

Microstructural Characterization and Modeling of SLM Superalloy 718

Tim M. Smith¹, Chantal K. Sudbrack¹, Pete Bonacuse,¹ Richard Rogers¹

¹ NASA Glenn Research Center, Materials and Structures Division, Cleveland OH 44135

OCTOBER 8 – 12, 2017 DAVID L. LAWRENCE CONVENTION CENTER PITTSBURGH, PENNSYLVANIA, USA

Motivation for Microstructural Modeling

- A number of modeling tools are being developed to support rapid flight certification of SLM 718 components for the SLS engine under NASA's Material Genome Initiative program.
- Post-processing heat treatment of SLM 718 components is required for consolidation and to obtain optimal mechanical properties.

Background

- Commercial software packages based on CALPHAD-based methods have been developed to predict microstructure.
- Accurate microstructural measurements are needed to "tune" these models, i.e. compare, calibrate and then validate model predictions to experimental values.

Objective

 To obtain accurate microstructural measurements that will enable a model that can predict microstructure well over a range of relevant heat treat conditions

Approach

- $\frac{1}{2}$ -inch diameter rods of superalloy 718 were fabricated using SLM on MSFC's M2 Concept Laser.
- All section pieces were stress relieved at high temperature, cut from build plate, then hot isostatic pressed (HIP).
- The thermal history and alloy composition were used as inputs into the Pandat 2013 precipitation models.
- **Detailed microstructural measurements** of the precipitates were performed to verify the model predictions.

Superalloy 718

Computherm Pandat Modeling

wt.%	Ni	AI	Со	Cr	Fe	Мо	Nb	Ti	W
SLM 718	53.19	0.5	0.09	18.1	18.9	3.1	5.1	1.0	0.02

Computherm Pandat 2013 PanPrecipitation Module

- First precipitation package to allow users to apply thermal history to an initial microstructure, as well as standard homogenized alloy chemistry
- Computherm has worked closely with the Air Force Research Laboratory (AFRL) on superalloy 718 database development: PanNi_MB_2013 is their combined thermodynamic / kinetic databases.

5

Sample Preparation of SLM Superalloy 718

• Superalloy 718 specimens were fabricated by SLM on MSFC Concept Laser tool.

Age 1: 1325°F/10hr + FC to 1150°F + 1150°F/≈6hr (until total time is 18hr) Age 2: 1400°F/10hr + FC to 1200°F + 1200°F/≈8hr (until total time is 20hr)

Set 1 - Homogenized

Z41: SR + HIP + Homo + Sol 1950 + Age 1 **Z18**: SR + HIP + Homo + Sol 1850 + Age 1 **Z1**: SR + HIP + Homo + Sol 1850 + Age 2 **Z25**: SR + HIP + Homo + Sol 1700 + Age 1

<u>Set 2 – Not homogenized</u>

Z8: SR + HIP + Sol 1850 + Age 1 **Z3**: SR + HIP + Sol 1850 + Age 2 **Z27**: SR + HIP + Sol 1700 + Age 1

Microstructural Characterization – Precipitates New Technique: HR-SEM

- New high resolution SEMs allow for direct imaging of γ'/γ" precipitates when preferentially etched.
- Imaging at 3kV using a secondary electron detector eliminates sample thickness/overlap problems.
- Using precipitate morphology (Aspect ratio), γ' precipitates can be separated from γ". (Orientation dependent).

Etched with a solution of 50mL Lactic Acid 30mL Nitric Acid and 2mL HF

Z1 – Age 2

SEM - Microstructure

Microstructural Characterization - EBSD

EBSD Map

Microstructural Characterization – Precipitates
(EDS)HAADFZ1 – Age 2EDS Map

Microstructural Characterization – Precipitates (EDS) Z1 – Age 2

 $\gamma' - (Ni_3(AI, Ti)) \qquad \gamma'' - (Ni_3Nb)$

Microstructural Characterization – Precipitates (EDS)

Z1 – Age 2

Note: Presence of composite particles!

