

A Study of the Carbon Cycle using NASA Observations and the GEOS Model

Steven Pawson, Ron Gelaro, Lesley Ott, Bill Putman,
Abhishek Chatterjee, Randy Koster, Eunjee Lee,
Tom Oda, Brad Weir, Fanwei Zeng

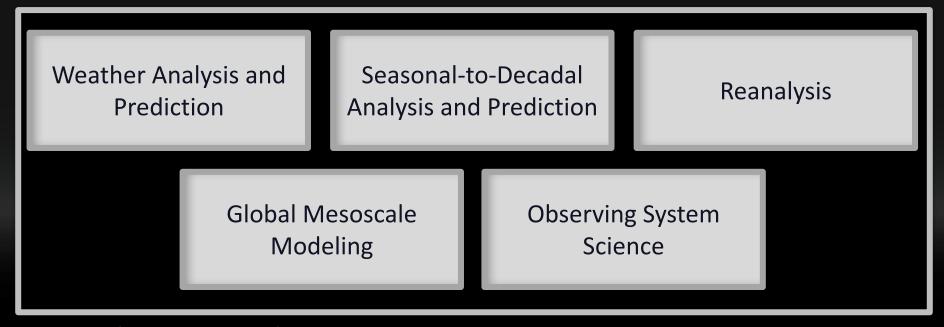
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center

American Meteorological Society, 98th Annual Meeting Session 14C: Piers Sellers' Legacy, Part 1 Austin, Texas – January 8-11, 2018

Overall Objectives

Show current and planned capabilities of the GEOS model for carbon-cycle studies

Highlight how Piers impacted this work, either indirectly or directly


Key aspects:

- Combined use of complex models and observations
- Pushing frontiers in how this is achieved
- Look at some evaluation and impacts

Themes of GMAO's Research and Products

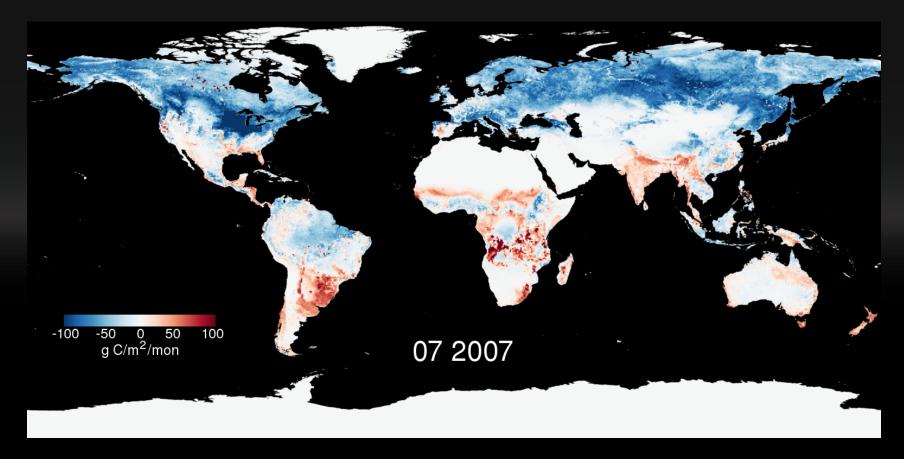
- These (non-orthogonal) themes span GMAO's main focus areas
- Strong emphasis on NASA's Earth Observations (use, support, planning)
- GEOS is a modular system, encompassing many Earth System components
- Carbon cycle is an integral part of the GEOS system

The CASA Model at NASA GSFC

A version of the Carnegie-Ames-Stanford Approach (CASA) model was used extensively in the in the Biospheric Sciences Lab at GSFC (Jim Collatz)

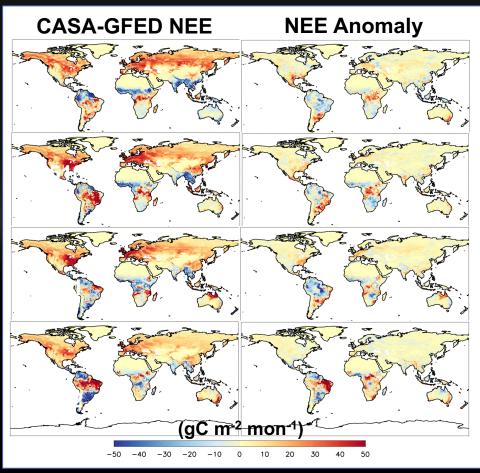
Just as the SiB2 model had made extensive use of observations, CASA used numerous observations from NASA's satellites to constrain the diagnostic computations of land-atmosphere CO₂ exchange

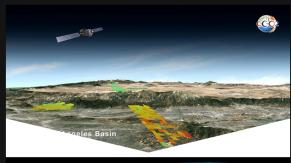
CASA/GFED surface fluxes were used in GSFC's "PCTM" model (Randy Kawa), beginning in the early 2000s

