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Methodologies for Root Locus and Loop Shaping 
Control Design With Comparisons   

 
George Kopasakis 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
This paper describes some basics for the root locus controls design method as well as for loop 

shaping, and establishes approaches to expedite the application of these two design methodologies to 
easily obtain control designs that meet requirements with superior performance. The two design 
approaches are compared for their ability to meet control design specifications and for ease of application 
using control design examples. These approaches are also compared with traditional Proportional Integral 
Derivative (PID) control in order to demonstrate the limitations of PID control. Robustness of these 
designs is be covered as it pertains to these control methodologies and for the example problems. 

1.0 Introduction 
Root locus (RL) controls design is about designing the open loop (OL) transfer function (TF) in order 

to locate the closed loop (CL) poles of the feedback system at the desired location on the s-plane, such 
that the control system design satisfies the performance objectives. In Loop Shaping controls design, the 
objective is also to shape the OL TF in the frequency domain to satisfy control system performance 
objectives/specs. In either case, the control law or the controller TF ends up being designed in this 
process. 

Root Locus controls design is well covered in literature, as any book (Ref. 1) on classical controls 
theory will have a chapter or section devoted to this control design methodology. Where it gets a little 
complicated is how to best utilize the theory to come up with control designs that are relatively easy to 
implement, and also meet specifications with good performance, including high disturbance rejection and 
good stability margins. The RL controls theory is somewhat rigorous, which makes it difficult to apply. 
The approach that is covered here tries to maintain simplicity and practicality, so that the design process 
may become easier and more widely usable.  

Loop Shaping (LS) controls design, which primarily involves the shaping of the OL transfer function 
(TF) in a feedback control system, is covered somewhat sparingly in text books or the approaches covered 
are sort of ad hoc and hard to generalize. References 2 and 3, present a LS controls design approach that 
is methodical. As covered in Reference 2, this control design technique achieves about as good 
performance as possible (i.e., response time specs, disturbance rejection, and stability margins) given the 
speed or rate limitation of the process or its actuation. The LS approach that is covered here is the same as 
that covered in these references, except that more practical considerations are provided here in order to 
further expedite and simplify the implementation process of the design.  

Example designs using these RL and LS approaches covered here are also contrasted against 
traditional Proportional Integral Derivative (PID) control, in order to demonstrate the benefits of the 
approaches over PID control. 

The paper is organized as follows. First, RL is applied to some simple control problems in order to 
identify certain patterns in the design process from which a simplified controls design approach can 
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emerge that can then be applied for more complicated control design problems. This is followed by the 
details of the LS control design technique, which is applied to the same control design example. Then the 
PID control design is discussed and compared to the RL and LS methods. Finally, some concluding 
remarks are offered. 

2.0 An Approach for Root Locus Control Design 
In RL controls system design the exact root locus trajectory can be computed by selecting the poles 

and zeros of the OL TF. The poles and zeros of the OL TF can be selected using calculations such as the 
angle and center of asymptotes, breakaway and break-in points, departure and arrival angles, etc. The OL 
proportional gain can be selected to place the CL poles at a desired location in the s-plane in order to 
satisfy control system performance objectives/specs. While the theory of RL controls design is structured 
and it can be used to achieve as good of a performance as any classical controls design method, its 
complexity makes it hard to apply for other than just simplified control problems. The attempt here is to 
dispense with much of the mathematical complexity and instead utilize practical or rule of thumb 
considerations, but still achieve about as good of a controls design as possible.  

If the reader is unfamiliar with the basic concepts of RL, it is recommended to gain some basic insight 
by reading any linear systems or control systems book on the subject, which will make it easier to follow 
the concepts discussed in this paper; the assumption here is that the reader already has some basic 
familiarity with the subject area.  

2.1 Root Locus Design Methodology Considerations  

If the proportional gain, K, of the control system were to be increased starting from zero, the location 
of the CL poles would move, starting from their OL location, and as the proportional gain approaches 
infinity, the location of the CL poles approaches that of the OL zeros. The reason for this is because the 
CL TF (assuming unity feedback) is T(s)=G(s)/[1+G(s)]=[KN(s)/D(s)]/[1+KN(s)/D(s)], where G(s) is the 
OL TF and N(s), D(s) are the numerator and denominator polynomial expressions of G(s), respectively. 
By simplifying, T(s)=KN(s)/[D(s)+KN(s)]. From this expression, it can be seen (by inspection) that for a 
value of K near zero, the poles of the CL TF are the same as the OL poles, and for K=∞, the poles of the 
CL TF are the same as the OL zeros, and for increasing gain values, these poles move towards the zeros.  

Each of the poles in the system moves towards a distinct zero, with the extra poles moving to find 
zeros at infinity as the gain, K, approaches infinity (there are always extra zeros at infinity). The trajectory 
of the CL poles in the s-domain as the proportional gain is increased, is called the RL. The controller 
design for the RL involves either (a) finding the appropriate gain given a controller structure of poles and 
zeros, or (b) designing the appropriate control structure by choosing the pole and zero locations of the OL 
TF in order to shape the RL as desired, and then finding the appropriate gain for the desired CL pole 
locations that satisfies 1+KG(s) = 0 and meets performance requirements. This is the well-known 
characteristic equation of the system. The design option that will be chosen here is (b), as in this case the 
maximum flexibility is offered to design a control system that meets the specs and achieves good 
performance. 

Three basic RL rules are provided here that are essential to point out in order to facilitate the 
discussions. One, the RL is always symmetrical with respect to the real axis of the s-plane. Two, the 
portion of the RL on the real axis starts to the left of an odd number of poles and zeros. Three, the number 
of branches of the RL is equal to the number of poles and starts at the OL pole location (for K=0) and 
ends at the zeros (for K=∞); the remaining poles go to infinity along asymptotes.  
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Say that the OL TF of the control system has only two poles, located anywhere on the real axis in the 
Left-Hand s-Plane (LHP), and for demonstration purposes lets pick their locations at s=-1,-2. Using 
MATLAB® (The MathWorks, Inc.), we can plot the RL as the gain K increases from 0 towards ∞, as 
shown in Figure 1. This can also be done by hand, by finding and plotting the roots of the polynomial 
D(s)+ KN(s)=0 for different values of the gain K, as the gain increases from zero to infinity. In these 
figures the x’s and o’s indicate the location of the poles and zeros of the OL TF, respectively. 

Notice in Figure 1 that the RL trajectory starts from the OL pole location, on the left of an odd 
number of poles and zeros (i.e., left of the rightmost pole), moves towards the middle and splits at s=-1.5, 
and moves away from the real axis towards ∞. Besides using MATLAB® or evaluating the CL TF and 
plotting it point-by-point, the root locus could have also been sketched by hand, by calculating center and 
angle of asymptotes, and break-away points. This will not be done here as the objective is to develop the 
skills to properly place poles and zeros to shape the RL using experience or intuition, more so than 
calculations. The commands used here are as follows: s=tf('s'); G=1/((s+1)*(s+2)); rlocus(G). Notice the 
proportional gain K in the OL TF, G, is set to 1 for convenience as MATLAB® varies this gain from 0 to 
∞, and as such a point selected on the RL (shown later) will display the actual OL gain, K, for that 
location. If we add another pole on the real axis in the LHP, the RL will look as shown in Figure 2. Notice 
that with three poles, the two rightmost will come together and split to cross the imaginary axis into the 
Right-Half Plane (RHP), while the third pole goes towards a zero at -∞. With the root locus crossing into 
the RHP it means that by increasing the gain, K, beyond some value, it will make the CL system response 
unstable. If a zero is added instead of a third pole, and if the zero is located in between the two poles, then 
one pole will go to the zero (as K increases from 0 to ∞), while the other pole will move along the real 
axis towards the zero at -∞. Again, this can be easily ascertained without any calculations by knowing 
that the RL trajectory on the real axis starts to the left of an odd number of poles and zeros. On the other 
hand, if the zero is located to the left of both of the poles, the RL will look as shown in Figure 3. Notice 
the poles in this case meet at the RL region to the left of an odd number of poles and zeros. Because one 
pole needs to go to the zero at -∞, and because the RL needs to remain symmetrical with respect to the 
real axis, they come back together on the real axis, somewhere to the left of the leftmost zero (one zero in 
this case), and then they separate with one pole going to the zero location and the other to -∞. If one of the 
poles in the system depicted in Figure 3 was instead located on the real axis in the RHP, the RL will look 
the same, but shifted to the right, and in this case the system will be stable above a minimum value of the 
gain, K, since for small gain values in this case, the RL will be located in the RHP (unstable). 

Exactly at what angle(s) the poles depart and at what location the poles come back together, etc., can 
be computed, but again the main objective here is to develop an intuition of how the root locus behaves 
by the addition of poles or zeros, rather than precisely determining these shapes. The general shape of the 
RL shown in Figure 3 will be crucial for more complicated control designs. By knowing how to bend and 
locate the RL trajectory to the left, it can be ensured that the system will remain stable for any value of 
gain, K, greater than zero. This is the case as long as the RL trajectory remains in the LHP. As will be 
seen later, by selecting the gain to locate the CL poles on the RL closer to the real axis in the LHP, the 
more damped the control system response will be. The distance from the origin to the RL determines how 
fast the system response will be (at least the initial response).  
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Figure 1.—Root locus of two pole 

system. 
Figure 2.—Root locus of three pole 

system. 
Figure 3.—Root locus of two poles 

and one zero to the left. 
 

 
Figure 4.—(a) Root locus of a system with three poles and one zero to the left, (b) same three poles but with two 

zeros (one to the left), (c) response of the CL system with different proportional gains. 
 