Microstructural Characterization – Precipitates SEM Vibration/Distortion Correction

Z1 – Age 2

No Correction

Scan Corrected

At low magnifications there isn't a noticeable difference...

Microstructural Characterization – Precipitates SEM Vibration/Distortion Correction

Z1 – Age 2

No Correction

Scan Corrected

However, at high magnifications it is very noticeable!

Microstructural Characterization – Precipitates Procedure

Z1 – Age 2

Scan-corrected

Microstructural Characterization – Precipitates Procedure Z1 – Age 2

Normalize contrast and brightness: adaptive threshold: make binary (ImageJ)

Microstructural Characterization – Precipitates Procedure Z1 – Age 2

Watershed by hand (ImageJ)

Currently working on automating this process

Microstructural Characterization – Precipitates Procedure Z1 – Age 2

Separate precipitates using aspect ratio cutoffs determined using EDS (ImageJ)

NASA

Microstructural Characterization – Precipitates Procedure Z1 – Age 2

Repair composite γ' precipitates (ImageJ)

Microstructural Characterization – Precipitates Procedure

Z1 – Age 2

Same steps for γ " precipitates. Merge Images. Extract statistics (Size and area fractions for both γ ' and γ ") (ImageJ). Repeat until at least >500 particles from each phase is analyzed.

WD = 5.1 mm

Sample ID =

Microstructural Characterization – δ Precipitates

Etched Surface

Thresholded Image

Precipitate Parameter	Experimental	Model
δ area percent	.369 ± .24 %	2.0 %
δ average size	.03 ± .01 um ²	
δ feret dia.	.69 ± .15 um	

Mag = 15.00 K X

XRD – Volume Fraction Validation

Phase ID (4)	Chemical Formula	PDF-#	Space Group	Vol% (esd)	Wt% (esd)	a (esd)	c (esd)
Y/Y'	IN ₇₁₈	98-000-1033	cFm-3m (225)	89.34 (3.11)	88.30 (2.26)	3.59588 (17)	3.59588 (17)
Υ"	IN ₇₁₈	98-000-1036	tl4/mmm (139)	10.57 (0.63)	11.62 (0.63)	3.61425 (63)	7.42937 (132)
NbC	NbC	04-001-1554	cFm-3m (225)	0.09 (0.02)	0.09 (0.02)	4.43000 (0)	4.43000 (0)
δ	IN ₇₁₈	98-000-1035	oPmmn ² (59)	0.00 (0.00)	0.00 (0.00)	5.14100 (0)	4.53400 (0)

Refinement Halted (R/E=13.92),
Round=4, Iter=6, P=31, R=9.0% (E=0.65%, EPS=0.5)

Crystal structure of γ and γ' phases are to similar to separate in XRD

Precipitate Parameter	SEM	XRD	
γ' volume fraction	5.1 ± 0.8 %	N/A	
γ" volume fraction	11.1 ± 0.9 %	10.6 ± 0.6	
δ volume fraction	.37 ± .24 %	≈ 0 %	

Phase Extraction

Precipitate Parameter	Experimental	Phase Extraction
$(\gamma'/\gamma''/\delta)$ volume fraction	16.6 ± 1.2 %	15.7 %

Can not separate $\gamma'/\gamma''/\delta$ phase due to similar chemistries

XRD and Phase Extraction Combined

Precipitate Parameter	SEM	XRD + PE	Model
γ' volume fraction	5.1 ± 0.8 %	5.1 ± 0.6	2 %
γ" volume fraction	11.1 ± 0.9 %	10.6 ± 0.6	14 %
δ volume fraction	.37 ± .24 %	0 %	2 %

The XRD + PE analysis validates the new SEM characterization technique!