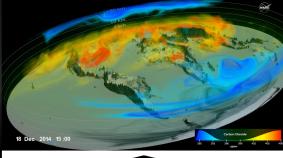

It was a straightforward extension of this work that enabled GMAO to readily import the CASA surface fluxes into the GEOS model

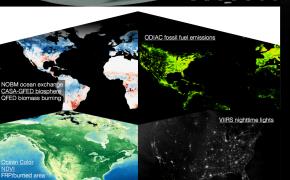
This combination, along with atmosphere-ocean CO₂ fluxes computed from NOBM (Watson Gregg) formed the basis of GMAO's carbon-cycle work

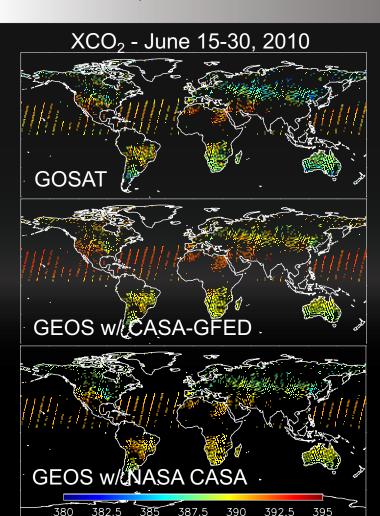
Net Ecosystem Exchange, CASA model: July 2007


Year-to-Year Variations in CASA fluxes


CASA-GFED ENSO Flux Anomalies



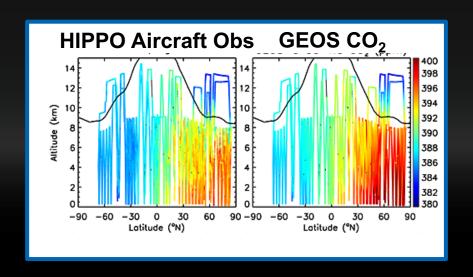

- years of observationally-informed land carbon flux estimates, supporting analysis of climate-driven carbon flux anomalies
- During the 2015-16 El Niño CASA-GFED estimates substantial NEE anomalies in Brazil which was strongly influenced by both heavy rains in the western portion of the country and drought conditions in the east.
- CASA-GFED also supports the OCO-2 science team as a prior for a number of inverse modeling systems


GEOS-Carb

Integrating Top-Down and Bottom-Up Estimates of Carbon Flux

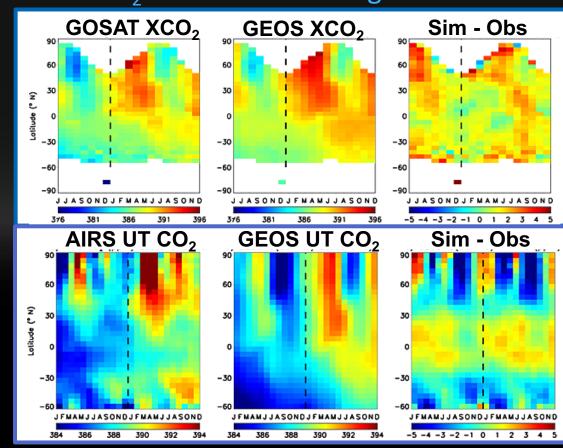
- Using satellite observations to constrain model-based carbon flux estimates
- Ocean color and NDVI informationused with ocean (NOBM) and land productivity (CASA-GFED) models; observations of fire radiative power, burned area, and nighttime lights support high-resolution fire (GFED, QFED) and fossil fuel (VIIRS) emission inventories
- Weather information from MERRA-2 is also used to provide a physically consistent flux dataset
- Bottom-up fluxes are implemented in the GEOS AGCM to provide high quality, high-resolution simulations of CO₂ & CO
- By assimilating atmospheric CO₂ from OCO-2 and GOSAT, the GEOS-Carb system also provides atmospheric carbon reanalyses and insights needed to refine flux estimates

Evaluating bottom-up fluxes through comparison with atmospheric CO₂ observations


- Comparisons of GEOS simulations of XCO₂ with two different land flux models and observations provides insight into land flux processes and observational limitations
- The NASA CASA model begins drawing CO₂ from the atmosphere one month earlier than CASA-GFED which is more consistent with satellite and in situ observations
- However, the weaker sink in NASA CASA is inconsistent with the growth rate estimated by oceanic and atmospheric observations
- Different land-carbon models have their own strengths

Evaluating GEOS-Carb Concentrations using aircraft data

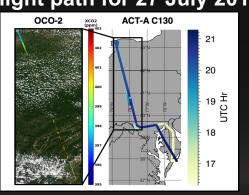
- Piers was a great proponent of field missions using NASA aircraft
- This slide shows the value of using the in-situ aircraft data from HIPPO in the evaluation of the GEOS-Carb CO₂ concentrations – a unique NASA asset, given the scarcity of freeatmospheric CO₂ measurements
- Comparisons against aircraft data show a tendency to overestimate NH CO₂ due to a weak sink in CASA-GFED, but vertical gradients are well reproduced

