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The ability to solve the equations governing the hypersonic turbulent flow of a real gas  on unstructured
grids  using  a  spatially-elliptic,  2nd-order  accurate,  cell-centered,  finite-volume  method  has  been  recently
implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that
were  found  to  be  required  to  robustly  obtain  accurate  solutions  to  hypersonic  flows  on  non-hex-dominant
unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least
squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is
consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that
contains a cell  skewness sensitive damping term derived using hyperbolic  diffusion based concepts.  A data-
parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is
described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive
turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to
automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the
local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series
of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence
behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y + adaptive turbulent
wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically
frozen,  Mach  7.8  turbulent  flow  of  air  through  a  scramjet  flowpath  is  computed  and  compared  with
experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid
solver for a realistic 3-D geometry on a non-hex-dominant grid. 

Introduction

The use of computational  fluid dynamics (CFD) to characterize the external  and internal  flows typical  of
hypersonic vehicles is extremely challenging due to the complex physical modeling required to compute these flows.
Nonetheless, over the past two decades, multiple CFD codes have been developed that are capable of computing these
types of flows [1,2,3,4]. With the notable exception of the VULCAN-CFD code, the codes developed have almost
exclusively  employed  unstructured  grid  methodologies.  For  the  most  part,  these  unstructured-grid  codes  provide
significantly improved geometric flexibility at the expense of increased computational overhead, usually in the form of
an increase in the number of processors required, relative to structured-grid codes.  To address this additional overhead,
there has been a concerted effort by the CFD community at large to develop unstructured grid codes that scale to
“many” thousands of processors so as to either enable computation of “Grand Challenge Problems” or to perform less
complex engineering analyses rapidly enough that they are relevant to engineering design time scales. Unfortunately,
most engineers still work in a computational environment having finite resources where many programs compete for
computational  access.  This  competition  naturally  creates  pressure  on  resource  managers  to  configure  their  batch
queuing software such that the time spent “in the queue” for jobs requiring “many thousands” of processors can become
untenable  from  an  engineering  design  point  of  view.  This  problem  is  further  exacerbated  in  restricted  access
computational environments because computational resources are usually severely limited by the nature of the work.
Moreover,  as the number of processors required to rapidly compute a single “design point” solution increases,  the
number  of  processors  available  to  compute  other  points  in  the  design  space  decreases  linearly,  thereby adversely
affecting the time required to cover the design space.

Historically,  the  development  strategy  for  the  VULCAN-CFD  code  has  been  to  develop  and  implement
solution methodologies that are efficient when computing the flows of interest to the scramjet community. This strategy
resulted in the development of a “multi-region” framework in VULCAN-CFD [5,6] wherein the user has the ability to
decompose the computational domain into multiple spatially-elliptic flow and/or parabolic/hyperbolic flow subdomains
or “regions” where the flow solution is computed using the algorithm most appropriate for the flow physics of each
region. To date, this multi-region framework, has been instantiated by solving the spatially-elliptic flow regions with a
structured-grid implicit time marching scheme and the parabolic/hyperbolic flow regions with a structured-grid implicit
space marching scheme . The issue of geometric complexity has been addressed via the use of multi-block curvilinear
structured grids within each region. However, when geometric complexity becomes too extreme, the time required to
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generate  the  structured  multi-block  curvilinear  structured  grids  can  become  prohibitive.  However,  given  the
aforementioned computational resource constraints and the maturation of unstructured-grid flow solution technology,
the incorporation an unstructured-grid spatially-elliptic  flow solver capability into the VULCAN-CFD multi-region
domain decomposition framework is desirable. Therefore, work to accomplish this goal was initiated utilizing a code
developed as part of a hybrid structured/unstructured grid NASA Research Award (NRA), funded by the Fundamental
Aeronautics Program, recently completed by North Carolina State University as described by Spiegel et al. [7,8]. 

The original intent of this paper was to describe and explore the use of this unstructured-grid spatially-elliptic
flow solver  within the multi-region  VULCAN-CFD framework.  However,  when state-of-the-art  non-hex dominant
unstructured  grids  were  generated  for  realistic  hypersonic  vehicle  geometries  and  simulated  at  “representative”
hypersonic flow conditions, numerical accuracy and robustness deficiencies as well as parallel scaling challenges were
exposed. Therefore, incorporation of the unstructured-grid spatially-elliptic solver into the multi-region framework was
temporarily deferred to allow the identified deficiencies to be addressed. These deficiencies were addressed through the
implementation of the best practices available in the literature for 2nd-order, cell-centered, finite-volume, unstructured-
grid flow solvers, namely;  1) constructing cell-average gradients by using a weighted expanded stencil linear least
squares  method  [9-11],  2)  reconstructing the  state  variables  to  the cell  faces  by using the  UMUSCL higher-order
extrapolation method of Burg  [12], 3) limiting the cell-average gradients used in the higher-order reconstruction by
using  a  multidimensional  limiting  processes  that  satisfies  a  multidimensional  maximum  principle  [13],  and  4)
constructing cell face gradients for the viscous fluxes by using face tangent schemes [11,14,15] as well as a cell-face
gradient construction scheme derived from analysis of a hyperbolic relaxation-system model for diffusion [16].

To improve convergence of the solver to steady state, the implicit scheme was rewritten to improve the left
hand side as compared to the approximations used by the original LU-SGS and matrix-free SGS schemes [7,11,17,18]
and  to  couple  the  partitions  during  the  linear  solve  subiterative  process.  These  improvements,  were  realized  by
developing an automatically differentiated 1st-order inviscid Jacobian (via modern FORTRAN's operator overloading
capability),  hand  differentiated  thin-layer  viscous  Jacobian  and  implicit,  automatically  differentiated,  boundary
conditions. In addition, inter-partition communication during the linear solve was added to improve coupling of the
partitions. Parallel scaling issues were addressed by rewriting/refactoring all code that did not scale well. Furthermore, a
novel  y+ adaptive turbulent wall boundary condition approach was also developed and implemented. This approach,
allows  the  turbulent  wall  boundary  condition  algorithm  to  choose  between  using,  a  solve-to-the-wall  or  a  wall-
matching-function  wall  boundary  condition,  for  each  wall  cell  face  based  on  the  local ywall

+ . Finally,  all
thermodynamic, chemical kinetic and turbulence models, as well as all relevant boundary conditions available in the
structured-grid  solver,  were implemented in  the unstructured-grid  solver.  Given the scope and magnitude of  these
changes, the current paper focuses on describing, the aforementioned numerical methods, algorithms, and techniques
that were used to discretize and solve the governing equations for a general turbulent thermo-chemical non-equilibrium
flow on realistic non-hex dominant unstructured grids. The resulting code is then  tested for simple high speed turbulent
flow unit problems as well as a realistic geometry at  flow conditions that are relevant to air-breathing high speed
vehicles [19]. 

Unstructured-Grid Solver Enhancements

Cell-Average Gradient Construction:

Cell-average  gradients  are  perhaps  the  most  important  and  one  of  the  most  difficult  quantities  to  obtain
accurately and robustly on irregular, unstructured grids. The cell-average gradients are required to accomplish three
things when computing the residual of the discrete equations for each time step/cycle of the solution process. These are:
1) to perform the higher-order reconstruction when computing the inviscid fluxes, 2) to compute the cell-face gradient
when computing the viscous fluxes, and 3) to compute the source terms for the turbulence modeling transport equations.
Moreover, there is evidence in the literature that a different definition of the cell-average gradient may be required to
compute each of these quantities [11]. The NRA-developed code used a Green-Gauss method to compute the cell-
average gradient of a scalar, q for each cell i, ∇ qi . and used this cell-average gradient for the three purposes described
above.  For a  2nd-order  accurate,  cell-centered scheme,  with midpoint  quadrature,  the Green-Gauss method has  the
following discrete form
 

∇ qi=
1
V i

∑
f =1

N f

q f n̂ f A f . (1)
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Where f is the cell-face midpoint, V i is the cell volume, q f is the average of q over face f, N
f
 is the number of faces,

and n̂ f and A f are  the  cell-face  unit  normal  vector  and  cell-face  area,  respectively,  as  illustrated  in  2-D  on  a
triangular grid in figure 1. 