From Figure 3 it can be concluded that with two poles located on the real axis in the LHP and one 
zero located to the left of the poles, it is sufficient to bend the RL to the left as it would be desirable. If 
however, the OL system has three poles on the real axis in the LHP, one zero would not be enough to 
bend the RL to the left, as shown in Figure 4(a). If instead the zero was located between the rightmost two 
poles, the RL would look about the same as in Figure 4(a) shifted to the left, with the pole at the origin 
moving towards that zero. This can be seen by executing the following commands: 
G=(s+0.5)/(s*(s+1)*(s+2)); rlocus(G). If two zeros are used to shape the RL for the case shown in  
Figure 4(a), with one zero located to the left of the poles and the other located between the leftmost poles, 
the RL shown in Figure 4(b) is obtained. This RL shape is desirable, because for any value of the 
proportional gain, the feedback system will remain stable. If two zeros are used again, but instead the 
leftmost zero is located between the two furthest left poles, the RL will look the same as in Figure 4(b), 
except that the circular trajectory would be more elongated in the vertical direction (try this with 
G=(s+0.5)*(s+3)/(s*(s+1)*(s+2)).  

From this analysis, it can be concluded that a RL shape that bends to the left (as the gain, K, 
increases), in a circular like pattern as shown in Figure 4(b), is desirable. Also, to achieve this shape, the 
number of zeros required in the open TF are one less than the number of poles. Notice that in this 
example a pole is placed at the origin as a typical control system design would have for a step input 
command. The response of the feedback system with increasing OL proportional gains corresponding to 
RL points on the circular region shown in Figure 4(b), is shown in Figure 4(c). Notice that as expected 
from the RL in Figure 4(b), the system does not become less stable as the gain increases. In fact, in this 
case the system becomes more damped as the gain increases and as the RL moves closer to the real axis,  
  



NASA/TM—2017-219721 5 

 
Figure 5.—(a) Root locus for the system shown in Figure 4(b), but with a pole in the RHP, 

(b) response of the CL system with different proportional gains.  
 

while the response becomes faster. More design detail will be covered later about the response time and 
damping. The commands used for the feedback response are as follows: 
G=((s+3)*(s+1.5))/(s*(s+1)*(s+2)); sys=feedback(G,1); step(sys); hold on; 
G=10*((s+3)*(s+1.5))/(s*(s+1)*(s+2)); sys=feedback(G,1); step(sys,'r--'); hold on; 
G=20*((s+3)*(s+1.5))/(s*(s+1)*(s+2)); sys=feedback(G,1); step(sys,'k.-');legend('Response with 
K=1','K=10','K=20').  

Also, notice that in order to achieve the desirable RL shape shown in Figure 4(b), with two poles in 
the OL TF (the pole at the origin is a necessity for zero steady state error to step command), the 
placement of two zeros was necessary. If the controller design was to be restricted to a PI (Proportional 
Integral) control, this RL shape would not be possible, since PI control has one zero and one pole at the 
origin. If instead, PID control were to be used (two zeros and one pole at the origin), this RL shape would 
be achievable. However, it could be easily concluded that for an OL TF with at least three poles more 
than the number of zeros, even a PID control design that is well adjusted would not be able to achieve the 
desirable loop shape shown in Figure 4(b). 

What if instead, one of the poles in the system depicted in Figure 4 lies on the real axis in the RHP? 
The shape of the root locus will be about the same as that shown in Figure 4(b); see Figure 5(a). As 
described before for such a case, the gain, K, would need to be above a minimum value for the system to 
become stable; see Figure 5(b). The question may be raised of what the RL will be like for the TF G, if it 
had a zero in the RHP. This case is beyond the scope of this discussion, since such a system would be 
non-minimum phase, whose control bandwidth would be fundamentally limited. What if the two poles 
were instead, a conjugate pair (complex poles always come in conjugate pairs)? Even in this case the 
shape of the RL would be about the same in terms of the circular pattern bending towards the left (see 
Figure 6(a)). For this OL TF, the MATLAB® command used to define it is 
G=((s+3)*(s+1.5))/(s*(s+1+i)*(s+1-i)). Figure 6(b) shows the feedback response of this system for 
different values of proportional gain. For small values of gain, this system is a little more underdamped 
compared to that in Figure 4, because the RL initially bends further away from the real axis. 

As can be seen so far, the RL comes back on the real axis somewhere to the left of the leftmost zero. 
Therefore, it can be concluded that the placement of the leftmost zero has a substantial influence on how 
far the RL can be bent to the left, which influences how high the potential bandwidth of the system or 
how fast the system response can be (more on that later). In the examples shown, this zero is placed to the 
left (higher in frequency) of all the poles, but it can also be placed to the right of the leftmost pole. The 
placement of the lowest frequency zero (if placed properly) can affect the settling time and provide for 
composite natural frequencies. This however, will be covered in the Loop Shaping control design section.   

  



NASA/TM—2017-219721 6 

 
Figure 6.—(a) Root locus of a system with three poles (two conjugate) and two 

zeros to the left, (b) response of the CL system with different proportional 
gains.  

2.2 Root Locus Control Design Comparison Example Using this Methodology and 
Additional Design Considerations 

Without getting into the mathematical details of the RL theory, the discussions so far established a 
pattern or methodology by which more complicated control design problems can be approached. Consider 
a plant with the following TF 𝑮𝑮𝒑𝒑(𝒔𝒔) = 𝟏𝟏𝟏𝟏/((𝒔𝒔 + 𝟑𝟑𝟏𝟏)(𝒔𝒔𝟐𝟐 + 𝟑𝟑𝟏𝟏𝒔𝒔 + 𝟕𝟕𝟏𝟏𝟕𝟕)), and with the following design 
specifications: The bandwidth, ωc, of the control system design should be limited to 100 rad/s or up to 
100 units/s speed for a unit step command. The steady state error to a step input should be zero. The 
Phase Margin (PM) should be greater or equal to 50°, and the Gain Margin (GM) should be greater or 
equal to 10 dB, with an overshoot of less than 20%. The noise amplitude at mid-frequency should be 
reduced to 0.1 or less (i.e., the OL TF should have a mid-frequency gain of at least 20 dB or 17 dB gain at 
0.1ωc). The settling time (ts) or 98% of the response should be achieved in less or equal to 0.3 s. 

The reason the bandwidth or the response time of the system is limited is because physical processes 
and actuation systems have rate limits, whether physical or operational, that limit how fast these systems 
can be driven. If a control designer takes advantage of the bandwidth of the control system, benefits can 
be realized in terms of the control system performance for speed and disturbance rejection. If a rate limit 
is prescribed in the control system design, this can also be used to appropriately limit the bandwidth of the 
control system in order to allow linear operation and a more predictable control system behavior.  

Figure 7(a) shows the RL for the TF of just the plant (controller TF=1), and Figure 7(b) shows the RL 
with an integrator added for the controller, which is a necessity for zero steady state error. The grid rays 
signify constant damping. The semi-circles centered at the origin show the frequency of the complex 
poles of the CL system, if the gain is selected such that the poles of the CL system intersect these semi-
circles. The damping of the CL system can also be computed for a selected proportional gain (a point on 
the RL) by vectorially simplifying the CL TF (as discussed before) and reducing it into a dominant pair of 
complex poles. Then the damping ratio, 𝜁𝜁, is the magnitude of the real part over the respective frequency 
ωn. The dominant or natural frequency of the CL system in rad, ωc, is the frequency at which the 
magnitude of G in the denominator (1+G) of the CL TF goes to 1.  

As shown in Figure 7(b), adding a pole at the origin causes the poles to come together as the gain 
increases and then split towards +/- ∞. Due to the design specs for the overshoot and for the bandwidth or 
speed of the system, a choice of 𝜁𝜁 = 0.8 and ωc = 100 rad is selected (see Ref. 2 for selecting ωc for the 
speed of the system) to show the limits of the control system if just an integrator were chosen for the 
controller. Using the command sgrid(0.8,100), a grid is created in Figure 7(b) showing the rays of 0.8 
damping and 100 rad/s control system bandwidth. The RL trajectory comes close to this point. So this 
performance is achievable, if the gain is selected to locate the roots at this point (which will be shown  
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Figure 7.—(a) Root Locus of the TF of just the plant, (b) Root Locus of the TF of the plant and an 

integrator.  
 

shortly). Except that such a point (with the same gain), also exists on the RL shown in the RHP, which 
will cause the system to be unstable (even for smaller gain). Thus, let’s revert back to the methodology 
considerations previously discussed in order to design a feedback controller for this system to satisfy the 
specifications and achieve good performance. 

From Figure 7(b) it can be seen that the OL TF for this system so far has four poles at s1=0, s2,3=-
15+/-22i, s4=-30. Similar to the RL shown in Figure 4(b) or Figure 5(a), it would be desirable to properly 
place the leftmost zero on the real axis to cause two of the poles to loop towards the left, break in to the 
real axis, with one of the poles moving to the zero, while the other goes towards a zero at -∞. For the 
other two poles (the poles on the real axis), the strategy is to place two zeros nearby (preferably on the 
real axis) to cause these poles to move towards the zeros. Placing the leftmost zero somewhere to the left 
of the pole at s=30 will be a necessity in this case, in order to meet the 100 rad/s bandwidth specification 
or 100 units/s speed, with sufficient damping to also meet the overshoot specification. Unless break-out 
and break-in calculations are performed using RL theory, the placement of this zero involves some trial 
and error in order for the break-in of the poles into the real axis to occur somewhat close to 100 rad/s. As 
mentioned before, the placement of the lowest frequency zero can impact the settling time. Without 
involving calculations (see Ref. 2 for more detail), the lowest frequency zero is placed at s=-20, and the 
next zero is placed at s=-25 (i.e., between the lowest frequency zero and the pole frequency at s=-30. 
However, if the settling time specification is not met, the first zero can also be adjusted by some trial and 
error.  

