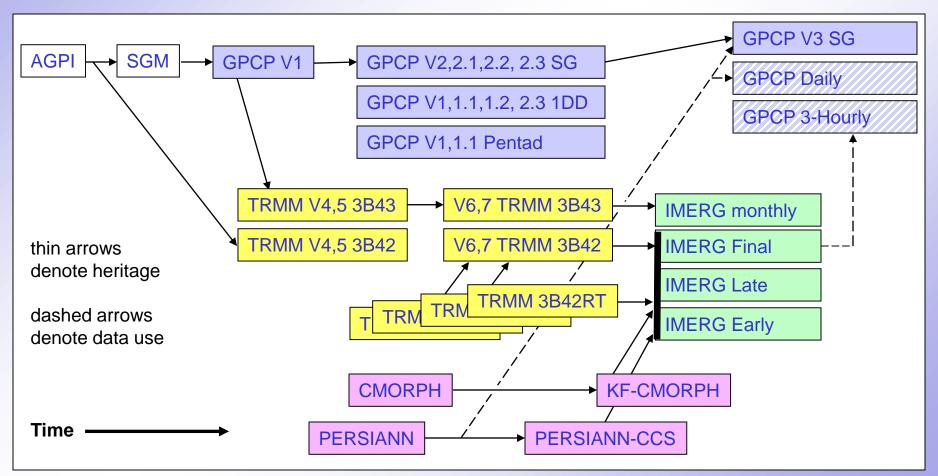

Connecting Satellite-Based Precipitation Estimates to Users


George J. Huffman(1), David T. Bolvin(1,2), Eric Nelkin(1,2)

1. HISTORY

Merged Precipitation Group has had a major role in


- Global Precipitation Climatology Project (GPCP) 1995
- TRMM Multi-satellite Precipitation Analysis (TMPA) 2002
- Integrated Multi-satellitE Precipitation Retrievals for GPM (IMERG) 2014

2. CONTENT

Multi-satellite datasets merge retrievals/analyses of precipitation from individual satellites (and gauges)

- this puts a premium on consistent and accurate retrievals
- intercalibrations are required to improve consistency
- still, <u>different sensors "see" precipitation</u> <u>differently</u>
 - nearly coincident views by 5 sensors southeast of Sri Lanka
 - offset times from 00Z given below the sensor name
- <u>data gaps</u> in the combination process are <u>filled</u> by various <u>interpolations</u>
 - necessarily smoother than in reality
 - need to control effect on <u>fractional coverage</u>

2. CONTENT - IMERG Example

The <u>original GPCP</u> dataset included "all" intermediate fields

 assumed that precip experts would want to see these – not true

The <u>original TMPA</u> fell back to just precip and random error

- discovered we needed some fields for diagnosis and development
- some <u>users</u> needed them, too
- re-introduced fields with actual need

IMERG has continued this trend

- introduce ancillary fields at <u>user</u> request
 - Probability of Liquid Phase Precip
 - diagnostic, using model data
 - Quality Index
 - new, work in progress

IMERG Data Fields	
	Half-hourly data file (Early, Late, Final)
1	[multi-sat.] precipitationCal
2	[multi-sat.] precipitationUncal
3	[multi-sat. precip] randomError
4	[PMW] HQprecipitation
5	[PMW] HQprecipSource [identifier]
6	[PMW] HQobservationTime
7	IRprecipitation
8	IRkalmanFilterWeight
9	[phase] probabilityLiquidPrecipitation
10	precipitationQualityIndex
	Monthly data file (Final)
1	[satgauge] precipitation
2	[satgauge precip] randomError

GaugeRelativeWeighting

precipitationQualityIndex

probabilityLiquidPrecipitation [phase]