If q f is  known  analytically then  this  form  is  linear  exact.  However,  significant  errors  can  be  introduced  when
computing q f . Depending on the manner in  which q f is  computed,  the resulting approximation of ∇ qi can be
consistent and 2nd-order accurate or 0th-order accurate and therefore inconsistent.  In the NRA supplied code the method
used to compute q f , was an inverse distance weighted average of the face neighbors of the cell-average variables, q

i

and q
j
, to the cell face midpoint, f , of the form

q f =
(d jf qi+ d if q j)

(d jf + d if )
(2)

where d if =∣r⃗ f −r⃗ i ∣ is the magnitude of the vector drawn from cell center i to cell face midpoint (see figure 2), d⃗ if .
Unfortunately, the literature clearly demonstrates that this approach to the computation of q f results in a Green-Gauss

gradient that is both inconsistent and 0th-order accurate except on completely regular grids where d⃗ if and d⃗ jf are
colinear [10]. 

While no cell-average gradient method has been found to be accurate for all arbitrary polygons, with some
caveats [10], the weighted linear least squares method has been found to be the preferred method when computing cell-
average  gradients  [9,10]  for  both node-centered  and  cell-centered  schemes.  Therefore,  based on the  results  in  the
literature [9,10,11], the weighted linear least squares method was chosen to replace the Green-Gauss method. A 3-D
weighted linear least squares method can be constructed to compute a cell-average gradient of a scalar, qi , for cell i
given a stencil consisting of some combination of the surrounding cells,  j=1 through N

jstencil 
, The smallest possible 2-D

stencil is shown in figure 2. A least squares fit for the cell-average gradient can be written as

∇ qi={∑
k=1

3

( ∂ q
∂ xk

) l̂ k }
i

={∑
k=1

3

[ ∑
j =1

N jstencil

C j ,k (q j−qi)] l̂ k }i
(3)

where C j , k are the least squares coefficients for each cell of the stencil and l̂ k are the components of the Cartesian
unit vector. The coefficients for an inverse distance weighted least squares cell-average gradient are computed for each
cell in the stencil with the expression

C j ,k =∑
m=1

3

{Lk , m
−1 [(d ij)

1
ωng ]2 d⃗ ij, m} (4)

Figure 1: Green-Gauss cell-average
gradient terminology.
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where Lk ,m are elements of the L matrix given by

Lk , m=∑
j=1

N j

[(d ij)
1

ωng ]2 d⃗ ij ,k d⃗ ij ,m (5)

and 1
ωng

is the inverse distance weighting coefficient, d⃗ ij=r⃗ j−r⃗ i is the Cartesian vector drawn from cell center  i to

cell  center  j,  d⃗ ij, k and  d⃗ ij ,m are the Cartesian components  of d⃗ ij and d ij= ∣⃗r j−r⃗ i∣. It  is  important  to note that
examination of equations 4 and 5 reveal that the coefficients are only a function of the number and location of the
stencil members. Therefore, if the grid is static, i.e., the grid point coordinates and their connectivity do not change with
respect to each residual evaluation, then C j , k may be precomputed and stored. Furthermore, in the spirit of [11], the
weighted linear least squares method implemented allows one to define ng<=3 inverse weight coefficients for use by the
inviscid  flux,  viscous  flux  and  turbulence  source  terms.  Currently,  based  on  numerical  experimentation,  ng=2  is
recommended, with inverse weight coefficients of 0.0, for the inviscid flux, and -1.0 for the viscous flux, and turbulence
source terms. However, the number and size of these coefficients is subject to revision as more experience is gained
using the code over a broader range of flows.

The stencil of the linear least squares average gradient operator must have at least 3 participating cells in 2-D
and at least 4 cells in 3-D to be well posed.  This condition can be met using a face neighbor cell stencil,  fn1 as
illustrated in the 2-D example shown in figure 3. However, on highly skewed grids the fn1 stencil may become biased
and give rise to instabilities [9-11]. Fortunately these instabilities can be alleviated by augmenting the stencil to reduce
or eliminate the bias. Two approaches have been considered to address this problem. The first approach is to augment
the fn1 stencil cells with all of the cells that share a face with the cells of the fn1 stencil, resulting in a face neighbors of
face neighbors stencil, fn2. The second approach is to augment the fn1 stencil with all the cells that share a node with
the nodes of cell i, resulting in the node neighbors stencil, nn shown in figure 3. To date, only the fn2 stencil has been
implemented due to it being the most straightforward to accomplish using existing data structures in the code. However,
as illustrated in figure 3, the fn2 stencil can result in gaps in the stencil that do not exist in the nn stencil.  Furthermore,
note that in 2-D on triangular grids, the  fn2 stencil is a subset of the  nn stencil, while the converse is true when on
quadrilateral grids, i.e., the nn stencil is a subset of the fn2 stencil. Also note that figure 4 illustrates that the nn stencil is
more spatially compact than the fn2 stencil for hexahedral grids, and by analogy, prismatic grids. In 3-D, the nn stencil
on hexahedral and prismatic grids is also not a subset of the fn2 stencil. The downside of using the nn stencil in 3-D is
that  there  will  usually be  more  cells  in  the  nn stencil  than in  the  fn2 stencil  thereby requiring more  storage  and
operations to compute the gradient. However, due to the possible existence of gaps in the fn2 stencil and the 3-D spatial
compactness of the nn stencil, the nn stencil will be implemented in the code in the near future.

Figure 3: The fn2 and nn least squares stencils for computing the cell-average gradient on a triangular grid.
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Figure 4: The fn2 and nn least squares stencils for computing the cell-average gradient on a quadrilateral grid. 
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Inviscid Flux Cell Face State Variable Reconstruction:

The inviscid fluxes in the unstructured-grid solver are computed using an upwind flux scheme. Currently either
the LDFSS [21] or the HLLC scheme [22] can be selected. Both of these schemes require that the primitive variables, q,
be specified on the left (L) and right (R) sides of the cell face midpoint, f, as shown in figure 5. The primitive variables
are

q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v ,w , P , k ,ω)  for thermal equilibrium, or

q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v , w , eve , P , k ,ω) for thermal nonequilibrium 

A  1st-order accurate scheme results if the cell-average values to the left,  (i) and right, (j) are used. A higher-order
accurate scheme results  when the  L and  R primitive variables  are reconstructed to  the cell  face midpoint  with an
extrapolation or interpolation method based on the left and right cell-average primitive variables and gradients as given
by

q f
L=qi+ ∇ qi ⋅r⃗ if (6)

 q f
R=q j+∇ q j ⋅r⃗ jf . (7)

In addition to the scheme above, which is an unstructured-grid interpretation of Fromm's scheme [23], the higher-order
variable extrapolation (or UMUSCL) reconstruction scheme [8], was also implemented to reduce the dissipation of the
scheme further. The UMUSCL scheme can be written as

q f
L =qi+

χ
2

(q j−qi)+ (1 − χ)∇ qi ⋅r⃗ if (8)

q f
R=q j+

χ
2

(q i−q j)+ (1− χ)∇ q j ⋅r⃗ jf (9)

where χ is used to control the behavior and the 1-D order of accuracy of the scheme when the flow is smooth.

