

Observations in Fracture Toughness Testing of Glasses and Optical Ceramics

MS&T'17 October 10th, 2017

Jon Salem NASA GRC

OUTLINE

- Background
- Test methods employed
- Results for ALON, spinel, fused silica, glass
- Interferences (complications) encountered:
 - Stress corrosion and rate effects
 - Stability
 - Crack length measurement (grain size)
 - Damaged specimens
 - Crack growth resistance
- Summary

Importance of Fracture Toughness

- Governs the fracture strength by way of the flaw distribution.
- Determines the end of the slow crack growth curve:

- Log Stress Intensity Factor, K_I/K_{Ic}
- Needed to determine design parameter from data.
- Thus a critical structural design parameter.
- And an excellent metric to rank materials.

Fracture Toughness Definitions

- Fracture toughness—a generic term for measures of resistance of extension of a crack. (E399, E1823)
- ASTM E399: crack extension resistance at the onset of crack extension under specific operational conditions (stable or unstable).
- C1421: *fracture toughness* K_{lvb} the measured stress intensity factor corresponding to the extension resistance of a stably-extending crack in a chevron-notched test specimen.
- For engineering purposes, generally boils down to a procedure specific value (real, measurable crack; defined configuration).

How Variable were Fracture Toughness Measurements prior to Standardization?

• α SiC:

,	Precracked beam (SEPB)	Surface crack in flexure (SCF)	Chevron-notch (CNB)	Ref.
		3.01 ± 0.35	2.91 ± 0.31	Α
Γ	$\textbf{2.41} \pm \textbf{0.14}$		2.71	В
		3.01 ± 0.06		С
Ī		3.45 ± 0.15		D
		$\begin{array}{c} 3.31 \pm 0.19 \\ 3.11 \pm 0.26 \\ 3.00 \pm 0.04 \\ 3.04 \pm 0.24 \end{array}$		E
Ī		$\boldsymbol{2.82\pm0.31}$		F
		3.10		G

Greater than 30% difference in literature!!

Standard Method C1421

- ASTM C28 developed standard C1421 for fracture toughness testing of ceramics.
- First draft written in 1998; finished in 1999. My goal was to standardize multiple methods and keep individual errors below 2%.
- The standard covers three methods.
- Very similar results from all three methods.
- Emphasis was on *structural ceramics* for heat engine applications.
- Is C1421 applicable to glasses and optical ceramics? What issues need address?

C1421 STANDARIZED TEST METHODS

• Flexure test specimens with various cracks:

- Different crack size
- Different crack formation history
- Different effort

Similar results for ceramics!

LOADING CONFIGURATION

□ Relatively simple fixtures: test frame, load cell, recording device.

HOW GOOD CAN FRACTURE TOUGHNESS MEASUREMENTS BE WITH C1421?

Material	<i>K_{Ivb}</i> MPa√m	K _{Ipb} MPa√m	K _{Isc} MPa√m
α-SiC (JAS)	2.61 ± 0.05	2.58 ± 0.08	2.76 ± 0.08
α-SiC (UW)	2.62 ± 0.06	2.54 ± 0.20	2.69 ± 0.08
ADS96R	3.56 ± 0.03	3.71 ± 0.10	
ALSIMAG 614	3.19 ± 0.06	3.09 ± 0.17	3.18 ± 0.10
ALSIMAG 614	3.13 ± 0.03	2.98 ± 0.06	
NC132	4.60 ± 0.13	4.59 ± 0.12	4.55 ± 0.14
NT154	5.18 ± 0.11	5.21 ± 0.02	5.80 ± 0.23
SN260	5.19 ± 0.06	5.13 ± 0.15	
SiAlON		2.45 ± 0.09	2.55 ± 0.05

□ Three methods are usually within ~3% for "structural" ceramics. 30% => 3%.

116-7 4

C1421 Captures Grain Size effects on Toughness

L	Increasing g	grain size		
	SRBSN 147- 31N	5.3 ± 0.2	5.6 ± 0.2	
	PY6	6.3 ± 0.1	6.2 ± 0.1	In situ toughened silicon nitride
	AS800 (dark)	6.9 ± 0.1	7.2 ± 0.2	
	AS800 (light)	7.40 (1)	7.6 ± 0.2	
	AS440	7.2 ± 0.3	7.3 ± 0.3	
1	NKK	10.4 ± 0.5	10.3 ± 0.6	10 µm
	Silicon Nitride	$K_{Ivb}(A)$ MPa \sqrt{m}	<i>K_{Ipb}</i> MPa√m	

• For ceramics, C1421 provides consistent results with different methods despite different crack geometry.