Based on this approach or design considerations, the zero frequencies are selected at sz1=-20, sz2=-25, 
and sz3=-55, which results in the following OL TF, G(s) = 𝑲𝑲[(𝒔𝒔 + 𝟐𝟐𝟏𝟏)(𝒔𝒔 + 𝟐𝟐𝟐𝟐)(𝒔𝒔 + 𝟐𝟐𝟐𝟐)]/[𝒔𝒔(𝒔𝒔 +
𝟑𝟑𝟏𝟏)(𝒔𝒔𝟐𝟐 + 𝟑𝟑𝟏𝟏𝒔𝒔 + 𝟕𝟕𝟏𝟏𝟕𝟕)]. The RL of this design is shown in Figure 8(a), together with its sgrid in 
MATLAB® of 0.75 damping and a CL complex pair pole frequency, ω=100 rad/s. Figure 8(b) shows a 
display of the MATLAB® figure where the + button is used to place a cursor point at about the 
intersection of the 0.75 damping ray with the RL trajectory. This cursor point displays the OL TF 
proportional gain at that point of K=109, it shows the CL complex poles, and actual damping of 0.772, the 
overshoot, and a complex (conjugate pair) pole frequency of 80.9 rad/s. Note that if the time response of 
the CL system does not agree with what is expected from this selection, it is because there exists another 
point on the RL trajectory with the same gain at a lower frequency which overtakes or dominates the 
response.  
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Figure 8.—(a) Root Locus of the TF of the design example, (b) MATLAB® figure showing the Root Locus 

of the same system with the cursor point for the selected location of the CL poles.  
 
 
The resulting natural frequency of the complex poles in this design, ωn, is less than 100 rad/s, but the 

resulting crossover frequency, ωc needs to be checked with a bode plot to see what the actual bandwidth 
or crossover frequency of this design would be. The crossover frequency is the frequency where the bode 
plot crosses the 0 dB magnitude, and here the crossover frequency and the bandwidth of the system are 
defined to be the same, as the system can respond to disturbances up to the crossover frequency. The 
value of the crossover frequency in rad/s is also the initial speed of the system in units/s (see Ref. 2). 
Adjusting the frequency of the leftmost zero, however, will allow the RL trajectory to break-in more to 
the right for smaller values (frequency) of this zero, or more to the left for larger values. This allows both 
a desirable damping if necessary (pole location closer to real axis for higher damping) and the complex 
pole pair frequency to be chosen at the same time, which influences the speed of the control system. Note 
that choosing a point on the existing RL, like in Figure 8, to the left of the ω=100 rad/s grid line, will 
make the system response faster. While choosing points inside the ζ=0.75 grid rays and closer to the real 
axis, will make the system response more damped.  

The bode plot of this TF with a gain K=109 is shown in Figure 9. It is produced using the command 
bode(109*G); grid. This figure can also be developed by hand by substituting s= jω in the TF G and 
evaluating G for different values of frequency ω, and then plotting the magnitude and the phase angle 
point-by-point. For this gain or magnitude plotted in Figure 9, the crossover frequency exceeds the 
100 rad/s limit placed by the specification. For a quick fix (without changing the OL TF and the RL 
design), zoom in on the bode plot at 100 rad/s and find out the magnitude at that point (dB |100 rad/s). Then 
perform the antilog, x=10dB(100rad/s)/20 in order to find the ratio of the gains that will provide for 0 crossing 
at 100 rad/s, and divide K=109 by this factor x. Following these steps, the resulting gain turns out to be 
K=84.9. Over-plotting the bode of the TF with this gain in Figure 9 shows that the bode with the revised 
gain indeed crosses at 100 rad/s. With the reduced gain, the RL pole location will move a little to the left 
from the previous location, and thus the resulting CL system would be expected to become a little less 
damped. If the resulting damping or overshoot would not be satisfactory, then the RL trajectory would 
need to be adjusted instead, by adjusting the location of the leftmost zero. 
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Figure 9.—Bode plot of the OL TF design.  

 
From the cursor point on the phase portion of this bode plot, it can be seen that at about 91 rad/s (close to 

100) the phase is -111°, with the phase ascending at that point. Thus, the stability PM of this design would be 
more than 180°-111° or 69°. Also, this design will have infinite GM (the phase doesn’t cross -180°). So both 
the PM (50°), and the GM (10 dB) are met with this design. Also, the cursor point at 10 rad/s shows that the 
gain at that frequency is approximately 22.3 dB, which meets or exceeds the design specification at the mid-
frequency range. The magnitude of the OL gain at a certain frequency before the crossover signifies the 
magnitude by which the control system attenuates disturbances at that frequency for disturbances coming into 
the system at the output of that plant. For instance, if the gain at a certain frequency is 26 dB, the controller 
will reduce disturbances at that frequency by a factor x, where x=10(26/20) = 20. 

The next step is to show the time response of the CL system with the OL TF that was just designed, in 
order to evaluate if the control system design meets transient response specifications. For briefness, this 
will be done after the plant and the controller TF are separated in this OL design. If the plant TF is left 
alone as it should be, the controller TF due to this OL design will end-up with three zeros and one pole 
(the pole at the origin), which results in an improper TF. In order to make the controller TF proper and the 
overall OL TF proper or even strictly proper (more poles than zeros), it is necessary to pad the controller 
TF with at least two poles, and do so without significantly affecting the design that has been obtained so 
far. To accomplish this, the poles are added here at10x the crossover frequency or a little higher. This 
way, the effect of these poles on the phase of the OL TF or the PM will be about gone near the crossover 
frequency. Note poles or zeros have an effect on the phase of the OL TF, starting at 0.1x their placement 
frequency and the effect ends at 10x the placement frequency. Based on that, the choice here for the 
controller TF is GC = [(𝟖𝟖𝟖𝟖.𝟕𝟕/𝟏𝟏𝟏𝟏)(𝒔𝒔+ 𝟐𝟐𝟏𝟏)(𝒔𝒔 + 𝟐𝟐𝟐𝟐)(𝒔𝒔 + 𝟐𝟐𝟐𝟐)]/[𝒔𝒔(𝒔𝒔/𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏)(𝒔𝒔/𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+ 𝟏𝟏)]. Notice 
that the poles are added in a normalized TF form, which does not change the gain of the controller or the 
gain of the OL TF. Also, notice that the controller proportional gain is divided by the gain of the plant, so 
that the resulting OL proportional gain remains the same as the one designed (i.e., K=84.9). 
First, let’s check if the bode plot of the designed OL TF and the corresponding OL TF with the padded 
controller match, at least up to and a little beyond the crossover frequency, which will ensure that the 
designed performance or specifications are not compromised. Figure 10 shows the bode plot of the 
designed OL TF and that with the padded controller. Their bode magnitudes overlap and continue to 
overlap well after the crossover frequency. The phase of the padded controller at the crossover frequency 
(100 rad/s) is reduced from approximately -109° to -120°, but the stability PM of the CL system with the 
padded controller TF at 60° still meets and exceeds the design specification. As seen in this figure, the 
phase of the OL TF with the padded controller crosses 180°, and at that frequency the gain is  
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Figure 10.—Bode plot of the OL TFs of the designed and that with the 

padded controller.  
 

 
Figure 11.—(a) Response time of the CL TFs of the designed and that with 

the padded controller, (b) their initial response time.  
 
approximately -27 dB (not shown), which provides for a stability GM of 27 dB. This GM also well 
exceeds the design specification of 10 dB. To reduce or eliminate any effect due to the padded poles in 
the controller TF, their frequencies can be increased accordingly. Note, however that the sampling time 
that would be required to resolve the highest frequencies in the design and for continuous time system 
simulation would be reduced accordingly.   

The unit step response time of the feedback system without and with the padded controller design is 
shown in Figure 11(a). The settling time (98% of response) in 0.3 s is also well met with this design. Figure 
11(b) shows their corresponding initial response times. The initial response time or the highest speed of the 
feedback system with the padded controller (after some initial delay) is approximately 80 units/s, which is 
close to the 100 units/s limit in the specifications. This RL design is a little underdamped. However, by 
repositioning the leftmost zero to permit increased damping at the RL selected point for the pole location, all 
the design specifications can be met and the designer could also achieve a more damped response than that 
shown in Figure 11(a). A more damped response can also be achieved by properly positioning the lowest 
frequency zero, but this will be covered in the loop shaping section.  

The RL design with the padded controller poles is shown in Figure 12. The inset shows a zoom-in of 
the RL region at low frequency. Comparing this low frequency region to the RL in Figure 8(a) shows that 
the original RL design remains about the same. However, the additional poles cause the RL trajectory to 
bend and cross into the RHP. Unlike the OL RL design shown in Figure 8, the padded poles cause the  
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Figure 12.—Root locus of the OL TF with the padded controller design.  