1. χ =     0,  gives Fromm's scheme
2. χ =   -1,  gives a 2nd-order fully upwind MUSCL-type scheme
3. χ = 1/3,  gives a 3rd-order upwind biased MUSCL-type scheme

Inviscid Flux Cell-Average Gradient Limiter Construction:

When computing high speed flow, discontinuities will usually exist somewhere in the computational domain.
However, in the vicinity of these discontinuities, the higher-order reconstruction of the state variables to the cell face
used to achieve 2nd-order accuracy of the inviscid flux scheme will produce oscillations in the flow solution that will
eventually cause the computation to fail. These oscillations can be suppressed by locally forcing the reconstruction to be
1st-order through the use of some sort of gradient limiter. A gradient limiter can be implemented in two different ways
for the UMUSCL scheme, with a 1-D “face” based limiter approach or a multidimensional “stencil” based limiter
approach. A face-based limiter for the UMUSCL scheme can be written as

q̃ f
L =qi+ χ β̃L+ (1− χ)α̃L

(10)

q̃ f
R=q j+ χ βR+ (1− χ)αR

(11)

where the limited left and right gradients, α̃L , R and β̃L , R are

Figure 5: Higher-order reconstruction of the L and R states to the cell face midpoint.

j

i
L R
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α̃L , R= F (α L , R ,βL , R)(limiter) and β̃L , R=F (βL , R ,αL , R)(limiter )

the unlimited left and right 1-D gradients αL , R and βL ,R are

αL=∇ q i ⋅r⃗ if and βL= 1
2

(q j−qi) (12)

αR=∇ q j ⋅r⃗ jf and βR= 1
2

(qi−q j) (13)

and, in the case of the van Leer limiter [24]

 F (Δ 1 ,Δ 2)(van Leer )=
(Δ 2∣(Δ 1)∣+ Δ1∣(Δ 2)∣)
(∣(Δ1)∣+∣(Δ 2)∣+ ϵ)

(14)

where ϵ is  on the order of 1.0x10-12.  While the face-based scheme has been found to be reasonably effective on
smooth hexahedral grids, its effectiveness deteriorates on truly unstructured grids. Therefore, two stencil-based limiters
were implemented. The first method is a generalization of the approach used to form stencil-based gradient limiters by
Barth and Jesperson [25] and later by Venkatakrishnan [26]. The second method is the multidimensional limiter process
(MLP) of Park and Kim [13]. Both of these approaches are referred to as stencil-based limiters herein because they use
information from all of the cells that make up the stencil that was used to compute the cell-average gradient. Figure 6
presents the cells involved in the fn2 stencils used to compute the limiter coefficients in cells i and j, where the cells
labeled i

s
 and j

s
 only participate in the i and j cell stencils, respectively, and cells labeled i

s
,j

s
 are cells that participate in

both cell stencils. These stencil-based limiter approaches compute cell-limiter coefficients that are used to

limit the higher-order reconstruction that, when applied to the UMUSCL higher-order reconstruction scheme, results in
equations for the left and right states having the form

q̃ f
L=qi+ Φi(qi)[

χ
2

(q j−qi)+ (1− χ)∇ qi ⋅r⃗ if ] (15)

  q̃ f
R=q j+ Φ j(q j)[

χ
2

(qi−q j)+ (1−χ) ∇ q j ⋅r⃗ jf ] (16)

where Φ i(qi) and Φ j (q j) are the cell-limiter coefficients that are used to limit the reconstruction consistently for all
faces of the cells i and j, respectively. Figure 7 presents the fn2 stencil cells that participate in the computation of the
cell 

   

Figure 6: The cells that participate in the construction of the fn2 stencil-based 
limiter coefficients used to  reconstruct data to the face shared by cells i and j.
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i limiter coefficient, Φi (qi) . The methods of [25] and [26] compute the cell limiter coefficients for each cell, i, using

Φi(qi
fn2)=min (1, {ϕ f (

q i
max ( fn2)−q i

q f−q i

) , if (q f −qi)> 0

ϕ f (
q i

min( fn2)−q i

q f−q i

) , if (q f −qi)< 0

1 if (q f −qi)=0
} ) , f =1 → N i , faces (17)

where qi
max( fn2) and qi

min( fn2) are the maximum and minimum values of q of the fn2 stencil cells respectively and q f is
computed at each cell face midpoint by using the unlimited form of UMUSCL 

q f =qi+
χ
2

(q j−qi)+ (1− χ)∇ qi ⋅r⃗if (18)

where the value of χ is consistent with the value used in equation 15. The face-limiter coefficient, ϕ f , is computed
using a generalization of the form used in [25] and [27]

ϕ f (
b
a

)=
F (a ,

b
2

)
(limiter)

a
(19)

where, F (a ,
b
2

)
( limiter)

, can be any limiter function found in the literature.  For example, [25] used the minmod function

whereas [26] used a modified form of the van Albada function [27]. Currently VULCAN-CFD allows the use of the
Sweby [30], van Leer [21], van Albada, Venkatakrishnan [26], and Koren [29] limiter functions consistent with the
structured-grid  solver.  However,  while  we have  found that  this  stencil-based  limiter  approach  improves  the shock
capturing capability of the code significantly compared to the face-based limiter approach, some oscillations can still
occur in the vicinity of the very strong shocks, such as found near blunt bodies. For these flows, Φ i(qi

fn2) requires
further augmentation via a heuristic pressure limiter such as proposed by Gnoffo [30]. 

Adding heuristic limiters, such as the aforementioned pressure limiter, has the potential to adversely affect the
flow solution by adding too much dissipation where it is not needed,  e.g., in shock boundary layer flows where the
physical  viscosity  should  prevent  oscillations  from occurring  such  that  the  pressure  limiter  is  no  longer  needed.
Therefore, as mentioned previously, the multidimensional limiter procedure (MLP) of Park and Kim [13] has also been
implemented in an attempt to further improve the discontinuity capturing capability and robustness of the unstructured-
grid solver near strong shocks, while reducing limiting and thus dissipation in the vicinity of shock boundary layer
interactions. The MLP limiter is a stencil-based limiter that also attempts to “define and implement monotinicity in
multi-dimensions” by strictly enforcing the maximum principle. Park and Kim state that the central premise of MLP is
to “control the distribution of both cell center and cell node physical properties to mimic the multidimensional nature of
the  flow  physics.”  They  state  that  this  can  be  accomplished  based  on  the  observation  that  a  well  controlled
reconstruction  of  the  cell-centered  solution  to  the  nodes  can  be  used  to  construct  a  limiting  process  that  is  both
multidimensional and monotone. For a detailed discussion of the mathematical proof of this concept see [12]. 

The implementation of the MLP approach proceeds in a manner similar to that of the previously described
stencil-based limiting approach with the key difference being that the construction of the cell limiter coefficient uses a
reconstruction of the solution to the cell nodes instead of to the cell face midpoints. Figure 8 illustrates the nn stencil
cells and nodes that participate in the computation of the cell i, MLP

nn
 “node-based” limiter coefficient, Φ i(qi

MLPnn).

Figure 8: The nn stencil cells and nodes that participate in the 
construction of the MLP nn limiter coefficients for cell i where N 

i, nodes
 = 3.
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This results in equation 17 being split into two equations

Φi(qi
MLP nn)=min(1, [Ψi ,n

nn (qi , n) , n=1 → N i , nodes ]) (20)

and

   [Ψ i , n
nn (q i , n)=min(1, {ϕi , n(

q i , n
max(ncn)−qi

qi ,n−q i

) ,if (qi ,n−q i)> 0

ϕi , n(
qi , n

min(ncn)−qi

qi ,n−q i

) , if (qi , n−q i)< 0

1 if (q i , n−qi)=0
} )] , n=1→ N i ,nodes , (21)

resulting in Φ i(qi
MLPnn) , being computed in two steps: 1) the cell node limiter coefficient, Ψi , n

nn (qi , n) , is computed at
each node, n, that is a vertex of cell i, (equation 21) and 2) the cell-limiter coefficient is computed as the minimum of
those cell node limiter coefficients (equation 20). In equation 21 the quantities, qi , n

max(ncn) and qi , n
min(ncn) are the maximum

and minimum values of the node cell-neighbor stencil, ncn, illustrated in figure 9, and qi , n is the  reconstruction of q to

each node, n, of  cell, i,  based on an unlimited form of Fromm's scheme, i.e., 

q i , n=qi+ ∇ qi ⋅r⃗ i n (22)

where ϕ i , n , is computed at each node, n, of cell i,  by using equation 19, instead of at each face midpoint, f, of cell i.