3

4

5

3. DISSEMINATION (1/2)

Format

- originally in flat binary, sometimes encoded
- innovation: add an extra row loaded with metadata
- standards have evolved
 - HDF flavors, NetCDF flavors, tending toward interoperability
 - still a work in progress, particularly in dealing with libraries for different versions
- <u>data centers</u> are adding web services, format converters, subsetting by parameter and location, value-added products (<u>shape file averages</u>, accumulations)

Time/space interval driven by data availability

- GPCP V1 was 2.5° /monthly, then introduced 1° /daily (for a shorter period)
- TMPA V4 was 1° /monthly and 1° /daily, then went to 0.25° /monthly and 0.25° /3-hourly
- IMERG is 0.1° /monthly and 0.1° /half-hourly

Errors are higher for finer-scale estimates

3. DISSEMINATION (2/2)

Multiple runs accommodate different user requirements for latency and accuracy

- TMPA backed into handing out near-real-time (~8 hours old) by user request
 - tapped into a strong demand for current data
 - <u>lesson learned</u>: users need a long, consistently processed record for each dataset to support calibration of applications
 - the entire record of all variants has to be upgraded in a version shift
 - "real time" ≠ "disposable" ... this is a paradigm shift for archive operators
- IMERG has <u>3 "Runs"</u> to support a wider variety of use cases
 - "Early" 4 hr (flash flooding)
 - "Late" 12 hr (crop forecasting)
 - "Final" 3 months (research)
 - waiting longer includes more input data presumably more accuracy
 - lesson learned: users get confused when confronted with multiple products
 - this is also true across data providers
 - data providers have to do a better job at <u>"suitability for use" information</u>

4. USER SUPPORT

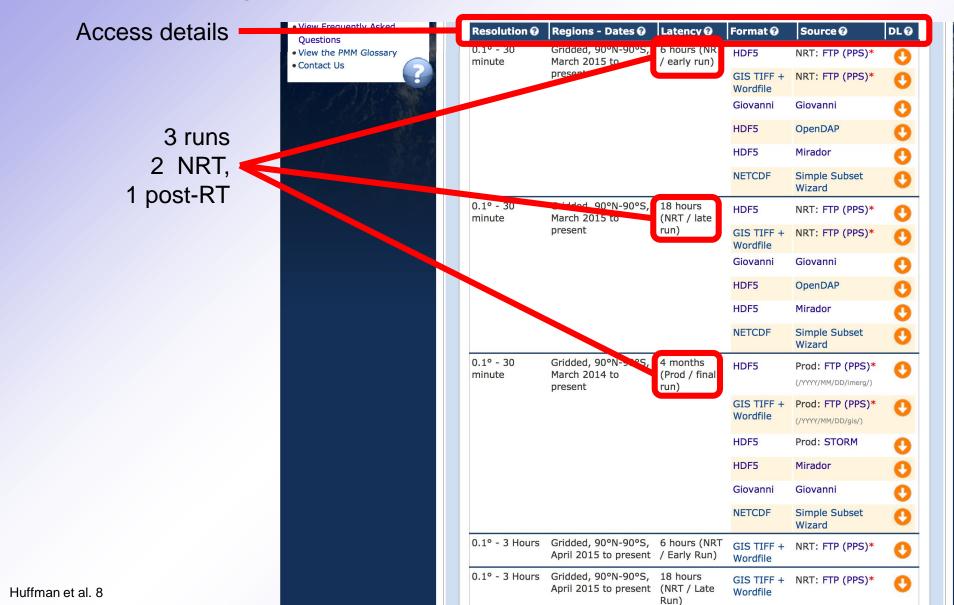
User support was originally

- algorithm papers
- e-mail with developers
- text README files
- technical documents