 

 
Figure 13.—Step response of CL system for different proportional gains with padded 

controller poles located approximately (a) 10x crossover frequency, (b) 100x crossover 
frequency. 

 
pole at s=1000 and one of the complex poles to come together and split to cross into the RH plane as 
shown in Figure 12. The step response without the padded poles, for increasing proportional gain, would 
look similar to the response shown in Figure 6(b), but the step response with the padded poles is as shown 
in Figure 13(a). The proportional gain, K, for the OL TF is 84.9 (as previously designed) or 84.9/10 for 
the proportional gain of the controller TF. If the padded poles are placed higher in frequency, the 
difference in proportional gain that it will take to make the system unstable will increase as well. To 
demonstrate this effect, the step response in Figure 13(b) shows what happens as the gain increases, if the 
padded poles had instead been placed at approximately 10x higher in frequency or 100 times higher than 
the crossover frequency. This figure shows that as the proportional gain increases, the step response 
becomes faster, but more damped. This behavior continues until the gain increases close to 40x the 
original gain, at which point the response starts to become more underdamped. This design has robustness 
to high variability in the control system gain, as well as robustness to high uncertainty in plant pole zero 
locations. If the increased speed or rate of the system becomes problematic, rate limiting can be employed 
in the controller design. It is possible that the OL TF can be designed without the padded poles as initially 
shown in this example, and the response type shown in Figure 6(b) can be achieved, which can result in 
an inherently robust or ultra-stable control system design. This will necessitate a tightly integrated 
controller and plant design as shown in Appendix A. 

Note that in this design example the rate of the control system output was limited. If instead, the rate 
of the control input to the plant or the actuator output was limited in the specs, then the rate of the plant 
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input could be checked to ensure that this rate is not exceeded while the output of the plant is driven at the 
highest rate prescribed. Alternatively, the actuator can be designed as a feedback system on its own, 
where instead its output rate is designed to be limited as described in this section. 

The following are some general considerations for a RL design. If the complex pole pair frequency of 
the CL system TF is 1/8 or less than that of the rest of the poles and zeros, the CL system step response 
will be dominated by the second order polynomial of this complex pole pair. In such case, the settling 
time of the CL system will be approximately 4/(ζωn), one time constant will be 1/(ζωn), and the rise time 
(i.e., the time it takes to first get to or cross the steady state point) is approximately 1.8/ωn . Even in cases 
where the frequencies of the CL TF are closer together, these approximations could still provide for a start 
to make subsequent adjustments as necessary in order to decide on the RL location, like the one shown in 
Figure 8(b). For instance, for a RL point selected as shown in Figure 8(b), the damping and the frequency 
(ωn) can be used to quickly check if these values have a reasonable chance to meet such specs, before the 
feedback system is calculated and the step response is evaluated. Once the CL TF is generated using the 
gain shown by the cursor point in Figure 8(b), the roots of the numerator or the denominator polynomials 
can be computed by using the command roots([a b c . .]), where a, b, c …are the coefficients of the 
numerator or denominator polynomial, and where these coefficients are listed in descending order starting 
with the coefficient of the highest power of s. Notice that for a given RL, multiple RL branches may exist, 
which may give rise to multiple real poles or to more than one complex pole pair for the same 
proportional gain value. In such cases, the poles or the pole pairs that dominate the response are the low 
frequency ones, or the marginally stable or the unstable poles, if they exist.  

This concludes the RL design methodology covered in the paper, which is relatively simple to master, 
and it can be used to expedite the RL control design process without necessarily the need to understand 
the details of RL theory. In general RL is a powerful way to achieve control designs that are at least as 
good as any other classical control design technique.  

3.0 Loop Shaping Design Approach 
The loop shaping approach presented in this paper is covered in detail in Reference 2, and an 

application of this design approach is provided in Reference 3. Here a controls design is carried out for 
the example in the previous section based on this LS approach. The design process is the same as that 
discussed in these references, except for some design considerations that will be included here in order to 
further simplify and expedite the design process. How well the approach satisfies the specification in this 
design example can be compared to the RL method covered in the previous section. However, the design 
approach presented here is not necessarily better than the RL method, since a controls design that can be 
achieved with RL only depends on the skills of the controls design engineer. What this loop shaping 
controls design approach brings forth is that this is another approach to achieve a very good controls 
design, and as will be seen, this method may be easier to utilize than the RL. Yet, this LS method 
identifies some additional controls design considerations that can also be utilized in the RL design 
approach. 

In loop shaping design, usually one converts time domain specs like percent overshoot, steady error, 
noise rejection and settling time into frequency domain requirements for the target loop shape GC(s)GP(s). 
Some rule of thumb relations are often used in this process to find required PM, low and high frequency 
slopes for magnitude and crossover frequency, etc. (Ref. 4). While these rules of thumb can be useful, the 
approach covered here is somewhat different in that the only specification utilized for the loop shaping is 
the speed of the actuator or the desired rise time, which also sets the crossover frequency and the settling 
time. The rest of the specifications are not considered initially, as the approach here is to maximize 
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control system performance in terms of adequate stability and disturbance rejection (Ref. 2), with very 
low overshoot if any. The amount of overshoot allowed is typically specified in a design. However, there 
is no advantage to have any significant overshoot as it also adversely affects control system robustness. 
As such, low stability margins or any significant underdamped response would only be considered to be 
necessary if there are competing requirements, such as higher than normal disturbance rejection, for 
instance, higher than 20 dB at 0.1 times the crossover frequency, ωc (see Ref. 2).  

3.1 Loop Shaping Design Methodology Considerations 

The LS shape approach is also based on designing or shaping the OL TF of the control system. Unlike 
the RL approach, however, this is done independently of the plant TF and based on information about the 
speed or desired speed/rate limitation of the process, and the rest of the control design specifications. 
Then once the desired OL shape that satisfies the specifications is achieved, the controller is designed 
using the plant information, so that the resulting OL TF matches the desired one. The design of the 
desired OL TF is done with certain considerations that enhance the stability properties and overall 
performance of the control system. 

The design procedure is as follows (see Ref. 2 for more detail). First the desired OL TF, Gd(s) is 
designed, based on the speed specification or speed limit of the process or its actuation system. For this, a 
pole is placed at 1/10th the frequency of this limit of units/s or rad/s; a zero is placed somewhere 
preferably between 1/4th and ½ the pole frequency; a pole is placed at the origin as before; and the gain Gd 
is calculated so that at the mid-frequency range (i.e., at the frequency range between the zero and the 
higher frequency pole) the gain is 10 or 20 dB in logarithmic scale.  

In summation, the reasoning for these selections for Gd is as follows (Ref. 2). The gain of 20 dB at 
mid-frequency will help to maintain high disturbance rejection for the feedback control system; about as 
good as it can be achieved (Ref. 2) while also maintaining a reasonable PM for stability. With a gain of 
20 dB at the mid-frequency range, the location of the pole at 1/10th the speed of the system in rad/s (the 
speed in rad/s is the same as the crossover frequency or bandwidth of the system) will allow the gain to 
attenuate by -20 dB/decade and reach 0 dB at the desired crossover frequency. With a pole at the origin 
for zero steady-state error, the zero is needed in order to flatten the gain and maintain it at 20 dB at the 
mid-frequency range. The zero also serves a couple of additional purposes. It helps to boost the phase to 
help with the PM for stability. Also, the frequency range of its placement allows the CL system response 
time to have composite dominant frequencies (Ref. 2) whereby the initial portion of the response is 
second order type and its time constant (1/ωc) is due to the crossover frequency, and whereby the 
response near the settling portion becomes first order with a time constant that is due to the frequency of 
the zero, ωz. A first order response near the settling portion of the system response is desirable, because a 
first order type response is by definition a damped response. This further aids in the stability and 
robustness of the control system design. 

Say that the speed limit of a certain plant is given to be 200 units/s or 200 rad/s. Based on these 
design guidelines, the desired OL TF, Gd, would be Gd = 10*ωz (s/ωz +1)/[s(s/20+1)] in normalized form, 
with ωz selected to be between 5 and 10 rad/s for this case , which gives the gain value required for 20 dB 
gain at mid-frequency. Alternatively, in standardized TF form Gd = 10ωp (s +ωz)/[s(s+ωp)]. For such a 
design, let’s see what the step response of the CL system looks like, as well as the bode plot of the OL 
TF, Gd. The zoomed in step responses in Figure 14 show that for all the 4 cases, the CL system response 
near the settling time is first order type due to the placement of the zeros. Figure 14 also shows that for 
the zero at 2.5 rad/s (1/8th of the pole at 20 rad/s), the system takes a relatively long time to settle. For the  
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Figure 14.—Response of the CL system for different 

zero frequencies of the desired OL TF, Gd.  
 

 
Figure 15.—Bode plot of the OL system Gd for different zero frequencies. 

 
zero at 15 rad/s, the system settles relative quickly, but if system robustness was important, there would 
be more chance for this system to become underdamped if the dynamics of the plant change or the OL TF 
changes significantly. This is because the initial response, which is second order, takes the step response 
of the system almost to the set point, which increases the chances that the system response can become 
underdamped if the dynamics of the plant change. Arguably, the range of zero placement between 1/4th 
and ½ the frequency of this pole (i.e., between 5 and 10 rad/s for this case), compromises between settling 
time and system robustness.  

For the same cases, Figure 15 shows the bode plot of the desired OL system design, Gd. It shows that 
the crossover occurs at 200 rad/s for all cases as designed, and also that the mid frequency gain is 20 dB 
for all cases as was also intended. Notice the mid-frequency range (the frequency range between the zero 
and the pole) is different for each of the cases. This figure also shows that the stability PM is about 90° 
for all cases (more than adequate), while the GM is infinite (i.e. the phase does not cross -180°). 