However, since Φ i(qi
MLPnn) was derived to use the nn stencil, which is not currently implemented in the code, it  has

been modified for use with the fn2 stencil, Φ i(qi
MLP fn2) , as illustrated in figure 10,

where the terms qi , n
max(ncn) and qi , n

min(ncn) of equation 21 have been replaced with qi
max( fn2) and qi

min( fn2) respectively, to
yield

Φi(qi
MLP fn2)=min(1,[Ψ i ,n

fn2 (qi , n) , n=1 → N i , nodes ]) (23)

Figure 9: The node cell-neighbor stencil of cells sharing
the n=1 node  used to compute qi ,1

max(ncn) , qi , 1
min (ncn).
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[Ψ i , n
fn2(qi ,n)=min(1, {ϕi ,n(

qi
max( fn2)−qi

q i , n−qi

) ,if (qi ,n−q i)>0

ϕi ,n(
q i

min( fn2)−qi

q i , n−qi

) ,if (qi ,n−q i)<0

1 if (qi ,n−q i)=0
} )] , n=1→ N i , nodes . (24)

The resulting gradient limiter approach of equations 19, 23, and 24, while not a strict implementation of the Φ i(qi
MLPnn )

limiter, has been found to be much more robust than the face-based limiter originally supplied by the NRA and less
dissipative then the heuristic pressure limiter augmented stencil-based limiter approach of equations 19, 20, and 21.

Viscous Flux Cell Face Gradient Construction:

The computation of the viscous flux requires that the cell-face average of the primitive variables be computed,
where the primitive variables in this case are 

q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v , w , T , k ,ω)  for thermal equilibrium, or

q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v ,w ,T ve ,T , k ,ω) for thermal nonequilibrium 

as well as the cell-face average gradient ∇ q f . Hasselbacher [31] observed that computing ∇ q f as a simple average
of the face neighbor cell-average gradients, i.e.,

∇ q f =
(∇ q i+ ∇ q j)

2
(25)

leads  to  odd-even  decoupling causing him to introduce  face-derivative  augmentation.  Hasselbacher  suggested  two
methods to accomplish this augmentation: the so-called, edge-normal (EN) and face-tangent (FT) cell-face gradient
methods. More recently, Nishikawa [16] has suggested a new approach where the Hasselbacher's augmentation terms
are shown to be analogous to damping terms. Nishikawa discretized a hyperbolic model for diffusion with an advection
scheme, and derived a novel scheme for diffusion from the result. The resulting hyperbolic diffusion scheme, has a form
that is very similar to the face-tangent augmented cell-face gradient method, and has a guiding principle based on the
observation that the discretized scheme, being hyperbolic, can be treated using the formalisms developed to upwind the
inviscid flux terms. The use of these upwinding formalisms, in turn, leads to a method in which damping terms arise
naturally thereby resulting in a scheme that  is  consistent,  damps high-frequency errors,  and can be made 2nd-order
accurate when applied to a cell-centered, finite-volume scheme. The edge-normal augmented cell-face gradient method
is the method originally implemented in the NRA-supplied code.   However, when the edge-normal and face-tangent
augmented cell-face gradient methods were studied in [11,15,16], the face-tangent method was found to be preferable to
the edge-normal method. Moreover, in [11], the observation was made that, in many cases, a converged solution could
only be obtained when the face-tangent augmented face-gradient method was used. However, insight can be gained by
comparing the edge-normal, face-tangent and hyperbolic-reconstruction cell-face gradient methods. Therefore, for the
sake  of  completeness,  the  edge-normal  method  is  also  described.  The  edge-normal  augmented  cell-face  gradient
method, as defined by Hasselbacher, is

∇̂ q f
EN =∇ q f −[∇ q f ⋅ê ij −

(q j−q i)
∣⃗e ij∣

] êij (26)

where, referring to figure 2, e⃗ij is a vector drawn from cell-center i to cell-center j and ê ij is its unit vector. The face-
tangent  augmented cell-face gradient method, as defined by Hasselbacher, is

∇̂ q f
FT =∇ q f −[∇ q f ⋅̂e ij −

(q j−qi)
∣⃗e ij∣

](
n̂ f

n̂ f ⋅êij

) . (27)

As mentioned above, Nishikawa considered the augmentation terms (the bracketed terms in equations 26 and 27) to be
damping terms, and further observed that the face-tangent method damping term leads to a more robust scheme on
highly skewed meshes due to the dependence on 1 /(n̂ f ⋅̂e ij). The increased robustness results from the fact that as
skewness  increases, n̂ f ⋅̂e ij decreases,  thereby  increasing  damping.  When  Nishikawa's  hyperbolic  diffusion  based
approach is applied to a cell-centered, finite-volume scheme, it results in a hyperbolic, reconstruction (HR) based cell-
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face-gradient  method that  includes  a  damping term that  arises  naturally due  to  an  upwind method being used  to
discretize the construction of the cell face gradient.  This hyperbolic-reconstruction based cell-face gradient method has
the form 

∇̂ q f
HR=∇ q f + α(

n̂ f

∣⃗e ij ⋅n̂ f∣
) (q f

R−q f
L) (28)

where α is a damping coefficient and q f
L and q f

R are the left and right higher-order-reconstructed viscous face
state variables. These state variables are reconstructed using Fromm's scheme where

q f
L=qi+ ∇ qi ⋅r⃗ if (29)

q f
R=q j+∇ qi ⋅r⃗ jf . (30)

Recently Jalai et al. [32] analyzed the stability and accuracy of nine cell-centered, finite-volume, cell-face gradient
methods and reported that Nishikawa's scheme, with α=4 /3 , was the preferred scheme for computing the cell-face
gradient, based on stability and accuracy analyses.

Implicit Scheme Enhancements:

 The implicit schemes implemented in the NRA-supplied code were a point-implicit LU-SGS scheme and a
point-implicit, matrix-free version of the symmetric Gauss-Seidel scheme (SGS) [18]. Testing subsequent to receiving
the code revealed that while the scheme converged reasonably well on some inviscid flow problems, convergence and
robustness were poor for hypersonic turbulent flow problems. Therefore, three changes were made to the implicit solver
to  improve  its  convergence  rate  and  robustness.  First,  the  linearization  of  the  inviscid  and  viscous  fluxes  were
improved. The LU-SGS scheme and the matrix-free SGS schemes both linearize the inviscid and viscous fluxes by
approximating  their  Jacobians  with  their  respective  spectral  radii.  Second,  implicit  boundary  conditions  were
implemented using an operator-overloaded implicit boundary condition methodology, and third, partition coupling was
introduced by introducing inter-partition communication of the provisional updates between the forward sweeps of the
L and backward sweep of the U resulting in a data-parallel version of the matrix-free and matrix-based SGS schemes.
The derivation of the LU decomposition begins with writing the delta form of the backward Euler implicit scheme for
solving the governing equations as 

Ai
n Δ Qi

n= Ri (31)

where Ri is the discrete steady state residual, Ai is the Jacobian and Δ Q i
n the update are defined as

Δ Q i
n=Q i

n+ 1−Qi
n

(32)
and 

A=
V i

Δ ti

I−(
∂ R i

∂Q
) (33)

and the steady state residual for a face-based data structured of a cell-centered scheme is the sum over the faces (ij) that
define cell i 

Ri=∑
j

F ij . (34)

A can be decomposed into the sum of lower (L), upper (U) and Diagonal (D) matrices

A= L+ U + D (35)
where

L=−∑
j

(
∂ F ij

∂Q i

) , D=[
V i

Δ ti

I +∑
j

(
∂ F ij

∂Qi

)] , U =∑
j

(
∂ F ij

∂ Q j

). (36)

