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Extended Abstract

Overview

In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying
flight conditions will be controlled by a linear parameter-varying approach. The optimum
shape determined under multiple objectives, including flight performance, ride quality, and
control effort, will be determined as well. This work is an extension of work done previously
by the authors, and updates the existing optimization and utilizes the results to generate a
robust flight controller.

I. Introduction

The improvement of aircraft operation efficiency needs to be considered over the whole
flight plan, instead of a single point in the flight envelope, since the flight condition varies
in a flight mission. Therefore, it is natural to employ morphing wing designs so that the
aircraft can be made adaptive to different flight conditions and missions. At the advent
of recent development in advanced composites as well as sensor and actuator technologies,
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in-flight adaptive wing/aircraft morphing is now becoming a tangible goal. Traditionally,
the discrete control surfaces were used to re-distribute the aerodynamic loads along the wing
span during the flight, so as to tailor the aircraft performance. However, the deflection
of discrete control surfaces may increase the aerodynamic drag. An effective alternative
is to introduce conformal wing/airfoil shape changes for the aerodynamic load control. In
addition, the flexibility associated to the morphing wing structures may be pro-actively
utilized to improve the aircraft performance. The active aeroelastic tailoring techniques
would allow aircraft designers to take advantage of the wing flexibility to create the desired
wing load distribution according to the mission requirement, so as to improve overall aircraft
operating efficiency and performance, without using the traditional discrete control surfaces.
The utilization of these concepts is predicated upon the optimum shape being known and a
control system which is able to produce this wing shape.

The question of determining the optimum wing shape has been studied in depth. Re-
cently, Chen et al.1 studied the effects of various trim conditions on the aerodynamic shape
optimization of the common research model wing-body-tail configuration. Using a free form
distribution for the wing geometry coupled with a RANS solver for the aerodynamics their
work studied the impact of a trim constraint on the optimization process. Through a series
of optimizations utilizing the trim conditions at varying points in the design process, they
concluded that considering the trim during optimization yields the best performance. In
a similar study, Lyu and Martins2 performed an aerodynamic optimization of the trailing
edge of wing. Their optimization showed that drag reductions could be seen with shape
optimization of either the entire wing or just the trailing edge. Taking the optimization a
step further requires the development of realistic system capable of producing the optimum
shape that is found for a given flight condition. This concept is shown in,3 as the major
aspects of the design of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) are
highlighted. Along with this detailed design an optimization is performed to determine the
deflection angles required throughout the trailing edge to improve the flight performance.

More detailed concepts of wing morphing technologies have been developed as improve-
ments in the materials being used on aircraft and the methods in which they are assembled
has improved. In Nguyen et al.4 the principles of aerodynamic shape optimization and mor-
phing wing structures was explored. The optimization process led into the development of
the VCCTEF, which was a novel concept for improving aircraft performance by drag reduc-
tion. A further study of the VCCTEF wing model was done by Nguyen and Ting,5 where
they performed a flutter analysis of the mission adaptive wing. The methodology included a
vortex-lattice aerodynamic model coupled with a finite element structural dynamic model.
Urnes et al.6 provided an updated review of the development, design, and testing of the
VCCTEF project. Under the support of the U.S. Air Force Research Laboratory, FlexSys,
Inc. developed the Mission Adaptive Compliant Wing (MAC-Wing) to test and evaluate
its performance. The adaptive trailing edge flap technology was combined with a natural
laminar flow airfoil and tested on the Scaled Composites White Knight aircraft. The testing
suggested fuel saving, weight reduction, and improved control authority.7,8 In an effort to
move from an adaptable trailing edge into a completely adaptable wing structure, the Cellu-
lar Composite Active Twist Wing was designed and tested in9 showing promising results. An
airplane model was built, which incorporated two of the active twist wing and was compared
to a similar rigid model with traditional control surfaces in wind-tunnel tests. The active
twist wing showed similar capabilities for symmetric and asymmetric movements as well as
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added benefits in stall mitigation. An overview of the process used to design the composite
lattice-based cellular structures for active wing shaping was presented in Jenett et al.10 This
paper gave a detailed approach to design a low density, highly complaint structure. The
detailed modeling and construction of these structures was also presented.