The next step is to design the controller TF, with knowledge of the plant and Gd. Since the only 
unknown is the controller TF GC, this involves a calculation, as GC=Gd/GP, or in logarithmic scale GC=Gd-
GP. However, due to the vector math involved, this is not a simple calculation to perform to calculate the 
gain, poles, and zeros of the controller TF. Therefore, a more simplified approach will be carried out in 
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this paper in order to expedite the design process, and find the controller TF for which the resulting OL 
bode will match that of the desired OL TF, Gd. For the sake of briefness, this approach to synthesize the 
controller TF, so that the designed OL gain vs. frequency of the control system matches that of the desired 
one, will be demonstrated in the next section using the example problem from the previous section. 

3.2 Loop Shaping Methodology Example and Additional Design Considerations 

For the example plant given in the Root Locus section, 𝑮𝑮𝒑𝒑(𝒔𝒔) = 𝟏𝟏𝟏𝟏/(𝒔𝒔 + 𝟑𝟑𝟏𝟏)(𝒔𝒔𝟐𝟐 + 𝟑𝟑𝟏𝟏𝒔𝒔 + 𝟕𝟕𝟏𝟏𝟕𝟕), 
and for the specifications provided (i.e., ωc =100 rad/s, zero ss error, PM ≥50°, GM≥10dB, over shoot < 
20%, noise reduction 17 dB at 1/10 ωc, ts ≤ 0.3 s), the desired CL TF will be Gd(s)= 50(s/5+1)/[s(s/10+1)], 
based on the approach discussed in the previous section. Notice that the frequency of the zero was chosen 
in the upper range in the guidelines provided in the previous section, but this could be adjusted if desired 
as long as the settling time spec is met. Figure 16 shows the bode plot of the OL TF, Gd, which shows that 
the crossover occurs at 100 rad/s as per the spec, at 10 rad/s the gain is approximately 17 dB which meets 
the spec, and that the PM is about 90° with infinite GM (more than meets the specs). Figure 17 shows the 
step response of the CL control system with the desired OL TF, Gd design. The figure shows the 
composite natural frequencies of the response discussed in the previous section, the settling time 
specification which is met with this design, and the inset that shows the initial response or speed of the 
system, which turns out to be approximately 85 units/s (close to the limit of 100 units/s). 

To calculate or synthesize the controller TF in order for the actual OL TF of the control system to 
match the desired OL TF, the first thing that needs to be done is to normalize the plant TF in order to 
extract its normalized or its low frequency, so called, DC gain. Given the plant TF above, this 
normalization is performed as 𝑮𝑮𝒑𝒑(𝒔𝒔) = 𝟏𝟏𝟏𝟏

𝟑𝟑𝟏𝟏(𝟕𝟕𝟏𝟏𝟕𝟕)
 𝟏𝟏

(𝒔𝒔/𝟑𝟑𝟏𝟏+𝟏𝟏)(𝒔𝒔𝟐𝟐/𝟕𝟕𝟏𝟏𝟕𝟕+� 𝟑𝟑𝟏𝟏𝟕𝟕𝟏𝟏𝟕𝟕�𝒔𝒔+𝟏𝟏)
, where the DC gain of the plant, 

KP=10/(30×709)= 4.7×10-4. Then the gain of the controller TF, KC, can be calculated knowing that the 
actual or designed DC gain for the OL TF needs to match that of the desired OL TF, as Kd = KC KP, and 
for this case KC=50/4.7×10-4=1.063×105. The next step is to match these OL gains in the frequency 
domain by inspection, starting from low and proceeding towards higher frequencies. The simplest way to 
accomplish this task is to keep the poles and zeros of the Gd and cancel the poles and zeros of the plant. 
From before, the plant has poles at s1,2=-15+/-22i (ωn =26.6), and s3=-30 rad/s. Based on that, the 

 

  
Figure 16.—Bode plot of the OL TF design, Gd, using 

Loop Shaping.  
Figure 17.—Step response of the CL system with the 

desired OL TF design, Gd, using Loop Shaping.  
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controller TF can be synthesized as 𝐺𝐺𝐺𝐺1(𝑠𝑠) = 1.063 × 105 (𝐬𝐬/𝟐𝟐+𝟏𝟏)(𝐬𝐬/𝟐𝟐𝟖𝟖.𝟔𝟔+𝟏𝟏)(𝐬𝐬/𝟐𝟐𝟖𝟖.𝟔𝟔+𝟏𝟏)(𝐬𝐬/𝟑𝟑𝟏𝟏+𝟏𝟏)
𝐬𝐬(𝐬𝐬/𝟏𝟏𝟏𝟏+𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟑𝟑𝟏𝟏𝟏𝟏+𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟐𝟐𝟏𝟏𝟏𝟏+𝟏𝟏)

. 

Notice that in order to try to cancel the effect of the complex poles of the plant, zeros have been placed at 
24.6 and 28.6 rad/s on the real axis, within +/- 2 rad/s of the complex poles natural frequency. If the 
double pole was on the real axis, the placement of the zeros on either side of the double pole would better 
compensate in case the precise frequency of the double pole is not known or if it shifts. For the complex 
conjugate poles in this case however, the further out to the left the zeros are placed, the further out the 
poles will travel on the RL before they come back to the real axis, and therefore the higher the permissible 
dominant frequency or bandwidth of the control system design. Thus in this case for the complex poles, 
the placement of these two zeros, along with the placement of the leftmost zero, also drives the allowable 
bandwidth of the system. Notice that padding poles have been inserted as before at 1100, 1300, and 
1500 rad/s in order to make the controller TF proper (in this case strictly proper, but it could also be just 
proper). Alternatively and as the case may be, direct cancelation of the plant frequencies can also be 
performed, in which case the controller TF in standardized form would be 𝐺𝐺𝐺𝐺2(𝑠𝑠) =

𝐾𝐾 (𝐬𝐬/𝟐𝟐+𝟏𝟏)(𝒔𝒔+𝟑𝟑𝟏𝟏)(𝒔𝒔𝟐𝟐+𝟑𝟑𝟏𝟏𝒔𝒔+𝟕𝟕𝟏𝟏𝟕𝟕)
𝐬𝐬(𝐬𝐬/𝟏𝟏𝟏𝟏+𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟑𝟑𝟏𝟏𝟏𝟏+𝟏𝟏)

 , where in this case K=Kd/Kps=5, and Kd and Kps are the proportional gains 

of the desired and the standardized plant TFs, respectively. Notice that the padding poles are added in 
normalized TF form, so that the gain of the controller is not affected by this addition. Notice also that in 
this case a just proper TF is chosen for the controller, but it could be instead selected to be strictly proper.  

Another approach to develop a controller TF for LS control design will be covered in an example 
provided in Appendix C for a more involved control design process, which also serves to reinforce some 
of the control design concepts discussed in this paper. 

The bode plot of the desired OL gain and the actual OL gain for both controller designs is shown in 
Figure 18. The OL gain with controller Gc1 has a bump because of the complex pole in the plant. Had the 
OL gain with controller Gc1, exactly matched that of the desired OL gain design, the step responses of 
their respective CL systems would be exactly matched. On the other hand, the desired OL gain as shown 
in Figure 18 precisely matches with that of the controller Gc2 at the lower frequency range that extends 
well beyond the crossover frequency, which will cause their respective step responses to match. Figure 18 
also shows that for the control design Gc1, the PM decreases to approximately 67° (but more than exceeds 
the spec), while for controller Gc2 the PM is about the same as the desired one. Their respective GMs are 
about 20 to 30 dB, which also exceed the spec. Step responses of the desired control system and the CL 
system with controller Gc1 are shown in Figure 19. The response with controller Gc2 is not shown in 
Figure 19, because that coincides with the desired one, and cannot be discerned in this figure. The 
responses with ether controller Gc1 or Gc2 still exhibit a first order type response near the settling, which 
is desirable for enhanced stability and robustness. The speed or initial response of the system as well as 
the settling time remain about the same as that shown in Figure 17. 

Figure 20 shows the tolerance or robustness of the LS control design to gain variability, starting from 
the original gain (K=1) and up to 10 times that. The stability of the LS design is aided by the composite 
natural frequencies, with the first order type response near settling. This is evident from the response of 
10 times the original gain, which shows that after the initial overshoot the response quickly settles down. 
The loop shape control design as covered here, also has significant tolerance to variability in system 
dynamics such as pole zero locations. If this LS control design is implemented as a model following 
control system as shown in Appendix B, with the reference model, Gr(s), being the feedback system of the 
desired OL TF, Gd(s) (i.e., Gref=feedback(Gd,1) in MATLAB®) and with the external feedback gain set 
to 1, the control system response for K=1 to K=10 would be about the same as that shown in Figure 20 for 
K=1 (see Appendix B). That is, significantly more robustness would be achieved with LS control 
integrated into a model following control design.  
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Figure 18.—Bode plot of the desired OL TF design, Gd vs. 

the actual open TF based on the controller design.  
 

  
Figure 19.—CL system step responses of the 

desired and the actual system design with 
controller Gc1.  

Figure 20.—Response time of the LS control system for 
controller Gc2 with the original gain (K=1), and up to 
10 times the original gain.  

 
The RL of the LS control design in this example with controller Gc2, zooming in the low frequency 

region, is shown in Figure 21. Here the LS design ends up with a RL similar to that obtained with the RL 
design shown in Figure 8. Increasing the gain in this LS design results in the same step responses shown 
in Figure 20, and increasing the frequency where the padded poles are placed would have the same effect 
as that shown in Figure 13(b).  