The derivation of the matrix-based and matrix-free versions of the SGS scheme are discussed in detail in [18] but we
summarize here that the kth subiteration of the matrix-based form of the SGS scheme is written as a forward sweep of

Δ Qi
k+1 / 2= (D+ L)−1[ Ri−U Δ Qi

k ] (37)

followed by a backward sweep of
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Δ Qi
k+1= (D+U )−1[Ri−L ΔQ j

k +1/ 2] . (38)

Whereas the  kth subiteration of the matrix-free form of the SGS scheme is written as

Δ Q i
k+ 1 /2=Di

−1[ Ri−
1
2 ∑

j : j ∈L i

(Δ F j
k + 1 / 2−λ ij Δ Q j

k + 1/ 2) sij−
1
2 ∑

j : j∈U i

(Δ F j
k−λij Δ Q j

k )s ij] (39)

followed by a backward sweep of

Δ Q i
k+ 1= Di

−1[Ri−
1
2 ∑

j : j ∈L i

(Δ F j
k+ 1−λij Δ Q j

k+ 1)sij−
1
2 ∑

j : j ∈U i

(Δ F j
k+ 1 /2−λ ij Δ Q j

k + 1 / 2)s ij ] (40)

where λ ij , is the sum of the spectral radii of the inviscid and viscous fluxes at the cell face between cells i and j, and

Δ F j
k , Δ F j

k+1 /2 , and Δ F j
k +1 are generally referred to as “flux increment” terms.  These flux increment terms are

defined in [18] as

Δ F j
k+ 1/ 2=F (Qk + Δ Qk + 1 /2) −F (Q k ) (41)

Δ F j
k+ 1=F (Qk + 1 / 2+ Δ Q k+ 1) −F (Qk + 1/ 2) (42)

Therefore, the kth subiteration of the matrix-free SGS scheme only requires the spectral radii of the inviscid and viscous
fluxes  and the diagonal of the flux Jacobian, thereby allowing the scheme to be matrix-free and making it inexpensive
from a storage and, in its calorically perfect gas form, operation count perspective. However, the flux increment terms
must be computed after each forward and backward sweep, which adversely affects the cost of the matrix-free approach
when computing calorically imperfect flows. When solving a flow where the gas is modeled as  calorically perfect, the
cost of computing the flux increment terms is not onerous. However, when solving a flow where the gas is modeled as
calorically imperfect, the thermodynamics of the provisionally updated solution after the forward and backward sweep
must be computed prior to computing the flux increment terms. The cost of this thermodynamics variable update, which
occurs twice per iteration, is large due to the Newton solve used to update the static temperature. Moreover, the spectral
radii approximation of the flux Jacobians was found to be the root cause of the poor convergence and robustness of the
matrix-free scheme. Therefore, the spectral-radius-based 1st-order inviscid flux Jacobian was replaced with an exact
linearization of  a  1st-order  inviscid flux  derived  using automatic  differentiation (via modern  FORTRAN's  operator
overloading capability) and the spectral-radius-based viscous flux Jacobian was replaced with a hand linearization of a
thin-layer Navier-Stokes approximation of the viscous flux to form a matrix-based SGS scheme. The end result of these
modifications was a significant net win for the matrix-based SGS scheme. This occurred for two reasons: 1) a cost
reduction of the matrix-based SGS scheme realized, by taking advantage of the requirement that the flux Jacobians must
be stored, by updating the flux Jacobians periodically based on an update frequency algorithm rather than every time
step/cycle and 2) the elimination of the need to compute the flux increments twice for each subiteration of the SGS
scheme for every time step/cycle. The Jacobian update frequency algorithm  decreases the frequency of the evaluation
of the flux Jacobian as a function of convergence of the steady-state residual. In addition, implicit boundary conditions,
also based on operator-overloading automatic differentiation, were implemented and semi-implicit partition coupling
was  introduced  through  inter-partition  communication  of  the  provisional  updates  after  the  forward  and  backward
sweeps of the SGS scheme.

Physical Modeling Extensions:

The unstructured-grid solver delivered at the conclusion of the NRA contained a subset of  the thermodynamic,
transport,  chemical  kinetic  and  turbulence  modeling  capabilities  available  in  the  structured-grid  solver.  However,
because the unstructured-grid solver was written such that it shares all of the source term routines with the structured-
grid solver, only minor modifications were required to make the additional chemical kinetic and turbulence models
operational. However, because the thermal nonequilibrium capability did not exist in the structured-grid solver when the
code was provided to to the NRA contractor, more extensive modifications were required to add that capability into the
unstructured-grid solver. 

y  +   Adaptive Turbulent Wall Boundary Condition:

The current state-of-the-art of commercial unstructured grid generation tools provides the user limited control
of the spatial variation of the wall normal distance from the 1st-interior grid point to the wall. This can be problematic
when dealing with viscous  flows around geometries  having large  scale disparities.  Hypersonic  vehicle  geometries
typically have small-scale features, such as the diameter of a blunt leading edge, that require a wall-normal grid spacing
that may be orders of magnitude smaller than at other locations in the grid. Therefore, the grid generation tool user is
faced with a conundrum where they need to specify a wall spacing that is sufficient to adequately resolve wall shear and
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heat transfer near the small scale features without drastically over resolving the wall flow in other locations. Turbulent
flows exacerbate this problem because the turbulence model solve-to-the-wall  boundary conditions require a  wall-
normal grid spacing that result in a ywall

+ <= 2.5 from a solver robustness point of view and <= 1.0 from an accuracy

point of view. This maximum allowable ywall
+ requirement can be alleviated by employing a wall-matching-function

boundary condition [33], which extends the allowable ywall
+ into the log-law range. However, if a grid has a ywall

+ that

varies from viscous sublayer to log-law values, the wall-matching function will become inaccurate where the ywall
+ is

within the viscous sublayer and the solve-to-the-wall boundary condition will become inaccurate, and possibly unstable,
where the ywall

+ is bigger than 2.5. However, the usable ywall
+ range for the wall-matching-function boundary condition

was extended in the VULCAN-CFD code by blending viscous sublayer behavior velocity behavior,   u+=y+, with the
log-law such that the resulting wall-matching function does a reasonable job for ywall

+ > 2.5. However, for ywall
+ < 2.5,

it is still preferable to use a strict solve-to-the-wall boundary condition. Therefore, a y+ adaptive turbulent wall boundary
condition methodology was developed and implemented in the structured-grid and unstructured-grid solvers, which
switches between solve-to-the-wall and wall-matching-function boundary conditions depending on the ywall

+ of each
wall  cell.  This capability is realized using a 2 step process.  The first  step enforces the solve-to-the-wall  boundary
condition for a given wall cell computing the ywall

+ based on the current wall tangent velocity, wall molecular viscosity

and wall density. If the resultant ywall
+ is < 2.5, then the wall cell is tagged as a solve-to-the-wall cell, if ywall

+ >= 2.5,
then that wall cell is tagged as a wall-matching function cell. The second step then solves the wall-matching function
for all  the cells that were tagged as wall-matching-function cells also computing the wall face shear stress, the wall heat
flux, as well as the wall adjacent cell center turbulent kinetic energy and the turbulent specific dissipation rate.

Results and Discussion

The unit test cases to follow involve the computation of turbulent high speed flow over a flat plate. These flat
plate cases were computed using the unstructured-grid solver for Mach 6, Mach 2 and Mach 2.91 conditions. The Mach
6 condition will  be used to  examine the convergence behavior  of  the implicit  scheme and to make some general
recommendations as to how the implicit scheme should best be configured for solving turbulent high speed flow.  The
Mach 2 case is intended to demonstrate and examine the solver's ability to compute turbulent boundary layer flows on
mixed cell  type prismatic unstructured grids when using a solve-to-the-wall  boundary condition by comparing the
computed  results  with  the  turbulent  law-of-the-wall.  The  Mach  2.91  flow turbulent  flat  plate  case  is  intended  to
demonstrate  and compare  turbulent  boundary layer  flow computed  using the y+ adaptive  turbulent  wall  boundary
condition with the turbulent law-of-the-wall. The simulation of the flow through a realistic scramjet related geometry at
representative conditions will then be performed for the 75% scale HIFiRE 7 Rectangular to Elliptic Shape Transition
(REST) scramjet engine flow path that was free jet tested in the University of Queensland (UQ) T4 shock tunnel [19].
This computation will be performed for the zero degree angle of attack tare case only. The computed static pressure
distributions on the body and cowl walls will be compared with the experimental data. 