As optimization processes and morphing technology have improved, there is a need for
a complete system, in which a controller will actuate the wing members to the desired op-
timum shape throughout the entire flight envelope and perform the required maneuver and
vibration control during the flight. Most current optimization schemes utilize a CFD aero-
dynamic model coupled with discrete structural points as design variables. These methods
produce promising results, but when considered over an entire flight plan could be a very
time consuming process. Additionally, these methods generally consider the planform shape
of the wing rather than the wing bending and torsions associated with highly flexible, large
aspect ratio wing members. Recent developments of morphing technologies such as the Cel-
lular Composite Active Twist Wing take advantage of the flexible nature of high aspect ratio
wings. Therefore, it is natural to develop an optimization scheme that mainly considers the
bending and torsion of the high aspect ratio wings. This concept was utilized in Su et al.,11

which utilized a modal based optimization approach in determining the best feasible wing
shape (wing bending and torsion deformations) of a highly flexible aircraft at any given flight
scenario. In this paper, this process will be used going forward to develop a wing shape con-
trol algorithm with defined distributed control loads. The optimization process will generate
the specific wing shape needed to guarantee the optimum performance and ride quality over
the entire flight envelope of an aircraft. Since there are no conventional discrete control
surfaces for trimming and control the flexible aircraft, the design space for searching the op-
timum wing geometry is enlarged. The optimum wing shape obtained from the modal-based
optimization also naturally leads to a distributed controller. At the same time, this also
leaves a lot of degrees of freedom in the controller design. In addition, the controller should
satisfy the performance and stability requirements over variable flight conditions, which is
typically required for mission-adaptive vehicles. In doing so, the controller will be designed
based on a linear parameter-varying (LPV) method, derived from the nonlinear aeroelastic
equations representing the highly flexible aircraft.

II. Theoretical Formulation

A coupled aeroelastic and flight dynamic formulation for highly flexible aircraft has been
developed by Su and Cesnik.12–14 A brief introduction of the formulation is presented here,
followed by the modal-based optimization approach for searching the most efficient wing
geometries with the optimum distributed control scheme along the wing span under different
flight conditions.

A. Equations of motion

As shown in figure 1a, a global(inertia) frame G is defined. A body frame B (t) is then built
in the global frame to describe the vehicle position and orientation. By taking advantage
of their geometry, highly flexible wings are modeled as slender beams that may exhibit
large deformations in operation. Within the body frame, a local beam frame w is built at
each node along the reference line (figure 1b), which is used to define the nodal position
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and orientation of the flexible members. In Su and Cesnik,15 a nonlinear beam element
has been introduced to model the geometrically-nonlinear deformation of slender beams. In
this formulation, strain degrees (curvatures) of the beam reference line are considered as
the independent variables to describe the beam deformation. Assume the curvatures are
constant within one element, the elemental strain vector is denoted as

εTe =
{
εx κx κy κz

}
(1)

where εx is the extensional strain, κx, κy, and κz are the twist curvature of the beam
reference line, out-of-plane bending curvature, and in-plane bending curvature, respectively.
The total strain vector of the complete aircraft ε is obtained by assembling the global strain
vector. Transverse shear strains are not explicitly included in this equation. However, shear
strain effects are included in the constitutive relation.16 Complex geometrically nonlinear
deformations can be represented by such a constant-strain distribution over each element.

By following the Principle of Virtual Work extended to dynamic systems, the coupled
aeroelastic and flight dynamic behavior of highly flexible aircraft in free flight can be de-
scribed by the following equations:

MFF (ε)ε̈+ MFB(ε)β̇ + CFF (ε̇, ε, β)ε̇+ CFB(ε̇, ε, β)β + KFF ε

= RF (ε̈, ε̇, ε, β̇, β, λ, ζ,T,u)

MBF (ε)ε̈+ MBB(ε)β̇ + CBF (ε̇, ε, β)ε̇+ CBB(ε̇, ε, β)β

= RB(ε̈, ε̇, ε, β̇, β, λ, ζ,T,u)