Glass and Optical Materials Tested

Fused Silica

- Soda-Lime Silicate Glass
- ALON: GS = 235µm

• Spinel (MgAlO₄): $GS = 220\mu m$:

Fused Silica

Russian Quartz-Silica

Fracture Toughness (MPa√m)					
Method	Air (75°F, 45% RH)	Dry N ₂			
SEPB	0.71 ± 0.05	0.73 ± 0.02			
VB	0.71 ± 0.04	0.77 ± 0.01			

Shuttle Fused Silica (7940)

Fracture Toughness (MPa√m)				
Method	Air (75°F, 45% RH)	Dry N ₂		
SEPB	0.71 ± 0.04	0.74 ± 0.03		
VB	0.73 ± 0.04	0.77 ± 0.02		

Literature on 7940 & 7980

Fracture Toughness (MPa√m)					
Method	Vacuum	Vacuum/ Dried	Dry N ₂	Source	
AMDCB			0.72 ± 0.01	NIST (LB)	
DCB	0.74 ± 0.03	0.73 ± 0.02		NIST (SW)	
3-Pt	0.75 ± 0.03		0.76	NIST (SW)	
DCDC	0.73 to 0.76			Sandia	

Conclusion: very similar results by all. Metrology is OK!
Toughness in air is less than in nitrogen.

Soda Lime Silicate Glass

Load Rate	0.005	0.01	0.02
(mm/min)	(54%RH)	(53%)	(40%)
<i>K_{Ivb}</i> (MPa√m)	0.65 ± 0.02	0.67 ± 0.03	0.74 ± 0.03

Load Rate	0.005	0.02	0.005	0.02
(mm/min)	(LP N ₂)	(LP N ₂)	(HP N ₂)	(HP N ₂)
<i>K_{Ivb}</i> (MPa√m)	0.76 ± 0.01	0.75 ± 0.01	0.76 ± 0.01	0.79 ± 0.02

- Systematic increase with test speed and decrease of humidity.
- Differences are associated w/rate and environment: SCG!! Go dry!

So, what is Fracture Toughness of a Glass?

• In humid environments, fracture toughness measurements are points on the slow crack growth curve:

Log Stress Intensity Factor, K_I/K_{Ic}

• The unique value, K_{Ic}, corresponds to a dry environment.

Complication: Unstable Fracture

• In dry environments, stable crack extension can be difficult to obtain:

 Required for the chevron-notch. Less of an issue for SEPB and SCF methods.

Solutions: precracking & scratching

Complication: Cracked Specimens

• Some materials are very fragile and can be cracked:

- Bonding agents need to be removed:

• Results in low compliance:

ALON

$K_{Ivb}(A)$ (MPa \sqrt{m})		K _{Ipb}	K _{Isc}
~40% RH	N ₂	~50% RH	N ₂
2.09 ± 0.06	$\textbf{2.18} \pm \textbf{0.10}$	2.02 ± 0.04	2.36 ± 0.1

Stress Rate	0.002	2	20	20
(MPa/s)	(H ₂ O)	(H ₂ O)	(H ₂ O)	(N ₂)
<i>K_{Isc}</i> (MPa√m)	1.80 ± 0.07	1.92 ± 0.06	2.07 ± 0.06	2.36 ± 0.1

- Similar results for the three standard methods.
- Again, differences are associated w/rate and environment: SCG!! Go dry!

Spinel

45%–65% RH		N_2 (MPa \sqrt{m})		
K_{Ipb}	K _{Ivb}	K_{Ipb}	K _{Ivb}	
1.32 ± 0.05	1.48 ± 0.14	1.52 ± 0.07	1.58 ± 0.08	

 $\Delta = 11\%$ for air; $\Delta = 4\%$ for N₂

- Similar results for two of the standard methods.
- Numbers converge for nitrogen!

NASA

Complication: Crack Length Measurement

• Crack front apparent...until the specimen is broken:

- Solution is a strain gage..... a/W α (P/ε).
- Or use the chevron, which does not need crack length.