Testing of  the inviscid and viscous flux enhancements  as  well  as  the  implicit  scheme improvements  was
performed for thermally perfect and calorically perfect turbulent flows over a flat plate using a mixed cell type grid. In
addition, testing of the y+ adaptive turbulent wall boundary condition was performed for Mach 2.91 calorically perfect
turbulent flow over a flat plate using a hexahedral grid. Figure 11 presents the unstructured grid generated for a 0.455‒
meter flat plate that was used to test the convergence behavior of the implicit scheme and to validate the unstructured-
grid solver against the turbulent boundary layer law-of-the-wall. This grid was a mixed cell type grid that had 227,500
cells consisting of a mixture of 59,112 tetrahedra, 1283 pyramids, 167,079 prisms and 0 hexahedra. 
Implicit Scheme Enhancements:

Figure 11: Unstructured grid used for the Mach 6 and Mach 2 turbulent flat plate test cases, and the axial
station of the boundary layer profile extraction used for comparison with the turbulent law-of-the-wall.

In Flow 
B.C.

No-slip Wall B.C.

Extrapolation
 B.C.

Extrapolation B.C.
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The enhancements to the implicit  scheme were tested by computing thermally prefect,  chemically frozen,
turbulent flow of air over a flat plate with freestream conditions of, Mach 6, static pressure, P ref =2100.0 Pascals ,

static temperature, T ref =63.01 Kelvin , and unit Reynolds number, Reref =2.64 x107 / m with the wall treated as an
isothermal (335.83  Kelvin), no-slip, solve-to-the-wall boundary condition. The governing equations were solved in a
fully coupled manner, with local time stepping and the CFL number being linearly varied from 0.1 to 250 over time
steps 1 to  500.  The Wilcox  (1998) k −ω two-equation turbulence model [34] was used to  compute the Reynolds
stresses and Reynolds heat flux (Pr

t
=0.9). The cell-average gradients were computed using weighted linear least squares

with the fn2 stencil. The inviscid fluxes were computed using the LDFSS scheme with the higher-order cell-face states
being  computed  using  UMUSCL, κ=1 /3, with  the  cell-average  gradients  limited  using  the Φ i(qi

MLP fn2) gradient
limiter and the van Leer function. The viscous fluxes were computed using the Nishikawa cell-face gradient method.
Convergence was achieved by “freezing” the gradient limiter after 200 time steps or  once the residual L

2
 norm had

dropped 4 orders of magnitude to prevent convergence stalling due to limiter “ringing”. The computations were stopped
when the residual L

2
 norm had dropped 12 orders of magnitude. Three studies were performed. The first study used a 6

partition decomposition of the grid to compare the matrix-free SGS scheme without implicit boundary conditions with
the matrix-based SGS scheme with implicit boundary conditions. The second study also used the same number of
partitions to examine the dependence of the convergence rate on the number of linear-solve subiterations for the matrix-
free SGS without implicit boundary conditions and the matrix-based SGS scheme with implicit boundary conditions.
The third study used 1, 2, 4, 8, 16 and 24 partition decompositions of the grid to compare the effectiveness of the
matrix-based SGS scheme with inter-partition coupling in reducing the sensitivity of the convergence behavior to the
number of partitions.

Figure 12 presents  a  comparison of  the convergence between the matrix-free SGS scheme,  using explicit
boundary conditions,  labeled Matrix  Free,  and the  matrix-based SGS scheme,  using implicit  boundary conditions,
labeled Matrix Based. Four subiterations of the linear-solver were run for both schemes. This number of subiterations
was chosen because that was the maximum number that the matrix-free SGS scheme handle without diverging. Figure
12 shows that the matrix-based SGS and implicit boundary condition combination resulted in a speed up factor of 2.6 in
terms of time steps/cycles and 4.9 in terms of CPU time over the matrix-free SGS scheme. The iterative speed up was
due to the improved convergence rate provided by the improved approximation to the flux Jacobian of the matrix-based
SGS scheme and the CPU time improvement is due to the elimination of the thermodynamic and transport property
evaluation required by the flux increment in the matrix-free SGS scheme, and by taking advantage of the Jacobian
“freezing” that is possible with the matrix-based SGS scheme. 

The effect of increasing the number of linear solve subiterations for the matrix-based SGS scheme is presented
in figure 13. Remembering that the matrix free SGS scheme was unstable for when more than 4 subiterations were
applied, figure 13 shows that the matrix-based SGS scheme has no such limitation and that increasing the number of
subiterations improved the convergence rate for values up to 15.

The dependence of the convergence rate of the matrix based SGS scheme, with inter-partition coupling, on the
number of partitions for a fixed number of linear solve subiterations (in this case 10) is shown in figure 14. The figure
shows that convergence slowly degraded as the number of partitions increased. Figure 15 presents the 24 CPU/partition
case run with 10, 15, 20 and 25 subiterations, demonstrating that increasing the number of subiterations improves the
convergence rate during the latter portion of the solution process. Furthermore, it is important to note that when the 4, 8,
16 and 24 CPU/partition cases were run without linear solver inter-partition coupling, the matrix-based SGS scheme
became unstable for 8 or more partitions. This demonstrates that inter-partition coupling stabilizes the matrix-based
SGS scheme.

Figure13: The effect of the number of linear solve 
subiterations on convergence rate when using the 
matrix-based SGS scheme.

Figure 12: Convergence improvement due to the improved 
inviscid and viscous jacobian approximations and adding 
implicit boundary conditions.

4 subiterations
6 subiterations
10 subiterations
15 subiterations
20 subiterations

Matrix Free, 4 subiterations
Matrix Based, 4 subiterations
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Based on the results shown in figures 13-15, 10-15 coupled linear solve subiterations are recommended to
obtain a robust matrix-based SGS scheme when parallel processing. However, because figure 15 also indicates that
sensitivity to the number of partitions remains during the initial part of the solution process, the implementation of a
multi-color Gauss-Seidel scheme similar to the implementation found in FUN3D [35] should be considered.

Comparison of a Mach 2 Turbulent Flat Plate Solution With the Turbulent Law-of-the-wall:

The unstructured mixed cell type grid shown in figure 11 was also used to simulate calorically perfect turbulent
flow  over  a  flat  plate  with  freestream  conditions  of  Mach  2, Pref =10,374.2 Pascals , T ref =165.64 Kelvin ,

Reref =1.0x 107 / m and γref =1.4 with the wall treated as an adiabatic no-slip solve-to-the-wall boundary condition.
The same inviscid and viscous flux construction methods, turbulence model, and CFL number schedule, as described
for the Mach 6 turbulent flat plate case, were used for this case as well. The grid was decomposed into 6 partitions and
with the number of subiterations set to 10. The objective of this case was to compare the boundary layer profile, far
enough downstream to avoid leading edge effects, with turbulent law-of-the-wall. Figure 16 presents the convergence
behavior and level of convergence obtained for this case. As in the Mach 6 case the Φ i(qi

MLP fn2) limiter was frozen once
the residual L

2
 norm had dropped 4 orders of magnitude and the computation was stopped when the residual L