In the RL design section it was mentioned that the lowest frequency zero can influence the response 
time and allow the CL system step to exhibit a first order type response near the settling time. This guideline 
originated from the LS methodology (Ref. 2) and is elaborated on in this section. However, this guideline 
can also be applied to the RL approach to potentially improve the control system design. To demonstrate 
this effect with the RL control design, the lowest frequency zero in that design, at s=20 rad/s, was moved to 
5 rad/s (everything else remaining the same). The effect of this change in the CL step response of the RL 
control design is shown in Figure 22, which can be compared to Figure 11. This particular design does not 
meet the settling time spec of 0.3 s, but the objective here is to demonstrate that this type of response that 
aides the stability and robustness of the system is possible even with RL. Figure 23 shows the shape of the 
RL with the modified RL design, which remains basically the same as that of the original design shown in 
Figure 8. 
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Figure 21.—Root Locus of the loop shape design 

zooming in the low frequency region. 
Figure 22.—Step response of the modified RL design in 

the previous section that shows the effect of 
relocating the low frequency zero from 20 to 5 rad/s.  

 

 
Figure 23.—Root locus of the modified RL design.  

 
The padded controller TF in this modified RL design shown in Figure 23 is made to be strictly 

proper, even though that does not need to be the case and in fact, its corresponding RL design may in 
general end up being more robust without the additional pole. Many times control designers insert a pole 
at a slightly higher frequency than the crossover frequency in order to cause the gain to roll-off at a higher 
rate than -20 dB/dec and to prevent the possibility of an unmodeled zero at this frequency range to cause 
stability problems. Such designs however, that can compensate for a potentially unmodeled zero at 
frequencies slightly higher than the crossover frequency must be used judiciously. If such a zero does not 
exist, the addition of a pole, if it makes the controller TF strictly proper, can adversely affect performance 
or robustness as has been previously discussed. 

There are cases such as in commercial propulsion systems, where the response time of the control 
systems is required to be relatively slow compared to the speed of the actuation system. For such cases, it 
is possible to design the control system to be relatively slow as required, while still taking advantage of 
the speed of the actuator to improve system performance. This is covered in Appendix B.  

Some limited comparisons have been performed here about the ability between RL and LS control 
design techniques to achieve good performance or about as good performance as is possible with a 
classical controls system design. The RL and LS designs covered here achieve about as good performance 



NASA/TM—2017-219721 19 

as possible. For a general idea of what is considered to be a good design, refer to Section 3.1, and for 
more explanations or quantitative information in this area, see Reference 2. Keeping in mind that both RL 
and LS control design approaches are classical lead-lag compensation techniques, general performance 
comparisons between these two control methods are more or less indicative of control design skills. 
Perhaps the use of LS may be a little easier or intuitive than RL, but even that is arguable as both control 
design approaches presented here are relatively easy to apply. 

4.0 PID Control for the Design Example 
A PID control design is in general ad hoc. Even though some methodical PID gain tuning control 

system design techniques exist, they are not suitable for all types of plant TF structures. This section, 
therefore, will not cover a particular PID gain tuning approach. Instead, the graphical tool available in 
MATLAB® for PID tuning will be utilized for the control problem presented in the previous sections, 
which with a little user skill is found to produce as good as or better designs than any of the existing PID 
tuning techniques.  

If MATLAB® is used for PID design, this is an example of the process that is followed. The 
command pidTuner(Gp,’pid’), brings up the graphical tool. There is a “domain” choice for either the 
time or the frequency domain. In the frequency domain two sliders are provided, one for the PM (tuned to 
50° per the spec in this example), the other for tuning the bandwidth. The bandwidth slider was started 
from a relatively high value, and was adjusted down until the step response time of the CL system (also 
displayed on this window) met the settling time spec of 0.3 s for 98% response.  

The PID gains for this design, also displayed on this window, were Kp=3367, Ki=3.77×104, 
Kd=75.19. This results in the following PID controller TF 
Gc=Ki*[(Kd/Ki)*s^2+(Kp/Ki)*s+1]/(s*(s/1000+1)). Notice the pole at 1000 rad/s is a padding pole that 
was inserted afterwards to make the controller TF proper. The OL bode plot of the control system 
(bode(Gc*Gp, {0.1,200})) is shown in Figure 24. This figure shows that the crossover or the bandwidth 
of the control system is approximately 26.6 rad/s (actually in the MATLAB® window it showed 
27.95 rad/s). This bandwidth is significantly less than that achievable with the RL or LS designs. With 
this low bandwidth, the design satisfies both the phase and the GM as seen in this figure. This figure also 
shows that the mid-frequency gain of approximately 20 dB (per the spec) is achieved at about 2 rad/s, and 
therefore, the PID design in this example will achieve significantly less disturbance rejection compared to 
the RL or LS designs covered earlier. 

 

 
Figure 24.—Bode plot of the OL TF for the PID control design.  
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Figure 25.—Step response of the feedback system with PID control.  

 

 
Figure 26.—Root locus of PID control design with unpadded 

control, and the low frequency RL with padded control.  
 
The step response of the PID control system design is shown in Figure 25. The design about meets 

the settling time spec (actually it takes slightly longer; the design just met the spec as it was tuned in the 
MATLAB® graphical tool, before the addition of the padding pole). The initial response time, after some 
delay shows that the system speed is about 15 units/sec, which is also significantly less than that achieved 
by RL or LS designs. Figure 26 shows the RL of this PID design in blue. This shows that there is no way 
to achieve as fast a response as that obtained with RL or LS control designs as the RL of the PID design 
does not bend towards the LHP. In order to achieve the same or similar response to these other two 
designs, one less zero would be needed in the OL TF than the number of poles (remember the plant has 
three poles and the PID has one pole at the origin and two zeros), which would exclude PI or PID control 
for this example problem. Also as shown in Figure 26, the original PID controller has its poles going to 
infinity in the left hand plane, which means that for increasing gain this system will not become unstable, 
but it will become oscillatory. For the padded design this system will become unstable as the gain 
increases, as the poles of this design cross into the RHP. Generally, the padded design cannot be avoided, 
as even MATLAB® will insert a pole(s) as needed to keep the controller TF proper. As mentioned before, 
an unpadded controller design can possibly be obtained by tightly integrating the controller with the plant, 
as will be shown in Appendix A. 
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In general, there are no reasonable comparisons that can be made between PID and RL or LS controls 
design methodologies, as the RL and LS techniques have no restriction on the number of poles and zeros 
that can be used in a design, while PI and PID are restricted to a pole at the origin and one or two zeros, 
respectively. As seen in the example covered, PID control cannot achieve the bandwidth and the noise 
rejection specs, compared to the RL or LS designs, because it doesn’t have sufficient zeros.  

5.0 Conclusion 
In this paper, approaches were introduced to simplify the design of control systems using the Root 

Locus and the Loop Shaping control design techniques. The Root Locus control system design covered in 
literature is often not easy to understand. However, the approach covered in the paper is relative easy to 
apply. The same is true for the Loop Shaping control approach covered in the paper. These two control 
design techniques can be compared to each other, but in essence how good of a controls design can be 
achieved with either approach is only limited by the skills of the controls designer. A comparison of these 
two methods is carried out against Proportional Integral Derivative (PID) control, which demonstrates 
that the performance of PID control is limited. That is because in general PID control is a subset of these 
other two methods. The appendices in the paper show: i) how a control system design can be achieved 
that is inherently robust or ultra-stable provided the plant can be integrated with the controller as a single 
Transfer Function; ii) how to design a model following control system that improves control system 
robustness and can also take full advantage of the speed of its actuation system in cases where the 
response time of the control system is required to be slower; and iii) how to use the knowledge gained to 
design feedback controls for more realistic and perhaps more complicated plants systems, which also 
serves to further reinforce the design approaches covered in the paper.  
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Appendix A 
In the RL section it was shown how control designs can be produced that are inherently stable for any 

value of the proportional gain, provided that the combined controller and plant TF has only one more pole 
than the number of zeros. Except for isolated cases where the plant TF has only one more pole than the 
number of zeros, this is not possible to achieve with typical digital control where it becomes necessary for 
all TFs to be proper. The purpose of the appendix is to show how a control design can potentially be 
achieved that meets this criterion (a combined TF of one more pole than the number of zeros), by tightly 
integrating the controller and the plant TF.  

The appendix covers an example that describes the process of developing a tightly integrated control 
system design. Theoretically, such designs can facilitate the RL shape described in the paper, whereby the 
RL bends and extends into the left plane to allow an ultra-stable or robust design, independent of the 
value of the OL proportional gain and for large variations of pole/zero locations. While theoretically 
possible for such a stable and robust control system design to be achievable, extra care must also be taken 
to include higher frequency process dynamics, and also not to create extra dynamics in the process of 
implementing the controller design, which is not necessarily an easy task. Since it is difficult to account 
for high frequency dynamics, if such dynamics exist in a tightly integrated control system and are not 
accounted for, the system can still be robust to large changes in the system proportional gain.  

Say we have a control system with an OL TF, 𝑮𝑮𝒐𝒐(𝒔𝒔) = (𝒔𝒔+𝒂𝒂)(𝒔𝒔+𝒃𝒃)
𝒔𝒔(𝒔𝒔+𝒄𝒄)(𝒔𝒔+𝒅𝒅) = 𝒀𝒀(𝒔𝒔)

𝑬𝑬(𝒔𝒔)
 (omitting the proportional 

gain for simplification of the state space diagram), where Y(s) is the output and E(s) is the input or the 
error. Say that the two zeros with the pole at the origin are part of the controller design, whereas the other 
two poles are part of the plant TF. The controller TF in such a system is not proper, but this will not be a 
problem if the plant and the controller design can be successfully integrated into a single system. Notice 
that this OL TF with one more pole than the number of zeros will have a loop shape that bends and 
extends into the LHP, according to the discussion and the control design covered in the RL section. The 
question here is how such an OL TF can be implemented without separating the controller and the plant 
TFs, which will necessitate a proper controller TF design and therefore, a loop that will not have the 
desirable shape. The solution here is to implement the OL TF in the form of a state space diagram, which 
permits a tight coupling of the controller with the plant.  

