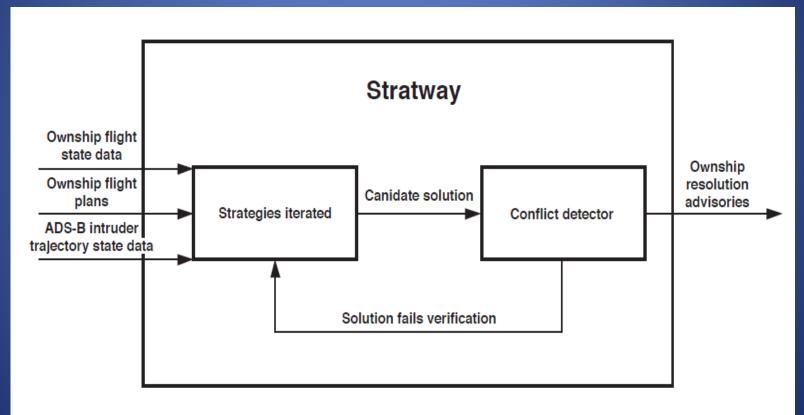
http://www.nasa.gov/centers/armstrong/Features/armstrong_engineers_honored.html, accessed on October 15, 2104

Flight Heritage

- The ADS-B Display has previously successfully flown in the IKHANA aircraft (right).
- The ADS-B systems has previously successfully flown on other large and small UASs.
- Phantom 4 platforms most popular commercial small UASs.

Dryden Remotely Operated Integrated Drone (DROID)

ADS-B Equipped DRIOD



ADS-B Detect-and-Avoid algorithm

Stratway – a modular approach to safe conflict resolutions.

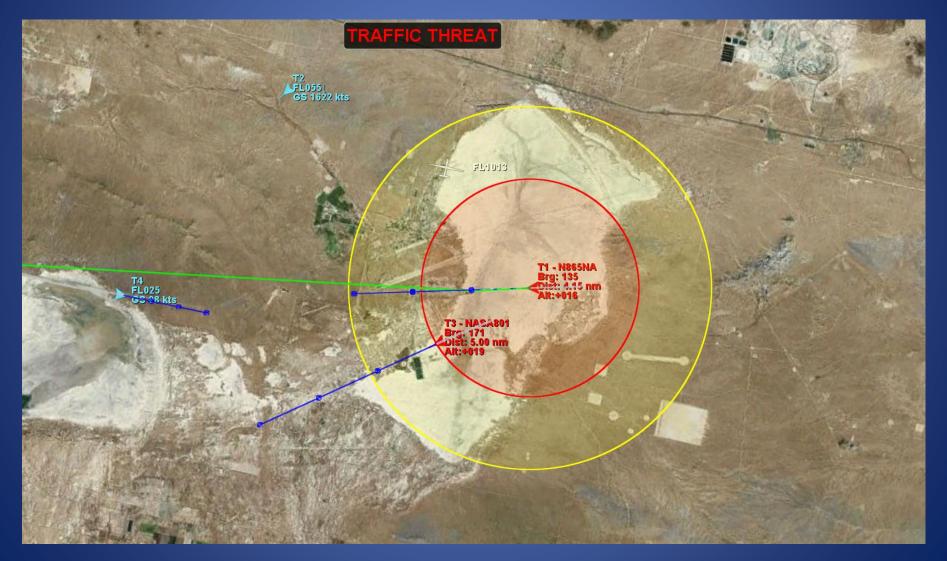
NASA Patent Pending 13/785,661

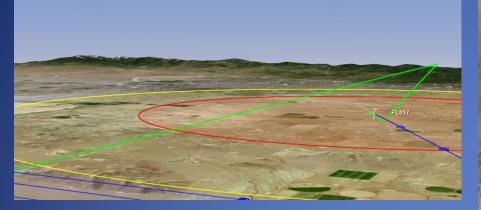
Advanced sense-and-avoid algorithm

 Software uses ADS-B broadcast information to construct aircraft trajectories, and predict future loss of separation.

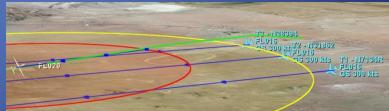
Benefits of NASA's ADS-B Technology

- Complies with FAA certification for ADS-B Out
- Provides backbone technology for NextGen
 - Tracking UAVs and other aircraft on tablets
- Increases safety by ensuring safe separation
 - ADS-B sense-and-avoid capability
- Increases awareness, situational and traffic
 - Preeminent attribute for successful UAS operations
- Other technical benefits
 - Provides 3D synthetic views of the UAS
 - Loss link of UAS telemetry uses FAA Tech Center ADS-B data for redundancy


ADS-B SAA Display Traffic Advisory



Flight Tests ADS-B Sense and Avoid (Green Resolution Advisory)



Conflict Detection Resolution Advisory

National Aeronautics and Space Administration

NASA Pilot Usability Tests Human Factors Conflict detection Resolution advisory

TRAFFIC THREAT INDICATORS