2
 norm

had dropped 12 orders of magnitude. The boundary layer profile was extracted from the computational domain at the
x=0.425‒m axial station along with the wall shear stress at that location. Figure 17 shows profiles of the U-velocity
component and the eddy viscosity ratio (the eddy viscosity normalized by the local molecular viscosity), indicating that
the wall boundary layer has reached a turbulent state. The velocity profile was transformed with the van Driest II
transformation  [36]  and  the  transformed velocity and  wall-normal  coordinate  were  then  normalized  with  the  wall
friction velocity based on the wall shear stress at the x=0.425‒m axial station. Figure 18 compares the transformed
computed velocity profile with the turbulent law-of-the-wall. Agreement in the u+=y+ region is excellent with a slight
deviation in slope with respect to the log-law region. This disagreement is dependent on the value of the von Karman's
constant (κ) chosen when computing the log-law portion of the profile. The value of κ is generally accepted to be
between 0.38< κ< 0.42 for smooth wall flows [37], with the κ=0.4 value used here being considered the “nominal”
value. 

y  +   Adaptive Turbulent Wall Boundary Condition:

The y+ adaptive turbulent wall boundary condition was tested using calorically perfect, turbulent flow over a
flat  plate  with  freestream  conditions  of,  Mach  2.91, Pref =57,996.2 Pascals , T ref =301.1Kelvin , γref =1.4 and

Figure 15: The effect of increasing the number of linear-solve 
subiterations, for 24 partitions, on the convergence behavior with
inter-parition coupling using the matrix-based SGS scheme.

VULCAN-CFD

1 partition, 10 subierations
24 partitions, 10 subiterations
24 partitions, 15 subiterations
24 partitions, 20 subiterations
24 partitions, 25 subiterations

Figure 14: The effect of increasing the number of partitions, 
for 10 linear-solve subiterations, on convergence rate with 
inter-partition coupling using the matrix-based SGS scheme.

Figure 16: Convergence behavior of the matrix-based 
SGS scheme for the Mach 2 turbulent flat plate.

Figure 17: Computed U velocity and eddy viscosity 
profiles at the x=0.425‒m axial station.

Figure 18: Comparison of computed velocity profile 
(line) with boundary layer turbulent law-of-the-wall 
theory (symbols) at the x=0.425‒m  axial station.

VULCAN-CFD
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Reref =3.67x 107 / m with the wall treated as an adiabatic no-slip y+ adaptive turbulent wall boundary condition. The
flat  plate was 0.5588 meters long and was discretized using a grid containing 29,328 hexahedral cells with a wall
normal first cell-center distance from the wall that varied along the length of the plate so as to produce increasing values
of ywall

+ with  increasing x. The governing equations were solved in a fully coupled manner using local time stepping
with the CFL number being linearly varied from 0.1 to 200 over time steps 1 to 500. The Menter Baseline [39] two-
equation turbulence model was used to compute the Reynolds stresses and Reynolds heat flux (Pr

t
=0.9).  All  other

options were kept the same as with the previous test cases. The grid was decomposed into 8 partitions for parallel
processing with the number of subiterations set to 10.  Convergence was achieved by “freezing” the gradient limiter
once the residual L

2
 norm had dropped 4 orders of magnitude and the computation was stopped when the residual L

2

norm had  dropped 12 orders  of  magnitude.  Figure  19  presents  the computational  hexahedral  (hex)  grid,  the  wall
distribution of the axial shear stress and the ywall

+ using the distance from the wall cell face center to the cell-center of
the wall cell. In addition, there are four axial stations shown where axial velocity profiles were extracted for comparison
with the turbulent law-of-the-wall. Figures 20, 21, 22 and 23 present those profiles. The  y+ adaptive turbulent wall
boundary condition was designed so that the crossover from a solve-to-the-wall boundary condition to a wall-matching-
function boundary condition occurs when the wall ywall

+ >= 2.5.  Examination of the ywall
+ distribution in figure 19

reveals that this occurs near x=0.1055‒m. Scrutiny of the wall shear stress distribution in this vicinity reveals a small
discontinuity that can be attributed to the abrupt change from the solve-to-the-wall boundary condition to the wall-
matching-function boundary condition. Reduction of this discontinuity is a subject for future work. 

Figure 19: Unstructured Hex Grid and Wall solution for turbulent, calorically perfect, Mach 2.91 flow over a flat plate computed using the y + adaptive turbulent wall
boundary condition.
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Examination of the profiles extracted upstream of the crossover location reveal that the solution extends down
into the viscous sublayer with the near wall points closely matching the expected values given by the u+=y+ portion of
the turbulent law-of-the-wall (open symbols). Agreement with respect to the log-law (filled symbols) portion of the
profile  is  not  as  good,  which is not  too surprising,  given that  this close to the leading edge of  the flat  plate,  the
streamwise pressure gradient, as the wall pressure distribution presented in figure 19 demonstrates, is not zero. The
reader is directed to [39] for a discussion of the effect of pressure gradient on the turbulent law-of-the-wall. However,
examination of the profiles extracted downstream of the crossover at axial locations 0.3048‒m and 0.5334‒m, presented
in  figures  22  and  23  respectively,  reveals  that  the  profiles  extracted  where  the  wall-matching-function  boundary
condition were used are in much better agreement with the log-law. In addition, the u+=y+/log-law blending in the wall-
matching-function  boundary condition is visible in  figures 22 and 23 because both profile ywall

+ values, 12.5 and 19.7
respectively, fall in the buffer layer. Moreover, profiles of the axial velocity and eddy viscosity ration are presented in
figure 24 at axial location 0.5334‒m to illustrate how well the boundary layer is resolved even when the ywall

+ is on the
order of 20. Finally, the convergence history is presented in figure 25, showing that the convergence does not appear to
have been adversely affected by the y+ adaptive turbulent wall boundary condition.

Figure 21:  Comparison of a computed velocity profile (line)
with  the  turbulent  law-of-the-wall  (symbols)  at  the
x=0.0826‒m  axial  station,  where  the  solve-to-the-wall
boundary condition  was used.

Figure 23:  Comparison of a computed velocity profile (line)
with  the  turbulent  law-of-the-wall  (symbols)  at  the
x=0.5334‒m axial station, where the wall-matching-function
boundary condition was used.

Figure 22:  Comparison of a computed velocity profile (line)
with  the  turbulent  law-of-the-wall  (symbols)  at  the
x=0.3048‒m axial station, where the wall-matching-function
boundary condition was used.

Figure 25: Convergence behavior of the matrix-based SGS
scheme for the Mach 2.91, calorically perfect, turbulent flat
plate when using the  y+ adaptive turbulent wall boundary
condition.

Figure 24:  Computed U velocity and Eddy Viscosity Ratio
profiles  at  the  x=0.5334‒m axial  station,  where  the wall-
matching-function boundary condition was used.

Figure 20:  Comparison of a computed velocity profile (line)
with  the  turbulent  law-of-the-wall  (symbols)  at  the
x=0.0508‒m  axial  station,  where  the  solve-to-the-wall
boundary condition  was used.
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Simulation of the Shock Tunnel HIFiRE 7 REST Scramjet Engine Experiment:

The University of Queensland experimental test of a 75% scale replica of the HIFiRE 7 REST scramjet engine
conducted in the T4 Stalker Tube [19] was simulated using the unstructured-grid solver.  The zero degree  angle-of-
attack, tare (no fuel injection), test point was selected for simulation. The bilateral symmetry of the model geometry was
exploited and a computational mesh for half of the REST scramjet flow path, shown in figure 25, was generated using
Pointwise®. The surface grid was predominantly made up of triangles with quadrilaterals being used along the blunt
leading edges and in the internal portion of the flow path. This surface grid was then marched normal to the wall surface
into the interior  of  the  computational  domain to  form a  boundary layer  grid  made up of  prisms and  hexes.  This
boundary layer grid then transitioned into pyramids and tetrahedra resulting in a mixed cell type grid. The grid has a
total of 44,568,851 cells consisting of 19,198,513 tetrahedra, 1,436,197 pyramids, 18,455,646 prisms, and 5,488,495
hexahedra, which were then decomposed into 768 partitions with ParMETIS. 