ζ̇ = −1

2
Ωζ(β)ζ

ṖB =
[

CGB(ζ) 0
]
β

λ̇ = F1

{
ε̈

β̇

}
+ F2

{
ε̇

β

}
+ F3λ

(2)
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where the components of the generalized inertia M, damping C, and stiffness K matrices are
found in.12,13 in general, gravity, aerodynamic loads, thrust, and control forces are considered
in the generalized load vector of aircraft, which is given as{

RF

RB

}
=

{
KFF ε

0

0

}
+

[
JTpε
JTpb

]
BFFa +

[
JTθε
JTθb

]
BMMa

+

[
JThε
JThb

]
Ngg +

[
JTpε
JTpb

]
T +

[
B̄F

B̄B

]
u

(3)

which involves the effects from initial strains ε0, aerodynamic loads Fa and Ma, gravitational
fields g, thrust force T, and additional control input u. BF , BM , and Ng are the influence
matrices for aerodynamic lift, moment, and gravity force, respectively, which come from
the numerical integration of virtual work done by the external loads along the wing span
(see Su and Cesnik12). Influence matrices of the control input (B̄F and B̄B) are dependent
on the specific control mechanism and are yet to be determined in this paper. Finally,
all the Jacobian matrices J in Eq. (3) can be obtained from the nonlinear strain-position
kinematic relationship discussed in,15,17 which link the dependent variables (nodal positions
and orientations) to the independent variables (element strain and rigid-body motion). It
should be noted that both elastic member deformations and rigid-body motions are included
when deriving the internal and external virtual work in Su and Cesnik.12 Therefore, the
elastic (ε) and rigid-body (β) degrees of freedom are naturally coupled. This coupling is also
highlighted in Eq. (2), where the elastic deformations and the rigid-body motions are solved
from the same set of equations.

In Eq. (3), aerodynamics loads are calculated by using the 2-D finite-state inflow theory.18

At a given station along the wing, the aerodynamics lift, moment, and drag are given as

lmc = πρ∞b
2
c (−z̈ + ẏα̇− dα̈) + 2πρ∞bcẏ

2

[
− ż
ẏ

+

(
1

2
bc − d

)
α̇

ẏ
− λ0

ẏ

]
mmc = πρ∞b

2
c

(
−1

8
b2cα̈− ẏż − dẏα̇− ẏλ0

)
dmc = −2πρ∞bc

(
ż2 + d2α̇2 + λ20 + 2dżα̇ + 2żλ0 + 2dα̇λ0

)
(4)

where the inflow states λ are governed by the inflow equation in Eq. (2). The different
velocity components referred by Eq. (4) can be seen in Fig. 2.

B. Definition of general distributed control load

In the current study, a distributed control scheme is developed by assuming every element
along the main wing can be actuated. Figure 3 shows a generic wing element with applied
point force (u1) and force couplings (ru2, ru3 and ru4) on both ends in order to actuate
it. The combined loads may independently actuate the extensive, torsional, out-of-plane
bending, and in-plane bending deformations of the element. These elemental loads are
written as (

Fpt
u

)
e

=
{
−u1 0 0 0 0 0 u1 0 0

}T
(
Mpt

u

)
e

=
{
−ru2 −ru3 −ru4 0 0 0 ru2 ru3 ru4

}T (5)
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Figure 2: Airfoil coordinate systems and velocity components

where the coefficient r represents the arms of force couplings u1, u2, and u3. Without losing
generality, r is defined as one in the following studies. Note that there are three nodes
defined on each beam element.15 As no loads are applied at the mid-node of the element for
the actuation, the fourth to sixth entries of the load vectors are all zeros. Eq. (5) is further
written into the matrix form of

(
Fpt
u

)
e

=


−1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


T 

u1
u2
u3
u4

 =
(
Bf
u

)
e
ue

(
Mpt

u

)
e

=


0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 0

0 −1 0 0 0 0 0 1 0

0 0 −1 0 0 0 0 0 1


T 

u1
u2
u3
u4

 = (Bm
u )eue

(6)

Accordingly, the complete control loads are obtained by properly sizing and assembling the
elemental matrices in Eq. (6), which are

Fpt
u = Bf

uu

Mpt
u = Bm

u u
(7)

where Fpt
u and Mpt

u , as point loads, can be eventually transformed to the generalized control
load by using the Jacobians:{

Ru
F

Ru
B

}
=

[
JTpε
JTpb

]
Fpt
u +

[
JTθε
JTθb

]
Mpt

u

=

([
JTpε
JTpb

]
Bf
u +

[
JTθε
JTθb

]
Bm
u

)
u =

[
B̄F

B̄B

]
u

(8)
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Figure 3: Point control forces on a beam element (Black: extension force; Blue: torsion
coupling; Red: out-of-plane bending coupling; and Green: in-plane bending coupling).

