Variability in lightning NO_x production rates due to regional differences in lightning type and polarity

Jeff Lapierre^{1,2} (jlapierre@earthnetworks.com), Joshua Laughner³, Sally Pusede², William Koshak⁴ ¹ Earth Networks, Germantown, MD, ² University of Virginia, Charlottesville, VA, ³ University of California, Berkely, CA, ⁴ NASA Marshal Space Flight Center, Huntsville, Alabama

Introduction

- The concentration of nitrogen oxides (NO_x) largely controls the production of upper tropospheric (UT) ozone.
- Lightning contributes to as much as 70% of UT NO,
- Current estimates of NO_x production range from $\sim 10-10^3$ mol NO, per stroke. There remains disagreement as to whether cloud-to-ground (CG) strokes produce more or the same amount of NO, per stroke as intracloud (IC) strokes
- We focus on three regions in the U.S. that typically exhibit specific lightning characteristics as illustrated below.

• The goal of this study is to determine if regional variations in lightning characteristics play a the large dominant role in observations of LNO

Data

- Timeframe: May August 2014-15
- Earth Networks Total Lightning Network (ENTLN)

Global network provides stroke time, location, type, and peak current

• Berkely High Resolution (BEHR) product Daily Global Tropospheric NO, profiles from the Ozone Monitoring Instrument (OMI)

• ECMWF Climate Reanalysis (ERA5) Hourly winds at 37 pressure levels and 31 km resolution accross North America

Methods

variational

- We only use visible column data for high cloud radiative fraction (>70%). This acts as a filter for boundary layer NO₂ [1].
- Only want LNO, within a single pixel. We use the wind speed and cross pixel distance to determine the time window of pixel correlated LNO₂. For U.S., this is **2.4 hours**.
- Sum up NO, and # of strokes for all 1x1 degree pixels over entire region for each day.
- For Total (IC+CG) LNO, we find slope of NO, vs stroke #. For IC and CG LNO, we use linear regression to solve the equation below:

 $Total NO_2 = \#IC \times IC_{prod} + \#CG \times CG_{prod} + C$

- We correct for NO, lifetime near thunderstorms, which has been shown to be ~ 3 hours [2].
- NO:NO, is largely uncertain due to short lifetime of NO, as well as O_3 production from lightning [3]. For this reason, we report results as NO₂ instead of NO_x. Approximate conversion: LNO, ~ LNO, x 10

LNO₂ using Estimated current data is ~25% lower than with stroke data.

LNO₂ CG:IC

ke Current
5.2 ± 0.4
$0.6 4.0 \pm 0.6$
9.1 22.2 ± 10.4

Total IC CG CG:IC Red mean Parameter Stroke Dens Stroke Curre Lightning Cha
• SE: Lowest
 SC: Highest NC: Lowest
 We estimate a stroke⁻¹, which stroke⁻¹, which we can be a stroke defined to the stroke define
and are partia Variation betw completetly ex literature.
[1]Pickering, K. E., et. al. (201

Results: Regions

LNO ₂ (mol NO ₂ stroke ⁻¹)					
SE	SC	NC			
4.3 ± 0.4	6.6 ± 0.7	5.0 ± 0.6			
2.5 ± 0.8	5.2 ± 1.3	3.8 ± 1.3			
42.3 ± 15.1	37.8 ± 25.0	36.2 ± 28.4			
16.9	7.3	9.5			

ns highest of regions, blue means lowest.

	Region	Total	IC	CG
	SE	2.13	2.04	0.097
sity (# km ⁻²)	SC	1.79	1.7	0.097
	NC	1.69	1.62	0.071
	SE	4.2	3.1	24.3
ent (kA stroke ⁻¹)	SC	5.3	3.9	27.3
	NC	4.9	4.1	20.5

racteristics that match LNO₂ results:

total and IC stroke current.

t total stroke current

CG stroke density and stroke current

Conclusions

an overall LNO, production of 6.8 mol NO₂ ch is in agreement with current literature.

tes using current data are consistently for stroke data. This may indicate that lata overestimates LNO₂.

CG strokes produce 5-17 times more strokes.

nis study do show different LNO, results ally explained by lightning characteristics. ween regions is ~30%. This does not explain the large variation of LNO_{x} in the

References

16). Estimates of lightning NOx production based on OMI NO2 observations over the 2/2015JD024179

[2]Nault, B. A., et. al. (2017). Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry. Geophysical Research Letters, doi: 10.1002/2017GL074436.

[3]Minschwaner, et. al. (2008). Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges. doi: 10.1029/2007JD009500