The unstructured-grid solver was run with the same inflow/reference conditions used in [19] to perform their
CFD  simulation  using  the  VULCAN-CFD  structured-grid  solver.  These  conditions  were: Pref =1675.0 Pascals ,

T ref =228.0 Kelvin , and velocity, U ref =2379 m /s . As mentioned above, the zero degree angle-of-attack, tare case,
was selected. However, it is important to note that the angel-of-attack convention reported in [19] is relative to the
combustor centerline. The angle of attack relative to the x-axis, which runs parallel to the forebody  plate, is 6 degrees,
as shown in figure 26. This is the angle of attack that was run for the current study. A thermally perfect air gas mixture
was used to simulate the test gas, which at the given reference conditions yields a Mach number of 7.845 and a unit
Reynolds number of Reref =4.1 x106 / m The model surfaces were treated as no-slip, isothermal (300.0 Kelvin) walls,
using the y+ adaptive turbulent wall boundary condition. The Menter Baseline two-equation turbulence model was used
to compute the  Reynolds  stresses  and Reynolds  heat  flux  (Pr

t
=0.9).  The inviscid fluxes were  computed using the

LDFSS scheme with the higher-order cell-face states being reconstructed using the UMUSCL, κ=1 /3, scheme with
the cell-average gradients limited using the Φ i(qi

MLP fn2) gradient limiter and the van Leer function. The viscous fluxes
were computed using the Nishikawa cell-face gradient method. The boundary layer trips were not modeled.

The governing equations were solved in a  fully coupled manner with the matrix  based SGS scheme with
linear-solve inter-partition coupling and 10 subiterations.  The computational domain was initialized to the reference
conditions, and a 5-mm thick “initial boundary layer” was constructed by linearly blending the no-slip isothermal wall
condition into the interior of the computational domain. The computation was run for 3000 cycles using a 1 st-order
advection scheme to establish the flow. The advection scheme was then switched to the 2nd-order scheme and the
solution was run an additional 6000 cycles. The CFL number schedule is presented in figure 30.  The gradient limiter
was then frozen at cycle 9000, which can be seen in the residual plot in figure 30, as an abrupt drop in the residual. The
solution was then run several thousand more cycles to make certain that it was stable with the frozen limiter. It was
deemed “safe” to freeze the limiter at cycle 9000 because the mass flow error, surface integrated heat transfer, as well as
the integrated forces and moments had all reached an asymptotic value. This approach resulted in the L2 of the Residual
converging approximately 5.5 orders of magnitude relative to its maximum value. Examination of the ywall

+ analysis
reported by the  y+ adaptive boundary condition scheme as part  of the solution process reveals that  the  y+ adaptive
turbulent wall boundary condition was an enabling technique in obtaining a solution on this computational grid. This
analysis  reported  that  there  was  a  3  order  of  magnitude  variation  of ywall

+ in  the  solution  where  the  minimum,

maximum, and area-weighted mean values of ywall
+ were 0.23, 247.0 and 4.17, respectively. The minimum value would

have made the wall-matching-function boundary condition inaccurate and the maximum value would have made the
solve-to-the-wall boundary condition unstable. The analysis also reported that 23.5% of the wall cells used the solve-to-
the-wall boundary condition and 76.5% used the wall-matching-function boundary condition.  

A Mach contour plot on the symmetry plane of the forebody and inlet is presented in figures 26 and 27.  Figure
26 illustrates the small size of the forebody and cowl leading edges relative to the forebody boundary layer thickness.
The figure also shows that the shocks are captured without significant oscillations. Figure 27, which superimposes the
computational grid on the Mach contours, also shows that the forebody leading edge and forebody compression corner
shocks are both captured with a small number of cells even where the grid is predominantly tetrahedral  in nature.
Finally, the the body side and inlet side wall static pressure distributions at the symmetry plane are presented in figures
28 and 29. The comparison is very reasonable and is slightly better than the solution reported in [19] that was obtained
using the VULCAN-CFD structured-grid solver. A grid refinement study and comparison with the experimental Stanton
number data is planned for the near future.
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Figure 27: HIFiRE 7 REST forebody/inlet symmetry plane computational Mach contours with unstructured grid superimposed.

Figure 26: HIFiRE 7 REST forebody/inlet symmetry plane computational Mach contours, with flow at 6 degrees angle of attack relative to the forebody plate (x-axis) .

Flow

Forebody Inlet

Cowl

x-axis

Figure 25: Schematic of HIFiRE 7 REST scramjet engine experimental model as installed in the University of Queensland T4 Stalker Tube, at 0 degrees angle of attack
relative to the combustor centerline, 6  degrees angle-of-attack relative to the forebody plate surface (the labeled x-axis), reprinted with permission from reference 19.
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Conclusions

As mentioned in the introduction, the genesis of the computational kernel of the VULCAN-CFD unstructured-
grid solver  was a cell-centered,  finite-volume,  hybrid  structured/unstructured-grid NRA  developed code.  However,
when state-of-the-art non-hex dominant unstructured-grids were generated for realistic hypersonic vehicle geometries
and  simulated  at  “representative”  hypersonic  flow  conditions,  numerical  accuracy,  efficiency  and  robustness
deficiencies as well as parallel scaling challenges were exposed. These accuracy, robustness and efficiency difficulties
were  alleviated  by implementing  the  best-practices  available  in  the  current  literature  for  2 nd-order  accurate,  cell-

Figure 28: Comparison of the computed HIFiRE 7 flow path body side
wall center-line pressure distribution with experimental data [19].

Figure 29: Comparison of the computed HIFiRE 7 flow path cowl side 
wall center-line pressure distribution with experimental data [19].

Figure 30: HIFiRE 7 flow path simulation convergence history of the L
2
 of the residual, mass flow error, integrated wall heat transfer, forces and moments.
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centered, finite-volume, unstructured-grid schemes. In addition, great care has been taken to reuse the thermodynamic,
transport, turbulence and chemical kinetic model subroutines and modules originally developed for the structured-grid
solver such that all structured-grid solver modeling capabilities have been duplicated in the unstructured-grid solver.
Moreover, new capabilities developed for the unstructured-grid solver, such as the y+ turbulent wall boundary condition,
have been also implemented in the structured-grid solver.

The successful implementation of the inviscid flux, viscous flux and implicit time stepping schemes as well as
the development of the y+ adaptive turbulent wall boundary condition scheme demonstrated in the flat plate test cases
and their subsequent successful application to the HIFiRE 7 inlet geometry demonstrates that the code has reached a
sufficient level of maturity that it can begin to be used by the greater community. Consequently, the unstructured-grid
solver is being actively tested by the CFD application staff of the Hypersonic Airbreathing Propulsion Branch at the
NASA Langley Research Center in support of projects of interest to NASA and the DOD. The promise of unstructured
grids has already begun to be realized due to a substantial reduction in the time required to proceed from receipt of
geometry to the completion of analysis. This has been primarily due to the dramatic reduction in the amount of time
required to generate the computational grid afforded by the unstructured grid approach. The grid generation portion of
the CFD process has decreased from on the order of a month, for pure structured grids, to less than two days, for
unstructured grids. However, as mentioned in the introduction, the computational resource requirements embodied in
the unstructured-grid paradigm have, as expected, proven to be significantly greater than those historically required by
the structured-grid solver.  Therefore,  given the computational  resource  constraints  that  typically exist  in  restricted
access computational environments, the time has come to incorporate the unstructured-grid spatially-elliptic flow solver
capability  into  the  VULCAN-CFD  code’s  multi-region  domain  decomposition  framework.  This  will  allow  the
computational domain to be decomposed into a multi-region mix of multi-block structured-grid spatially-elliptic, multi-
block structured-grid spatially-parabolic,  and spatially-elliptic unstructured-grid regions that  are solved sequentially
thereby  reducing  the  memory,  processor  and  wall  clock  time  requirements  of  the  overall  computation.  Funding
permitting, the development of this capability will be documented in a Part 2 sequel to this paper. 
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