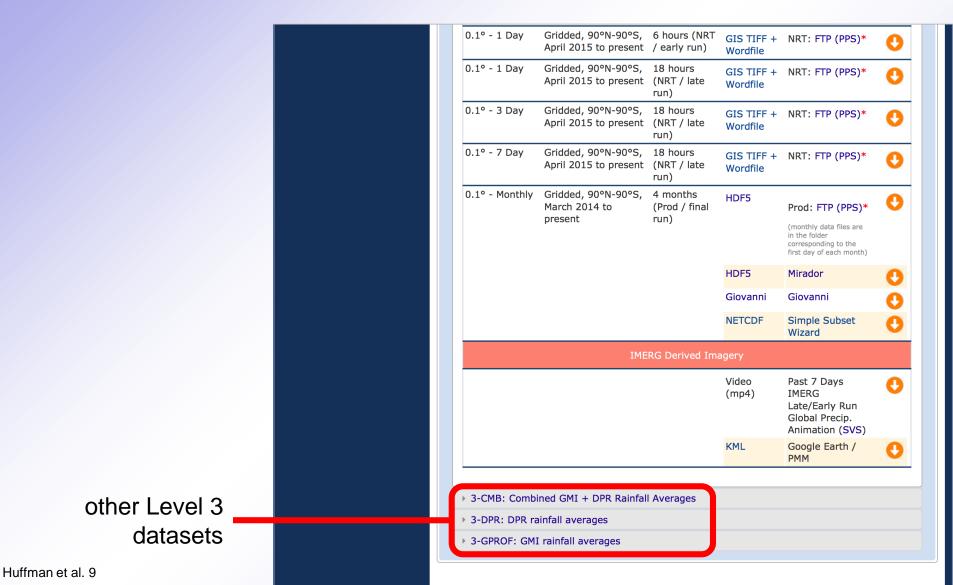
Modern support includes

- mailing list(s)
- web site
 - documents
 - data access hot link(s)
 - Frequently Asked Questions
 - Ask-A-Question hot link
 - Recipes
- social media presence
 - facebook
 - twitter
 - ResearchGate
 - LinkedIn

4. USER SUPPORT – PMM Example (1/2)


PMM summarized all data access at Goddard on a single set of pages

https://pmm.nasa.gov/data-access


4. USER SUPPORT – PMM Example (2/2)

https://pmm.nasa.gov/data-access

4. USER SUPPORT – PMM Example (3/3)

https://pmm.nasa.gov/data-access

4. USER SUPPORT - But Wait, There's More

GPCP and TMPA reformatted to the Obs4MIPS archive

CMIP5 standard for model work

Custom product releases to NOAA

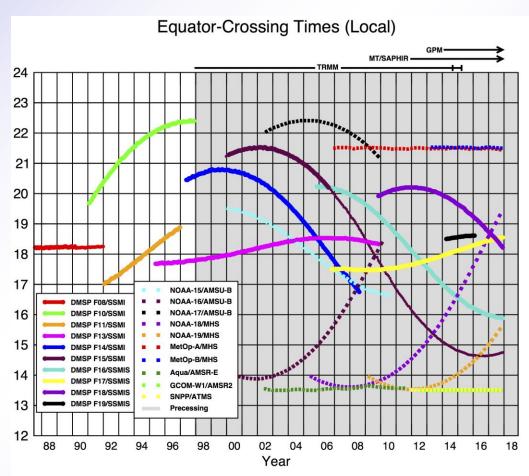
Short-term Prediction Research and Transition (SPoRT) Center

Training Activities

- Applied Remote Sensing Training (ARSET)
- PMM application workshops

Secondary archives outside of Goddard

typically without coordination with developers


5. BACK TO "CONTENT"

Multi-satellite precip datasets have advanced over the last 20 years due to

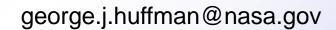
- improved retrievals from individual satellites
- continued advancement in combination approaches
- increased numbers of microwave sensors
- improved sensors

The launch manifests for the next generation of satellites are <u>sparse</u>

- the <u>user community expects</u> the existing (or better) products in the future
- this requires a steady supply of high-quality satellite observations

Ascending passes (F08 descending); satellites depicted above graph precess throughout the day. Image by Eric Nelkin (SSAI), 14 December 2017, NASA/Goddard Space Flight Center, Greenbelt, MD.