C. Determination of optimum wing geometry

Under a given flight condition (U∞ and ρ), the optimum wing geometry and other control
inputs should be determined to satisfy the trim of aircraft. In general, the trim variables
are:

qtrim =
{
αB ϕB T u

}T
(9)

where αB is the body pitching angle, ϕB is the bank angle, and u is the control input as
defined in Sec. B. With the rigid-body rotation angles, one can prescribe the quaternions
and rigid-body velocity:

ζ = ζ(αB, ϕB)

β = β(U∞, ζ)
(10)

Therefore, the original aeroelastic and flight dynamic equations (Eq. 2) are reduced to steady-
state equilibrium equations, after removing the transient terms and unsteady aerodynamic
contributions, which are

KFF ε−RF (αB, ϕB,T,u, ε) = 0

RB(αB, ϕB,T,u, ε) = 0
(11)

where the loads are explicitly determined by the trim variables, as well as the wing shape. It
is clear that the second entry of Eq. (11) is essentially the trim condition that an aircraft in
steady flight should satisfy, while the first is the elastic equilibrium only for flexible aircraft.

In the study of Su et al.,11 a modal-based approach was developed to search for the
optimum wing geometry without using the traditional control surfaces. This approach is
still utilized here, where the wing geometry is represented by linear mode shapes, such that

ε̄(s, t) =
N∑
i=1

Φi(s)ηi(t) (12)
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where Φ are the linear mode shapes of the flexible aircraft and η are the corresponding
magnitudes of the modes. This approach allows one to use a finite number of modes to
search for the optimum wing shape, targeting for the minimum drag as the optimum flight
performance, while maintaining the trim and elastic equilibrium of the aircraft.

rF = KFF ε̄−RF (αB, ϕB,T,u, η1, η2, · · · , ηN)

rB = RB(αB, ϕB,T,u, η1, η2, · · · , ηN)
(13)

From Eq. (13) and Eq. (8) the control force u can be calculated during each step of the
optimization process as

u = B̄−1F
(
KFF ε̄− JTpεB

FFa − JTθεB
MMa − JThεN

gg − JTpεT
)

(14)

With the elastic equilibrium now satisfied, the optimization problem is defined as

min
q
D = D(q)

s.t. rB = 0

q =
{
αB ϕB T η1 η2 · · · ηN

}T (15)

D. Multi-objective optimization

It may be desired to determine a shape which accomplishes a goal other than minimizing
drag. Highly-flexible aircraft with slender wings are often susceptible to the effects of a
gust. To account for this, another objective function is required so as to minimize the wing
bending moment due to gust disturbances. This function will then be combined with the
minimum drag objective to formulate a multi-objective optimization problem. This allows
for a study to be performed to understand the various shapes required to find the trade-off
between the minimum drag and the minimum gust effects.

A discrete gust model is used to calculate the moment a gust could generate on root of
the wing. The gust should have a width 25 times longer than the chord of the wing, which
for this particular study would result in a gust that is 25 meters long. The gust velocity can
be expressed as here

wgust =
w0

2

(
1− cos

(
2πx

25c

))
(16)

To further simplify the problem a method similar to19 will be used. This reduces the gust
so that the entire streamwise length of the airfoil section experiences the same value of the
gust velocity at a given time. This gives an effective angle of attack as expressed here

αg =
1

2

w0

U∞

(
1− cos

(
2πx

25c

))
(17)