The above TF can be expressed as Y(s)[s3+(c+d)s2+cds]=E(s)[s2+(a+b)s+ab] and converting to the 
equivalent differential equation, �⃛�𝒚 + (𝒄𝒄 + 𝒅𝒅)�̈�𝒚 + 𝒄𝒄𝒅𝒅�̇�𝒚 = �̈�𝒆 + (𝒂𝒂 + 𝒃𝒃)�̇�𝒆+abe. In order to facilitate a space 
state diagram form, the state variables need to be rearranged such that the highest derivative of the output, 
together with all the derivatives of the input, appear on the LHS of the equation as  

  �⃛�𝒚 − �̈�𝒆 − (𝒂𝒂 + 𝒃𝒃)�̇�𝒆 =abe−(𝒄𝒄 + 𝒅𝒅)�̈�𝒚 − 𝒄𝒄𝒅𝒅�̇�𝒚  (A.1) 

With the consideration that the expression on the left hand side of the equation constitutes the overall 
derivative of the equation, an integrator is placed in front of such an input and sequentially integration is 
carried out, while at the same time summing blocks are used to eliminate non-derivative terms until 
finally, the output variable y is obtained as shown in the diagram in Figure A.1. After this process is 
completed, a summing block is added at the input to feed back the terms that will satisfy the RHS of 
Equation (A.1), which generates the derivative or the expression on the LHS of this equation. Except for 
the extra term (𝒄𝒄 + 𝒅𝒅)�̇�𝒆, that cannot be eliminated in this state space diagram, which prevents closure, as 
shown in Figure A.1.  
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Figure A.1.—State space diagram of Equation (A.1) - incomplete.  

 

  
Figure A.2.—a) Assumed state space form of Equation (A.1), (b) actual state space diagram of Equation (A.1).  

 
Instead, a generic state space form will be assumed for feeding the input e into the state variables as 

shown in Figure A.2(a), with constants to be evaluated. With the input to the first integrator �⃛�𝒒, the values 
of other points in Figure A.2(a) are indicated. This block diagram is a representation of the differential 
equation   

  �⃛�𝒒 = −(𝒄𝒄 + 𝒅𝒅)�̈�𝒒 − 𝒄𝒄𝒅𝒅�̇�𝒒 +  [𝒃𝒃𝒐𝒐 − (𝒄𝒄 + 𝒅𝒅)𝒃𝒃𝟏𝟏 − 𝒄𝒄𝒅𝒅𝒃𝒃𝟐𝟐]𝒆𝒆 − 𝒄𝒄𝒅𝒅𝒃𝒃𝟏𝟏 ∫𝒆𝒆𝒅𝒅𝒆𝒆  (A.2) 

With the understanding that the output of the simulation in Figure A.2(a) should be equal to y gives  

  𝒒𝒒 = 𝒚𝒚 − 𝒃𝒃𝟏𝟏∬(𝒆𝒆𝒅𝒅𝒆𝒆)𝒅𝒅𝒆𝒆 − 𝒃𝒃𝟐𝟐 ∫𝒆𝒆𝒅𝒅𝒆𝒆  (A.3) 
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Then 

  �̇�𝒒 = �̇�𝒚 − 𝒃𝒃𝟏𝟏 ∫ 𝒆𝒆𝒅𝒅𝒆𝒆 − 𝒃𝒃𝟐𝟐𝒆𝒆   (A.4) 

  �̈�𝒒 = �̈�𝒚 − 𝒃𝒃𝟏𝟏𝒆𝒆 − 𝒃𝒃𝟐𝟐�̇�𝒆  (A.5) 

 �⃛�𝒒 = �⃛�𝒚 − 𝒃𝒃𝟏𝟏�̇�𝒆 − 𝒃𝒃𝟐𝟐�̈�𝒆  (A.6) 

Substituting Equations (A.2), (A.4) and (A.5) into Equation (A.6) yields 

−(𝒄𝒄 + 𝒅𝒅)[�̈�𝒚 − 𝒃𝒃𝟏𝟏𝒆𝒆 − 𝒃𝒃𝟐𝟐�̇�𝒆]− (𝒄𝒄 + 𝒅𝒅)𝒃𝒃𝟏𝟏𝒆𝒆 − 𝒄𝒄𝒅𝒅 ��̇�𝒚 − 𝒃𝒃𝟏𝟏�𝒆𝒆𝒅𝒅𝒆𝒆 − 𝒃𝒃𝟐𝟐𝒆𝒆� − 

 −𝒄𝒄𝒅𝒅𝒃𝒃𝟏𝟏 ∫𝒆𝒆𝒅𝒅𝒆𝒆 − 𝒄𝒄𝒅𝒅𝒃𝒃𝟐𝟐𝒆𝒆+𝒃𝒃𝒐𝒐𝒆𝒆=�⃛�𝒚 − 𝒃𝒃𝟏𝟏�̇�𝒆 − 𝒃𝒃𝟐𝟐�̈�𝒆 (A.7) 

Collecting terms, 

  �⃛�𝒚 − 𝒃𝒃𝟐𝟐�̈�𝒆 − [𝒃𝒃𝟏𝟏 − (𝒄𝒄 + 𝒅𝒅)𝒃𝒃𝟐𝟐]�̇�𝒆 = 𝒃𝒃𝒐𝒐𝒆𝒆 − (𝒄𝒄 + 𝒅𝒅)�̈�𝒚 − 𝒄𝒄𝒅𝒅�̇�𝒚  (A.8) 

Comparing Equation (A.8) with Equation (A.1), terms 𝑏𝑏𝑜𝑜, 𝑏𝑏1, and 𝑏𝑏2 are calculated by equating like 
terms, and they are 

 𝒃𝒃𝒐𝒐 = 𝒂𝒂𝒃𝒃, 𝒃𝒃𝟏𝟏 = 𝒂𝒂 + 𝒃𝒃 − 𝒄𝒄 − 𝒅𝒅, 𝒃𝒃𝟐𝟐 = 𝟏𝟏. 

The complete diagram is shown in Figure A.2(b). 
Following the same procedure to draw the state space diagram of the plant TF in this example (before 

the controller is inserted), the state space diagram shown in Figure A.3 is obtained. Comparing this 
diagram with that shown in Figure A.2(b), it can be seen that the controller in this example system can be 
implemented and integrated with the plant by adding one integrator at the output of the plant, and by 
inserting the summing blocks with the gains shown in Figure A.2(b) for the error input. The summation of 
these blocks shown would be inserted directly into the plant, assuming that all the states of the plant are 
observable and accessible.  

Such tightly integrated controller/plant TFs can be developed with any system that can be designed to 
have only one more pole than the number of zeros. Then, by utilizing the RL design covered in the paper, 
such control systems can potentially result in ultra-robust control designs or at least result in control 
designs that are stable to large variations in the system proportional gains. The drawback for such tightly 
integrated control designs is that it might be necessary that at least part or the control law implementation 
be done in the native environment of the plant design. If the plant happens to be an electrical system, the 
controller can be tightly integrated with the plant using an analog circuit for the controller, while for a 
system like a spring-mass system, the controller may need to be also represented by a mass-springs 
system. 
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Figure A.3.—State space diagram of the example plant TF.  
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Appendix B 
In this appendix an example control system design will be covered for a system whose response time 

(due to requirements) is relatively slow compared to the speed of its actuator, with the design objective to 
meet the response time requirement while at the same time take maximum advantage of the speed of the 
actuation system. 

Say that in this example the settling time of the control system is required to be 5 s, given a plant TF 
Gp(s)= (9542s+ 20770)/(s2+4.852s+5.171). For a 5 s first order type system response (i.e., ωn/(s+ωn)), ωn 
≈ 4/5 = 0.8 rad/s, where 4 is the number of time constants it takes for the response to settle or to achieve 
98% of its steady state value. Also, say that the actuator TF, Ga(s), of the process has a 6 Hz bandwidth or 
roughly 37 rad/s. Based on the actuator speed alone and the LS design approach covered in Section 3.0, 
the desired OL TF can be chosen as Gd(s)=15(s/1.5+1)/[s(s/3.7+1)], which will provide for a bandwidth 
of 37 rad/s, a mid-frequency gain of approximately 20 dB, and more than adequate stability margins. For 
this desired OL TF, a controller design based on the approach discussed in Section 3.0 will be, 
Gc(s)=(9.102×106s5+7.987×108s4+1.728×1010s3 +8.844×1010s2+1.609×1011s + 
9.665×1010)/(1.959×107s5+1.599×1010s4+3.307×1012s3+1.901×1013s2+2.588×1013s). Notice that without 
including the actuator TF and because in this example the plant TF has one more pole than zero, it is 
possible to design a controller with a proper TF (equal number of poles and zeros) that results in a robust 
control system design for any uncertainty in the proportional gain, according to the RL design approach 
covered in the paper. Typically however, in an actual control system design, the actuator dynamics would 
need to be included.  

In order to design the control system to take full advantage of the actuator speed while at the same 
time satisfying a slower response time as in this example, a model following control system design 
structure is chosen as shown in Figure B.1. The model response that the control system is designed to 
follow is that of the reference model shown in Figure B.1, which provides for the desired response time 
and a first order type response in this case. The purpose of the external feedback gain is to tune the 
control system response to follow that of the reference model; the higher this gain is, the closer these two 
responses will match (up to a point, before oscillations begin to take place). The filter at the input is used 
to slow down the initial step command in order to allow this close matching of the two responses to occur 
without any oscillations. As with most control systems, a sharp step command input is not required. 