6. FINAL COMMENTS


All of this work has taken sustained commitment of resources

Going into the future the challenges are

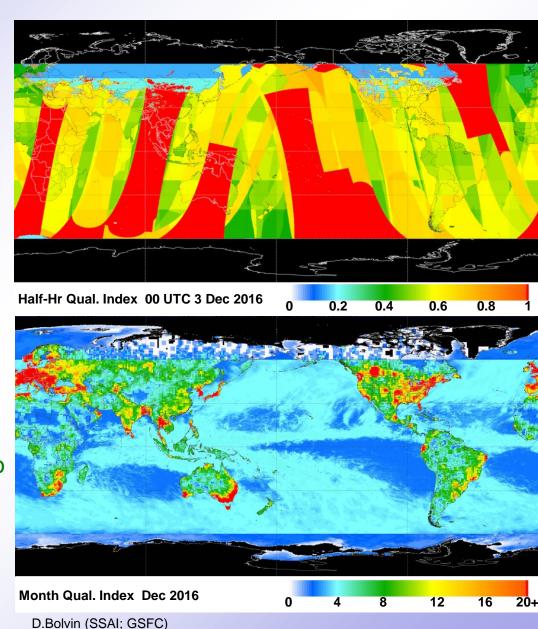
- how do we maintain/augment the observational base (including surface gauges)?
- how do we squeeze <u>additional information</u> out of space-based sensors?
- what are <u>sustainable models</u> for supporting the enormous community of nonexpert users?

The <u>climate community</u> has a stake in this discussion


- "extremes" are inherently fine-scale, so the climatology of extremes requires a long record of fine-scale estimates
- even precipitation averages tend to be <u>dominated by a few large events</u>, which are usually fine-scale

pmm.nasa.gov

IMERG on the Hyperwall 4 p.m.


4. VERSION 05 IMERG – Quality Index (QI)

Half-hourly QI

- approx. <u>Kalman Filter correlation</u>
 - time to nearest PMWs
 - IR at time (when used)
 - set to 1 when a PMW is used
- thin strips due to inter-swath gaps
- blocks due to regional variations
- low values at high lat. due to using IR with PMW masked out over snow

Monthly QI

- Equivalent Gauge (Huffman et al. 1997) in gauges / 2.5° x2.5°
- invert random error equation
- largely tames the non-linearity due to rain amount
- some residual issues at high values

IMERG 11

2. CONTENT – IMERG Example

Multiple runs accommodate different user requirements for latency and accuracy

- "Early" 4 hr (flash flooding)
- "Late" 14 hr (crop forecasting)
- "Final" 3 months (research)

Time intervals are half-hourly and monthly (Final only)

0.1° global CED grid

- merged <u>PMW</u> precip <u>90° N-S</u>
- morphed <u>precip</u> 60° N-S for now
- probability of liquid precip 90° N-S

User-oriented services by archive sites

- interactive analysis (Giovanni)
- alternate formats (TIFF files, ...)
- value-added products

Half-hourly data file (Early, Late, Final)

- 1 [multi-sat.] precipitationCal
- 2 [multi-sat.] precipitationUncal
- 3 [multi-sat. precip] randomError
- 4 [PMW] HQprecipitation
- 5 [PMW] HQprecipSource [identifier]
- 6 [PMW] HQobservationTime
- 7 IRprecipitation
- 8 IRkalmanFilterWeight
- 9 [phase] probabilityLiquidPrecipitation
- 10 precipitationQualityIndex

Monthly data file (Final)

- 1 [sat.-gauge] precipitation
- 2 [sat.-gauge precip] randomError
- 3 GaugeRelativeWeighting
- 4 probabilityLiquidPrecipitation [phase]
- 5 precipitationQualityIndex