602

Impact of GPM Rainrate Data Assimilation on Simulation of Hurricane Harvey (2017)

Xuanli Li¹, Jayanthi Srikishen², Bradley Zavodsky³, and John Mecikalski¹

¹University of Alabama in Huntsville, Huntsville, AL

²Universities Space Research Association, Huntsville, AL

³NASA Marshall Space Flight Center, Huntsville, AL

Introduction

Global Precipitation Measurement (GPM):

Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM was launched in February 2014 with Dualfrequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) onboard.

The GPM has a broad global coverage ~70°S – 70°N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall.

Project Goals:

- To develop methodology to assimilate GPM surface precipitation data with Gridpoint Statistical Interpolation (GSI) data assimilation system and WRF ARW model.
- To investigate the potential and the value of utilizing GPM observation into NWP for operational environment.

Methodology and Experiments

Model and Data Assimilation System:

WRF ARW V3.8 Community GSI v3.5

Experiments:

- 9-km resolution, 00 UTC 27 00 UTC 29 August 2017
- Observations: IMERG final gauge calibrated rain rate & GMI GPROF rain rate
- Observational error: 2 mm/hr
- DA cycles: 12 UTC and 21 UTC 08/27/2017

Experiments	Data Assimilation		
CTRL	No		
DA_imerg	IMERG rain rate at 1200–1230 UTC and 2100–2130 UTC 08/27/2017		
DA_gprof	GMI GPROF rain rate at 1108–1240 UTC and 2023–2156 UTC 08/27/2017		

GSI Physics Forward Model for Rain Assimilation:

- Convective Precipitation: Pan and Wu (1995) simplified Arakawa and Schubert scheme
- Grid-scale Condensation and Precipitation:
 Zhao and Carr (1997)
 - Hydrometeors: cloud water, rain, cloud ice, and snow
 Microphysical processes: condensation
 - Microphysical processes: condensation, evaporation, accretion, autoconversion, melting/freezing, aggregation of ice crystals

Water Vapor arge-scale Convective Condensation Clouds (water or ice) Precipitation Production Precipitation (rain or snow)

Result **Hurrican Harvey (2017)** Intensity **GPM Rainrate Observations at 12 UTC 08/27/2017** Increment from the 1st Data Assimilation Cycle at 12 UTC 08/27/2017 2nd Data Assimilation Cycle at 21 UTC 08/27/2017

Data Impact on Precipitation Forecast

Threat Scores (threshold=2mm/hr) Against IMERG Rainrate

Time	CTRL	DA_imerg	DA_gprof
00 UTC 8/28/2018	0.21	0.32	0.32
06 UTC 8/28/2018	0.17	0.28	0.25
12 UTC 8/28/2018	0.20	0.23	0.22
18 UTC 8/28/2018	0.19	0.22	0.24

Conclusion and Discussion

- 1. The GPM rainrate data has been successfully assimilated using the GSI rain data assimilation package. Impacts of rainrate data have been found in temperature and moisture fields of initial conditions.
- 2. Assimilation of either GPM IMERG or GPROF rain product produces significant improvement in precipitation amount and structure for Hurricane Harvey (2017) forecast. Since IMERG data is available half-hourly, further forecast improvement is expected with continuous assimilation of IMERG data.

This work is supported by Dr. Tsengdar Lee through NASA Project NNX14AG22G.