The maximum angle of attack will occur as

(αg)max =
w0

U∞
(18)

from which the resulting aerodynamic loads can be calculated.
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The alleviation of the gust load can be approximated by minimizing the induced bending
moment My at the root of the wing. Using this along with the aerodynamic drag calculation
used in the single objective function optimization the new objective function can be defined
as

fobj = ξD + (1− ξ)My (19)

Additionally it is desired to implement a third objective function which accounts for the
control effort required to obtain a specific wing geometry. The control force required is al-
ready calculated and described in Eq. (14). The total control effort can then be approximated
as

U = uTu (20)

E. Optimum reduced control scheme – location of actuations

As can be seen, Eq. (8) defines the control loads on all elements of the flexible aircraft.
Therefore, all these elements should be actuated to achieve and maintain the optimum wing
geometry for the best performance. Obviously, this control scheme requires a tremendous
number of actuations along the vehicle, which ends up being impractical. Instead, one can
select a reduced set of elements from the aircraft (and more effectively on the main wing)
to control the wing shape. From Eq. (12), the wing shape has been represented by the
mode shapes. It is natural to examine the “controllability” of these modes. For shaping
and rigid-body motion control purpose, Eq. (2) is reduced to structural dynamic equations
coupled with the rigid-body motion, with all aerodynamic loads, thrust force, and gravity
loads removed. The body frame propagation equations are not required as the rigid-body
motions are represented by β, which leads to

MFF ε̈+ MFBβ̇ + CFF ε̇+ CFBβ + KFF ε = B̄Fu

MBF ε̈+ MBBβ̇ + CBF ε̇+ CBBβ = B̄Bu
(21)

[
MFF MFB

MBF MBB

]{
ε̈

β̇

}
+

[
KFF 0

0 0

]{
ε

b

}
= B̄u (22)

One may write Eq. (21) into the state-space form:
ε̇

ε̈

β̇

 = As


ε

ε̇

β

+ Bsu (23)

where

As =

 I 0 0

0 MFF MFB

0 MBF MBB


−1  0 I 0

−KFF −CFF −CFB

0 −CBF −CBB


Bs =

 I 0 0

0 MFF MFB

0 MBF MBB


−1  0

B̄F

B̄B


(24)
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The controllability of the modes of As in terms of the control input determined by Bs can
be measured. This measure exploits the angles between the normalized left eigenvectors
Ri of the system matrix As and the control input influence matrix Bs.

20 The measure of
controllability of the ith mode by the jth actuator is

cos θij =
|Ri · bj|
‖Ri‖ ‖bj‖

(25)

where bj is the jth column vector of matrix Bs. If the fraction is one (i.e., θij = 0), it
achieves the maximum controllability of mode Ri by actuator j.

In search for the optimum shape under a flight condition, one can first explore the
optimum shape assuming the fully-distributed control using Eq. (15), which results in an
optimum wing shape represented by the mode shapes Φi and the corresponding magnitudes
ηi. Based on the magnitudes, one may decide what modes are more significant than the
others. Next, the controllability of these significant modes are evaluated. A specific controller
(nodal control force entry) is retained in the B̄F and B̄B, only if its control impacts to the
significant modes are above a user-defined threshold value. Such a selection results in a
reduced control scheme B̄Fr or B̄Br. The distributed control force can be calculated at each
step of the optimization as

ur = B̄−1Fr
(
KFF ε̄− JTpεB

FFa − JTθεB
MMa − JThεN

gg − JTpεT
)

(26)

The optimization of the wing shape with the objective of the minimum drag Eq. (15) can
be performed again with the reduced control input scheme where one can solve for the
magnitudes (ηi) of the modes contributing to the optimum wing geometry under the reduced
control input ur. It is also necessary to verify if the significant modes from the second
optimization are consistent with the initial search with the full-distributed control scheme.
Additional iterative processes can be performed, if the significant modes become inconsistent
with the reduced control input applied.

Finally, it is important to note that the optimum reduced control scheme may vary under
different flight conditions, as the participating modes to determine the optimum wing shape
are different.

