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Motivation & Goals

Launch of Alphasat on an Ariane 5, July 2013.
(Photo: ESA / CNES / ARIANESPACE)

Experiment Goals

To assess the impact of atmospheric effects on links operating in the Q-band (rain
attenuation, scintillation, etc.) in various climatological regions through distributed
measurement campaigns.

To assist the development of physical models to improve predictions of atmospheric
attenuation within the Q-band.

NASA Motivation

Preliminary architecture studies of the next generation TDRSS system will require higher
downlink bandwidths than available in the current Ku-band allocation

The allocation of 4 GHz of contiguous bandwidth in the Q-band provides an opportunity to
meet these requirements

NASA mission planning benefits greatly from Q-band measurements near NASA frequency
allocations at Deep Space Network sites.
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Site of Study

NASA Madrid Deep Space

Communications Complex
Robledo de Chavela,
Spain
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‘ s MDSCC m
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Installation Date March 2017

@@ Ground  latitude 40.425433° N
Station | gngitude 4.251175° W

Jpl- Altitude 758 m

Name Alphasat

"” } Nom. Elevation 34.5°

ke Satellite
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Beacon Freq. 39.402 GHz
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NASA Alphasat Stations (* The Madrid Deep Space Communications Beacon Receiver / Radiometer at the Madrid Deep Space 4

Complex is in Robledo de Chavela) Communications Complex



Instrumentation

Antenna Gain SNl

0.9 deg
0.01 deg
3348
2548
39.402 GHz

RF Electronics T S ] IF Electronics

5 MHz

10 Hz and 1 Hz
Dynamic Range [[E{o)G|:)
1=l e tien el 0.01 deg C (plate) / 1 deg C (air)

CECT e el 20 sec / 30 min
Radiometer Bandwidth [EeN\Y/IzV:



System Block Diagram
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Fine-Tuning Polarization Alighment

Milan
-59.8° Polarization,
Madrid  Edinburgh No Skew
-74.8° -62.7° -45.0°

Milan, Italy -45.0°© -29.8°v -74.8°©

Edinburgh, Scotland -45.0°v -17.7°9 -62.7°»

Madrid, Spain -45.0°« -14.8°«v -59.8° v

Alignment to the beacon polarization (Linear -45°) plus LNB skew at each site is
accomplished through mechanical rotation of the antenna on a custom mount. On

the antenna mount, four mounting bolt holes swept from -10° to -80° allow fine i O Q O i
adjustment of the polarization to cover all NASA Alphasat sites.




Temperature Control System

System temperature is tightly controlled to limit gain variation.

A primary thermoelectric cooling (TEC) system controls a cold-plate within
the RF enclosure to within £0.01 °C. All mountable RF components are
heatsinked to this plate including LOs, IF amplifiers, and filters. The noise

d . . . .
Antenn|feed f diode is also heatsinked to this plate.

Noise Diode

The LNA is mounted directly to the waveguide switch / feed and cannot be
bbbl i heatsinked to the cold plate. Instead, a secondary TEC system controls the
Temperature LNA to within £0.1 °C.
+2.0 °C

The internal air temperature of the enclosure is circulated with a fan and
\ maintains stability within about #2.0 °C day-to-day with some larger
seasonal drift.
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Cold Plate
| | The TEC systems use four

e e
Heatsink |\ Tellurex C2-40 tiles (plate) and

ﬂF Electronics

+0.01 °C

o s one C2-25 (LNA) driven by a
PWM voltage.

The plate tiles are driven as two
parallel pairs of two series tiles.

C2-40 C2-40




Temperature Stability

4 Day Temperature Stability
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System Performance

£ | Under normal operating conditions, the
|
A I B beacon receiver tracks the signal using a
g | __| 30dBDynamic | modified  Quinn-Fernandes frequency
- | . . .
5 R;ange estimation algorithm.
65 mm - —————
|
IR D R When attenuation approaches the noise
|
v } floor (below a given power threshold), the
345 5456 frequency estimate is replaced by an
159 \ average of the frequency estimate prior to
B L ,,,,,,, the fade. This allows for a slight
} improvement in dynamic range during the
F O beginning and end of deep fades.
> 1
e —— i . o . :
z 1 Signal lock is immediately regained when
2 ! . .
i I R the signal reappears above the noise floor.
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Digital Radiometer Design

The digital radiometer measurement is implemented by
pre-processing the sampled data before calculating the
signal power.

The full bandwidth output from the final-stage filter is
Nyquist sampled to obtain the noise power measurement.
A digital notch filter is applied, centered on a moving
average of past beacon frequency estimates, to remove the
signal power. The remaining noise power is then integrated
to produce the noise power measurement.

Nyquist Sampled Spectrum

(£/2 = 5.55 MHz) The signal power is obtained by applying a digital band-

pass sampling around the beacon frequency, then
decimating to reduce the computational demand of the FFT
/ frequency estimators used to estimate signal power.

11.11 MHz
220 (1,048,576)
25 (32)
i 50 kHz
Noise Power Spectrum Signal Spectrum 2 kHz
Notch Filter @ Beacon Frequency - BPF @ Beacon Frequency -> Chebyshev I
Integrate Noise Power Decimate / Undersample - 10
Estimate Frequency (QNF) > 100 dB

Calculate Signal Power 11



Digital Radiometer Measurement
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ter Calibration

Digital Radiome
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Concluding Remarks & Future Work

Conclusions

* The MDSCC Alphasat terminal has been operational since March 2017, collecting attenuation and scintillation data at an elevation
angle of 34.5°. Operation is expected to continue for a minimum of 5 years.

* The integrated digital radiometer provides valuable clear sky reference level but requires calibration - this system used a
switching noise diode approach as well as a tip calibration and found that tip calibrations are sufficient and may be preferable to
minimize required hardware.

Future Work

* Infusion of data into MDSCC high-frequency operations.
* Antenna wetting resolution - feed cover with hydrophobic coating
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