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Local land-atmosphere feedback is intuitive:

What about impacts of soil moisture on remote meteorology?

Wet soil a higher evaporation, lower 
sensible heat flux 

This can affect local air temperature: 
a more evaporative cooling
a lower air temperature

It can also affect local precipitation:
a boundary layer modification
a conditions influencing onset of moist convection

EH
Wet Soil
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In a recent J. Climate paper, 
we analyzed a series of 
“imposed drought” simulations 
with the NASA GEOS-5 
atmospheric GCM.

J. Climate, 29, 7345-7364, 2016

Results: a quantification of the impact of a locally-imposed drought on 
remote temperature, precipitation, and circulation fields.
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Some results 
(from paper)

Imposing dry soil moisture 
at the pink dot…

… which has 
consequent impacts on 
precipitation and 
temperature outside the 
region. 

…leads to changes in 
the ensemble-mean 
atmospheric circulation 
(streamfunction)…
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The 2016 study used an extensive control experiment – one consisting of a 
768-member ensemble of 4-month (April-July) simulations.

In the present talk, we examine an alternative analysis approach: 
The quantification of local vs. remote soil moisture impacts through 
a statistical analysis of the control ensemble in isolation.

In this simplistic statistical study, we quantify a soil moisture contribution to a 
subsequent meteorological variable X in terms of r2, the square of the 
correlation coefficient between them.

a In essence, we interpret r2 as the fraction of σ2
X “explained” by the 

antecedent soil moisture variable(s).  (Causality is suggested but not 
demonstrated.)

Lots of data – nice statistics!
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Step 1: Simple regression of local met. variable on local soil moisture

Regress T2M here…
…against local (and earlier) 

soil moisture here.

At each grid cell: Determine r2 along with predictor equation:

T2Mloc = const. + cloc Wloc ;

WlocT2M
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Temperature Results:  r2 (W0, T2M)

Soil moisture at 
start of month

Local overlying air temperature 
averaged over month

June July

Strong (and 
unrealistic) local 
connection here 
between initial 
soil moisture 
and subsequent 
T2M.
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Geopotential Height Results:  r2 (W0, H250)
Soil moisture at 
start of month

local 250 mb height

June July

Almost no local
connection 
between initial 
soil moisture 
and subsequent 
H250.

June July
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Step 2: Multiple regression of local met. variable on local soil moisture 
and large-scale spatial pattern of soil moisture.

Regress T2M here…
…against local (and earlier) 

soil moisture here…

…and against large scale 
soil moisture contents in 

six areas

From multiple regression,
(i) Determine square of multiple correlation coefficient.
(ii) Determine predictor equation:

T2Mloc = const. + cloc Wloc + c1 W1 + c2 W2 + … + c6 W6  =  f(7 variables)

W1 W2 W3

W4 W5 W6
Wloc
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Isolation of Remote Impacts

Fraction of variance “explained” by local W and remote W:     

r2 from multiple regression against Wloc, W1, W2, … , W6

Fraction of variance “explained” by local W alone:

r2 from regression against Wloc (from before)

a Subtract the second r2 from the first r2 to get the remote contribution.
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Note: we tried variants of this breakdown; results are essentially the same…

W1

W4

W7

W2

W5

W8

W3

W6

W9
W1

W4

W7

W2

W5

W8

W3

W6

W9

e.g., 9 areas – a 3x3 grid centered on the local point in question
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T2M Results: 
r2 from 

predictor 
equations

Local 
regression 

(from before)
June July



National Aeronautics and Space Administration

gmao.gsfc.nasa.gov

T2M Results: 
r2 from 

predictor 
equations

Local 
regression 

(from before)

Multiple 
regression

Differences

June July

June July

June July
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H250 Results: 
r2 from 

predictor 
equations

Local 
regression 

(from before)

Multiple 
regression

Differences

June July

June July

June July



National Aeronautics and Space Administration

gmao.gsfc.nasa.gov

The contributions of the large-scale soil moisture pattern to the height field… 

… is not inconsistent with its contribution to the T2M field. 

T2M: 
r2 from multiple regression 

minus 
r2 from local regression

H250: 
r2 from multiple regression 

minus 
r2 from local regression
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Obvious question:
What relevance does this have to the real world?

Observations-based data considered (1979-2013)

Soil moistures:  MERRA-2 product (reflects gauge-based precipitation) 
(Gelaro et al. 2017)

a Consider soil moisture patterns at start of predicted month

Temperatures: ERA-Interim 2-meter temperatures (Dee et al. 2011)

250 mb height fields:  ERA-Interim H250 fields (Dee et al. 2011)
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From the GCM data, we have determined coefficients cloc, c1, c2, …, c9
such that

T2Mloc = const. + cloc Wloc + c1 W1 + c2 W2 + … + c6 W6  =  f(7 variables)

Can these be used to predict observed monthly temperature from the 
completely independent observed local soil moisture and large-scale soil 
moisture patterns?

Soil moisture from 
observations, 

t= 0 days

Apply regression 
coefficients from 
AGCM analysis Estimated 

temperatures, 
t=0-29 days

Compare with 
actual observed 

temperatures Map of 
forecast 

skill
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H250 Results:   Skill of prediction (r2 vs observations)

Using predictor 
equation from simple 
linear regression 

Using GCM-based 
predictor equation from 
multiple regression 

Differences: 
Contribution of large-
scale pattern to skill

June July

July

Warm colors 
outweigh 
cold colors 
a indication 
of true 
remote 
contribution 
to skill?

June

June July
lead 0
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T2M Results:   Skill of prediction (r2 vs observations)

Using predictor 
equation from simple 
linear regression 

Using GCM-based 
predictor equation from 
multiple regression 

Differences: 
Contribution of large-
scale pattern to skill

June July

July

Positive 
impact on 
temperature 
skill is also 
somewhat 
apparent

June

June July

lead 0
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Summary
1. A large set of AGCM ensemble members can be analyzed statistically to 
isolate apparent local impacts of land moisture from remote impacts.

2. The multiple regression-based predictor equation derived from the AGCM 
ensembles, when applied to antecedent observations-based soil moistures, 
shows some skill in reproducing observed T2M and H250 anomalies 

a the statistical relationships derived from the AGCM may have some 
relevance to the real world.

3. With a statistical analysis like this, causality (soil moisture affecting 
meteorology) cannot be demonstrated; causality is at best only suggested.
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