F. State-space equations

Linearized aeroelastic and flight dynamic equations of motion about a nonlinear equilibrium
state χ0 are obtained as

M̄FF ε̈+ M̄FBβ̇ + C̄FF ε̇+ C̄FBβ + K̄FF ε−Ra
F/λ −Rg

F/ζ = B̄Frur

M̄BF ε̈+ M̄BBβ̇ + C̄BF ε̇+ C̄BBβ −Ra
B/λ −Rg

B/ζ = B̄Brur

ζ̇ +
1

2
Ωζζ +

1

2

(
Ωζ/ββ

)
ζ0 = 0

ṖB −
[

CGB 0
]
β −

[
CGB
/ζ ζ 0

]
β0 = 0

λ̇− F1

{
ε̈

β̇

}
− F2

{
ε̇

β

}
− F3λ = 0

(27)
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which is put into the state-space form

ẋ = Q−11 Q2x + Q−11 Q3ur

= Ax + Bur
(28)

where the state variable is

xT =
{
εT ε̇T βT ζT PT

B λT
}

(29)

and the matrices for calculating the system matrices are

Q1 =



I 0 0 0 0 0

0 M̄FF M̄FB 0 0 0

0 M̄BF M̄BB 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 −F1F −F1B 0 0 I



Q2 =



0 I 0 0 0 0

−K̄FF C̄FF C̄FB Rg
F/ζ 0 Ra

F/λ

0 C̄BF C̄BB Rg
B/ζ 0 Ra

B/λ

0 0 −1
2

(
Ωζ/β

)
ζ0 −1

2
Ωζ 0 0

0 0
[

CGB 0
] [

CGB
/ζ 0

]
β0 0 0

0 F2F F2B 0 0 F3


Q3 =

[
0 B̄T

Fr B̄T
Br 0 0 0

]T

(30)

The control output is simply defined as the strain vector of the aircraft. Therefore the output
equation is written as

y = Cx + Dur (31)

where

C =
[

I 0 0 0 0 0
]

D = 0
(32)

In a special interest, one may want to explore the shaping control development under the
varying flight speed (for minimum drag). For a more complex flight controller scheduling, it is
desired to understand the wing shaping control algorithm with multiple objectives (minimum
drag and alleviated gust load). A common fact to these problems is that the control system
matrices are dependent on a linearly varying parameter (flight speed U∞ or tuning parameter
ξ). By taking advantage of this fact, a linear parameter-varying (LPV) approach21,22 will be
used to design the controllers for the wing shaping control under different flight conditions.
More details about the controller design will be presented in the final paper.
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III. Sample Numerical Results

As the preliminary study, the optimum wing shape of a highly flexible aircraft has been
studied for two scenarios. The first considers the optimum wing shapes under varying flight
speeds, while in the second case, the wing shape is optimized with the targets of both
minimum drag and minimum gust load. However, the shaping controllers are yet to be
designed, which will be presented in the final paper.

A. Level Flight Velocity Range: 18 - 28 m/s

An aircraft may experience a wide variety of flight conditions over the course of their flight
plane. This will require separate optimum shapes for each different flight condition experi-
enced. This section explores the various optimum wing geometries associated with varying
flight velocities that the aircraft might encounter. Specifically, the range of 18 to 28 m/s is
explored. Each of these cases is treated as an individual steady level flight case, meaning
again only the symmetric modes are considered as design variables. The aircraft model is
again trimmed using the traditional control surfaces for each flight velocity in order to have
a point of comparison with the optimum solution as well as an initial set of design variables.
Some of the trim results are expressed in Table 1 for both the initial and optimum cases. One
measure in the effectiveness of the optimization is to examine the percent difference in the
thrust required. This gives an idea into the potential energy savings of the optimum wing
shape versus the initial wing shape. For this velocity range the varying percent difference is
as great as 12.68% and as low as 4.64% meaning the drag reduction is somewhat dependent
on the specific flight condition. Figs. 4 to 7 highlight four distinct shapes seen over the
velocity range.