Microstructural Analysis – Results Gamma Prime Phase

γ' Area Fractions

Microstructural Analysis – Results Gamma Prime Phase

Microstructural Analysis – Results Gamma Double Prime Phase

Microstructural Analysis – Results Gamma Double Prime Phase

Methodology – 3D Size distributions

γ'' Size Analysis: [001] oriented grains γ' Size Analysis: Any orientation

Using the measured area size distributions of each precipitate, the numerical volumetric size distributions were calculated using the equation below assuming a spherical particle^{*}. This works for γ' for all orientations. For γ'' precipitates, it must be performed only on the two edge-on variants of γ'' in [001] oriented grains.

$$(N_{\nu})_{j} = \frac{1}{\Delta} \sum_{i=j}^{k} \alpha_{i} (N_{A})_{i}$$

Where N_A is the experimentally obtained area number densities, D_{max} =k Δ , and k equals the total number of size groups. α is a pre-determined coefficients associated with the probability of the polish surface plane cutting a sphere as revealed below.

$$P_{i,j} = \frac{1}{r_{max}} \left[\sqrt{(r_{max}^2) - (r_{i-1})^2} - \sqrt{(r_{max}^2) - (r_i)^2} \right]$$

*Stereology and Quantitative Metallography, ASTM, STP 504

γ' Size Distributions

γ' precipitates possess a mostly normal size distribution.

γ" Size Distributions

γ" precipitates do not possess a normal size distribution.

Discussion

Experimental

 Composite particles are not completely separated (esp. Age 1 samples).

Assumptions:

- Perfectly etched samples
- γ' are spherical, γ" are circular plates.
- No subsurface features are imaged.

Future work: further automate post-processing procedure and find more accurate ways to separate γ'/γ'' composite particles.

<u>Model</u>

- Carbides/Oxides were suspended to simplify calculations
- Inter-particle interactions not well established.

Tuning Parameters:

- Compatible thermodynamic database
- Compatible mobility database
- ΔE phase energy shift for equilibrium phase fractions
- D_{scale} Diffusivity correction factor
- Molar volume for each phase
- Coherent surface energy (mJ/m²)
- Lattice misfit energy (mJ/m²)
- Incoherent surface energy (mJ/m²)

Discussion

Experimental

 Composite particles are not completely separated (esp. Age 1 samples).

Assumptions:

- Perfectly etched samples
- γ' are spherical, γ'' are circular plates.
- No subsurface features are imaged.

Future work: further automate post-processing procedure and find more accurate ways to separate γ'/ γ" composite particles.

<u>Model</u>

- Carbides/Oxides were suspended to simplify calculations
- Inter-particle interactions not well established.

Tuning Parameters:

- Compatible thermodynamic database
- Compatible mobility database
- ΔE phase energy shift for equilibrium phase fractions
- D_{scale} Diffusivity correction factor
- Molar volume for each phase
- Coherent surface energy (mJ/m²)
- Lattice misfit energy (mJ/m²)
- Incoherent surface energy (mJ/m²)

Conclusions

- A new method using high resolution scanning electron microscopy combined with advanced processing techniques allows for unprecedented microstructural characterization of additively manufactured superalloy 718.
- XRD and Phase extraction support the findings from the SEM analysis.
- Differences in γ " and γ ' size distributions are currently unexplained.
- Currently, the precipitation models predict the microstructural trends resulting from different post-processing heat treatment steps.
- Calibrating future precipitation models using results from this new technique will further improve their accuracy.

<u>Acknowledgments:</u> Microstructural Characterization and Modeling of SLM Superalloy 718

Funding: NASA HEOMD Space Launch System Liquid Engine Office Additive Manufacturing Structural Integrity Initiative (AMSII) Project

- Robert Carter GRC
- Dave Ellis GRC
- Brad Lerch GRC
- Joy Buehler GRC
- Tim Gabb GRC
- Laura Evans GRC
- Anita Garg GRC
- Dereck Johnson GRC
- Bryan Esser OSU
- Connor Slone OSU

National Aeronautics and Space Administration

Questions?

www.nasa.gov 34