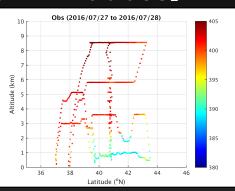


Evaluating consistency of satellite CO₂ observations using GEOS-Carb

- GEOS has also been used to evaluate the consistency of multiple satellite datasets
- Comparisons with GOSAT

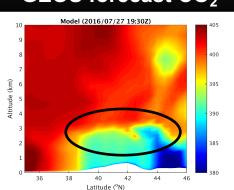
 XCO₂ show a high NH bias that is most notable during spring and summer (and consistent with the bias between GEOS-Carb and HIPPO)
- In contrast, comparison of GEOS with AIRS UT CO₂ data shows a low bias which is difficult to reconcile with other observation types



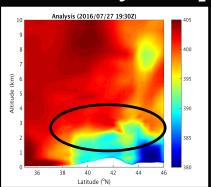


GEOS carbon modeling and analysis in support of NASA missions

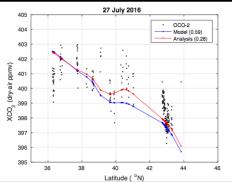
OCO-2 overpass and ACT flight path for 27 July 2016



Aircraft CO₂



- The GEOS carbon data assimilation system now supports both field campaigns and satellite missions.
- In this example, GEOS is used to facilitate OCO-2 validation by assimilating aircraft CO₂ observations (top)


GEOS forecast CO₂

GEOS analysis CO₂

GEOS, OCO-2 XCO₂

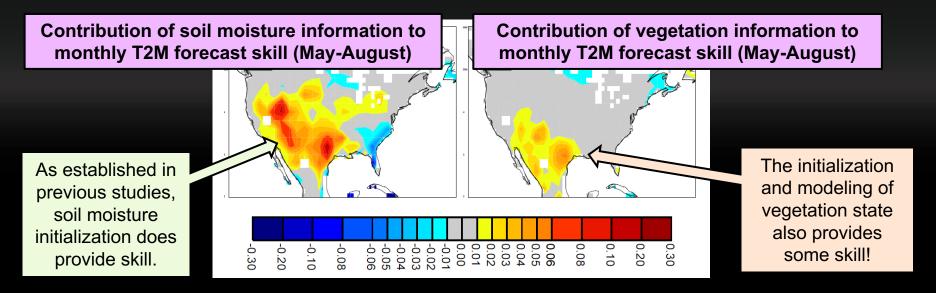
The analysis
corrects for a high
bias in the model's
PBL height,
improving the
comparison with
OCO-2 observations

Moving Ahead – Switching to the Catchment-CN Land Model

The GEOS Earth System model

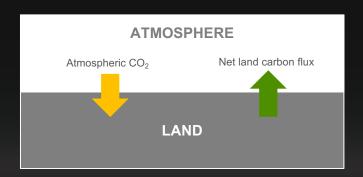
- Has its roots in weather analysis and forecasting
- Includes many Earth System Components a modular, seamless system
- Is developed according to priorities set by NASA's satellite observations

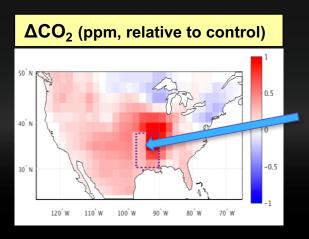
SMAP, OCO-2 and other NASA Missions encourage development of the landsurface model (and analysis) components


- Catchment model of land physics has been updated in many ways
- Now includes prognostic vegetation and carbon/nitrogen components

Dynamic Vegetation Phenology and Monthly Weather Prediction

Forecast simulations performed with the GEOS-5 atmospheric model fitted with a dynamic vegetation phenology model quantified the separate contributions of soil moisture and vegetation initialization to air temperature forecast skill (measured with an r² metric, versus observations).




Connecting the Land and Atmospheric Branches of the Carbon Cycle

A new capability in the GEOS-5 system:

- (i) allows the modeled atmospheric CO₂ to affect land surface carbon uptake, and
- (ii) uses the modeled net CO₂ uptake at the land surface as a source or sink for the atmospheric CO₂,
- (iii) thus enables carbon cycle feedbacks along with water and energy cycle feedbacks

Sample Experiment

In a GEOS-5 run, imposing a drought here during April to June...

- ... leads to lower leaf area index (LAI) there in July September
- ⇒ reduced net carbon uptake by land
- \Rightarrow increased atmospheric CO₂ across the US.

Summary

GMAO's activities in carbon-cycle modeling

Build on the GSFC legacy of CASA-GFED and SiB2

GEOS-Carb modeling activities focus on NASA's observations

Emerging prognostic capabilities in ocean and land, as well as atmosphere

Some important outcomes

Contributions to monitoring of CO₂: multiple diagnostic estimates

Model is used to evaluate consistency of multiple types of observations

Importance of interactive soil moisture and CO₂ in prognostic modeling

Two big things I learned from Piers:

Failure is an option, as long as you learn from it and move forwards

Push on and get things done