Table 1: Initial and optimum trim data for U = 18 to 28 m/s

Initial Optimum

U, m/s Drag, N Thrust, N BAOA, deg Drag, N Thrust, N BAOA, deg

18 105.254 105.974 6.595 100.799 101.061 4.1077

19 95.571 96.011 5.485 90.278 90.468 3.721

20 87.195 87.468 4.528 82.724 82.864 3.353

21 79.943 80.110 3.699 77.479 73.586 3.210

22 73.657 73.756 2.973 66.992 67.085 3.041

23 68.190 68.245 2.333 61.091 61.177 2.940

24 63.424 63.454 1.766 56.053 56.121 2.906

25 59.268 59.282 1.260 51.696 51.763 2.886

26 55.659 55.665 0.803 50.246 50.325 3.140

27 52.520 52.521 0.389 49.733 49.806 3.078

28 49.811 49.811 0.010 41.287 45.604 2.463
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Figure 4: U = 18 m/s Figure 5: U = 25 m/s

Figure 6: U = 26 m/s Figure 7: U = 28 m/s

B. Multi Objective Optimization

Using the updated multi-objective function in Eq. (19), a new optimization is performed to
study the effects of varying the parameter ξ. For this study, the aircraft is again at 20,000
m and flying at 25 m/s. Only the symmetric modes are used in the optimization as it is
still steady level flight. The parameter ξ is varied from 0 to 1 in increments of 0.1. If ξ=1
the optimization is solely to minimize the drag, and if ξ = 0 the optimization is solely to
minimize the wing root bending moment due to gust disturbances. The results of this study
are shown in Table 2 including the aerodynamic drag, thrust, body angle of attack for trim,
and the root bending load for each case. It can be seen that as ξ goes from 0 to 1, the drag
from the final solution decreases, until it reaches the same solution that was achieved in the
single objective function optimization. The bending moment at the root of the wing follows
an opposite pattern, increasing as ξ increases. The optimum shapes associated with a few
highlighted cases are presented in Figs. 8 to 11. The chosen velocities represent the major
shapes seen as ξ is varied.

IV. Final Paper

The final paper will include the highlighted studies above as well as some additional
studies. One additional study is to explore the reduced control scheme in order to minimize
the control effort required for a given optimization. Another study is to fully develop a linear
parameter-varying flight controller to provide the optimum shapes for any flight condition
with the guaranteed control performance and stability. This will be applied to both level
flight with a varying flight speed as well as level flight transitioning into turning flight. In
addition, gust load alleviation and control efforts will be considered in the optimization
process to find the best wing shape.
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Table 2: Parametric Study Results

ξ Drag(N) Thrust(N) Body AOA(deg) My(N-m)

0 -81.88 82.09 4.16 1.9741× 103

0.1 -82.19 82.35 3.59 1.9353× 103

0.2 -81.9 82.15 4.56 1.9916× 103

0.3 -70.63 70.79 3.95 2.2221× 103

0.4 -63.93 64.09 4.09 2.4949× 103

0.5 -58.63 58.74 3.68 2.6965× 103

0.6 -56.49 56.61 3.49 2.8343× 103

0.7 -56.39 56.49 3.47 2.8492× 103

0.8 -54.11 54.19 3.23 3.0317× 103

0.9 -53.39 53.46 3.10 3.161× 103

1 -51.66 51.72 2.87 3.1436× 103

Figure 8: ξ=0 Figure 9: ξ=0.4

Figure 10: ξ=0.8 Figure 11: ξ=1
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19Tang, D. and Ã, E. H. D., “Experimental and theoretical study of gust response for a wing store
model with freeplay,” Journal of Sound and Vibration, Vol. 295, No. 3, 2006, pp. 659–684.

20Aldraihem, O. J., Singh, T., and Wetherhold, R. C., “Optimal Size and Location of Piezoelectric
Actuator/Sensors: Practical Considerations,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3,
May–Jun 2000, pp. 509–515.

21White, A., Zhu, G., and Choi, J., “Optimal LPV Control with Hard Constraints,” International
Journal of Control Automation and Systems, Vol. 14, No. 1, Feb 2016, pp. 148–162.

22Zhang, S., Yang, J. J., and Zhu, G. G., “LPV Modeling and Mixed Constrained H-2/H-infinity Control
of an Electronic Throttle,” IEEE-ASME Transactions on Mechatronics, Vol. 20, No. 5, Oct 2015, pp. 2120–
2132.

15 of 15

American Institute of Aeronautics and Astronautics