Complication: Crack Length Measurement

• Crack front apparent not always apparent in SCF specimens:

• Less than ideal shapes due to grain structure:

Complication: Crack Growth Resistance

• Some optical materials have a coarse grain structure. This can cause an R-curve:

Crack Extension or Precack length, mm

• ASTM C1421 techniques provide relative low values on the R-curve for an alumina.

Complication: Thin Materials

• Double torsion specimen (Non-Standard). Thin plate loaded on one edge:

Comparable results for some materials......

Non-Standard Option: Double torsion

• Results compare well for fine grained materials:

 For coarse grained materials, crack growth resistance causes elevated values relative to short crack methods.

Interferences (complications) to Address when Testing Glasses and Optical Ceramics

- Stress corrosion (humidity and rate)
- Stable crack extension (CNB)
- Crack length measurement (SEPB & SCF)
- Specimen damage (CNB)
- Crack growth resistance

Data Ranges

Fracture toughness (MPa \sqrt{m}) of glasses and optical materials via C1421				
	Environm	Environment		
Glasses	Air ($\%$ RH/ $^{\circ}$ F)	Dry N ₂	%	
MOMA	0.57 ± 0.03 (30/74)	0.69 ± 0.01	-17%	
Corning 0120	0.50 ± 0.02 (34/76)	0.67 ± 0.02	-25%	
Electro-Glass 2164	0.61 ± 0.05 (32/73)	0.74 ± 0.03	-18%	
Schott S8061	$0.64 \pm 0.01 \ (23/73)$	0.72 ± 0.02	-11%	
Schott 8330	0.61 ± 0.04 (60/73)	0.72 ± 0.04	-15%	
Soda lime silicate	$0.75 \pm 0.04 \ (35/73)$	0.80 ± 0.01	-6%	
Ba-doped	0.72 ± 0.002 (23/73)	0.76 ± 0.01	-5%	
Corning Silica, 7980	$0.73 \pm 0.04 \ (45/75)$	0.77 ± 0.02	-5%	
BK-7	0.87 ± 0.02 (24/73)	0.98 ± 0.04	-11%	
	Glass Ceramics			
Zerodur	$0.89 \pm 0.01 \ (45/73)$	0.94 ± 0.01	-5%	
Schott S8070	$1.57 \pm 0.03 \ (60/73)$	1.90 ± 0.03	-17%	
	Crystalline Optical Ce	ramics		
ALON	$2.09 \pm 0.06 \; (40/70)$	2.18 ± 0.10	-4%	
Ge	0.67 ± 0.03 (65/74)	No SCG	0%	
Sapphire {a} <m></m>	2.06±0.21	2.31±0.11	-11%	
Sapphire {r} <a>	1.96	2.47 ± 0.15	-21%	
Sapphire {m}<>				
Spinel	1.48 ± 0.14 (60/76)	1.58 ± 0.10	-6%	
$YVO_4{a} $	$0.48 \pm 0.02 \; (45/73)$			
$YVO_4{a} $	0.42 ± 0.03 (45/73)			
ZnS	0.74 ± 0.03 (60/72)	0.82 ± 0.02	-10%	
MS ZnS	$0.69 \pm 0.03 (58/74)$	0.74 ± 0.14	-7%	

Glasses < 1

Glass Ceramics \approx 1 - 2

Crystalline Ceramics σ 0.4 - 2.5

SUMMARY

- Fracture toughness measurements of glasses are points on the SCG curve.
- Thus rate and environment effects occur.
- These effects can be minimized and consistent results obtained by using faster rates or dryer environments.
- The limiting value occurs in a very dry environment.
- ASTM C1421 is generally applicable with appropriate considerations.

Suggested Changes to C1421

- Recommend testing in a dry environment
- For air, ensure a narrower range of rates
- Notes on precracking for dry testing (CNB)
- Guidance on precrack measurements (SEPB, SCF)

Air vs Nitrogen (or Vacuum)

• Common results:

• Due to SCG:

• Need dryer environment or faster rates to approach the limiting value.

So, what is Fracture Toughness of a Glass?

• In humid environments, fracture toughness measurements are points on the slow crack growth curve:

The unique value, K_{lc}, corresponds to a dry environment.