 

 
Figure B.1.—Model following control structure for LS design with an actuation system faster than the required 

response time. 
 

Gc(s) Gp(s)

Disturbance
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Bode plots of the OL TF (Gc(s)*Ga(s) *Gp(s)) for the control system shown in Figure B.1 can be 
plotted as before to evaluate its performance. This will not be done here, since the process of doing so is 
the same as that covered in the body of the paper. Figure B.2 shows a step response of the reference 
model against that of the LS-Model Following Control (LS-MFC) design, which shows that the feedback 
control system response closely follows that of the reference model. Figure B.3 shows the disturbance 
rejection capability of the LS-MFC for a disturbance of 1 unit amplitude at a frequency of 3 rad/s. The 
figure shows the actual disturbance, the output of the LS control design without the model following, and 
the output of the LS-MFC shown in Figure B.1. The LS control design attenuates the disturbance by 
approximately 20 dB as expected at the mid-frequency range based on the design approach covered in the 
paper. The LS-MFC design in this example however, attenuates the disturbance by approximately 43 dB 
(see the inset in Figure B.3), which is substantially more.  

If the control system was designed to meet the 5 s settling time requirement without taking advantage 
of the speed of the actuator, there would have been significantly less disturbance rejection at the 
frequency of 3 rad/s, as the bandwidth of the control system would have been only about 6 rad/s. Anytime 
the bandwidth of the control system is increased however, as in this design example, care must be taken to 
make sure that the plant model includes the appropriate dynamics.  

 
 

 
Figure B.2.—Response time of model following 

control system. 
 
 
 

 
Figure B.3.—Disturbance rejection of LS control 

and of LS model following control system 
design. 

 
 



NASA/TM—2017-219721 29 

For this system, the gain at the input of the controller represents gain uncertainty, and for high gains 
the control system shown in Figure B.1 will go unstable. The reason for this is because the robustness of 
the design is compromised due to the additional poles (actuator poles), as covered in the RL section. To 
improve the robustness of this design, a low pass filter can also be added to the external feedback, like 
GF(s)=5/(s+5), which will provide gain tolerance or robustness for up to an order of magnitude for gain 
variations, and also provide significant tolerance to uncertainty in the process dynamics. In fact, the same 
filter can also replace the input filter shown in Figure B.1. 

To demonstrate the improvement in the robustness of the control system using the model following 
control structure, Figure B.4(a) shows the response of the control system for the original gain, K (Gain12 in 
Figure B.1), and 10 times this gain. Also, the filters discussed above were added for this simulation, with an 
external feedback gain value of 1 (this value suffices with the addition of the filters), and with the reference 
model replaced with the feedback TF of the desired control system (i.e., Gd(s)=15(s/1.5+1)/[s(s/3.7+1)]; 
GRef=feedback(Gd,1)). To emphasize that these improvements using the model following control structure 
with the LS design are not unique to this particular plant, Figure B.4(b) shows such responses for the 
example plant covered for LS in Section 3.2 with the controller Gc2(s) and its corresponding Gd(s)  

feedback system for the reference model (i.e., 𝐺𝐺𝑐𝑐2(𝑠𝑠) = K (𝐬𝐬+𝟐𝟐)(𝒔𝒔+𝟑𝟑𝟏𝟏)(𝒔𝒔𝟐𝟐+𝟑𝟑𝟏𝟏𝒔𝒔+𝟕𝟕𝟏𝟏𝟕𝟕)
𝐬𝐬(𝐬𝐬+𝟏𝟏𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+𝟏𝟏)(𝐬𝐬/𝟏𝟏𝟑𝟑𝟏𝟏𝟏𝟏+𝟏𝟏)

 and Gd(s) = 

50(s/5+1)/[s(s/10+1)]). The bandwidth of the filters should be sufficient such that the settling time 
requirement is not compromised. The uncertainty proportional gain values of 10 and 20 shown in Figure 
B.4(a) and (b) are about at the limit that these control designs can tolerate, respectively, without going 
unstable. 

 
 

 
Figure B.4.—Response time of model following control system with gain uncertainty (a) for the 

example in this appendix, (b) for the example covered in the LS section of the paper. 
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Appendix C 
In this appendix another example is demonstrated for feedback control system design using the RL, 

LS, and PID control methods. The objective is to make this example more realistic, perhaps a little more 
complicated in terms of a control process, while emphasizing and reinforcing some of these control 
design concepts. 

For the mechanical system shown in Figure C.1, the objective is to control its displacement, x1(t), 
using the force, f (t). After drawing its two free body diagrams by assuming static equilibrium, summing 
up the forces, taking the Laplace transforms of the differential equations, and using Matrix algebra to 
solve the system (not shown since the objective here is control design), the TF of this displacement with 
respect to the applied force is    

  𝑋𝑋1(𝑠𝑠)
𝐹𝐹(𝑠𝑠)

= 0.25(𝑠𝑠/1.67+1)
(𝑠𝑠/4.81+1)(𝑠𝑠/2.18+1)(𝑠𝑠2/0.95+1.51𝑠𝑠/0.95+1)

 

Say the force is applied via an actuator that has the following TF, with an actuator speed limit of 
10 units/s or according to the LS design method, designed to a crossover frequency limit of 10 rad/s. 

𝐺𝐺𝐴𝐴(𝑠𝑠) =
1

(𝑠𝑠/5 + 1)
 

For additional specs, say, the control designs should take maximum advantage of the speed of the actuator 
(fast response), with good disturbance rejection of approximately 20 dB gain at mid-frequency, with an 
overshoot of less than 20%, and with PM and GM of greater than 50° and 10 dB, respectively. 

C.1 Root Locus Control Design 

Using the RL control design methodology covered in this paper, it is recognized that the combined 
plant TF has one zero and five poles, plus one more pole that is needed at the origin for zero SS error to a 
step input command. Based on the RL design approach, four zeros will be needed in the controller design 
(i.e., an OL TF design with one less zero than the number of poles). This is in order to bend the RL 
trajectory to the left to allow the control system to meet the desired cross-over frequency and therefore, 
 

 

 
Figure C.1.—Mechanical system to control 

displacement x1 using force f(t); K-spring constant 
in N/m; B-damper in N-s/m; M-mass in kg. 
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meet the desired speed limit or remain slightly below. As the placement of the leftmost zero primarily 
impacts the frequency where the complex poles of the plant will loop around and intersect the real axis 
(impacts the natural frequency, ωn, of these poles), and as the target for this intersection is somewhere 
near 10 rad/s, the leftmost zero is placed at 5.7 rad/s in this design (a little trial and error). The rest of the 
zeros are placed relatively close together, except perhaps for the lowest frequency zero, which impacts the 
settling time. So for this design, the controller zeros are placed at Z1=5.7 rad/s, Z2=5 rad/s, Z3=3 rad/s, 
Z4=1 rad/s. The RL for this OL TF design with a process proportional gain of 1 is shown in Figure C.2. 
For the selected point shown on the RL plot for the CL conjugate pole locations, it can be seen that the 
proportional gain is 42, while the damping is good. 

The bode plot of the OL TF of this RL design with the proportional gain of 42 is shown in Figure C.3, 
which as seen exceeds the limit requirement for the cross-over frequency of 10 rad/s. The proportional 
gain of this design is therefore reduced by the magnitude of 3.96 dB that this gain exceeds the 
requirement, as log-1 [20log(3.96)] = 103.96/20 = 1.58. As shown, the adjusted OL TF design (dashed line) 
meets the cross-over limit and has a PM of approximately 76° and infinite GM. The mid-frequency gain 
for disturbance rejection in this adjusted design is approximately 27 dB, which meets or exceeds the spec. 

Based on that, the resulting controller TF, including the required padding poles to make the TF 
proper, is as follows. 

𝐺𝐺𝑐𝑐(𝑠𝑠) =
106.51(𝑠𝑠/5.7 + 1)(𝑠𝑠/5 + 1)(𝑠𝑠/3 + 1)(𝑠𝑠/1 + 1)

𝑠𝑠(𝑠𝑠/100 + 1)(𝑠𝑠/110 + 1)(𝑠𝑠/120 + 1)
 

This design with the padded controller is also shown in Figure C.3. Notice the controller gain is 
Kc=42/(Kp*1.58), and for the bode plot Gp(s) = 𝑋𝑋1(𝑠𝑠)

𝐹𝐹(𝑠𝑠) 𝐺𝐺𝐴𝐴(𝑠𝑠), with the original gain Kp=0.25. This final 

control design still meets the specs with a PM of approximately 60°, a GM of approximately 19 dB and a 
 
 

 
Figure C.2.—Root locus of the plant TF with a proportional gain of 1. 
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mid-frequency gain (up to a frequency of 1 rad/s) of better than 20 dB. The padding poles could be moved 
to higher frequencies if the desire is to keep the PM of the original design. The step response (x1(t) – 
displacement in meters) of the feedback system is shown in Figure C.4, which shows that the overshoot 
spec of less than 20% is also met in this design. The settling time is approximately 0.8 s, which is relative 
fast; the result of taking nearly maximum advantage of the actuator speed in this design, and the 
placement of the lowest frequency zero. Zooming in on the initial or the fastest portion of the response as 
shown in the inset, the response is approximately 8 units or 8 m/s, which is close to but does not exceed 
the actuator limit, and perhaps still offers some room to increase the bandwidth of the control design. 

 
 
 

 
Figure C.3.—Bode plots of the OL TF design and that for the reduced gain. 

 
 

 
Figure C.4.—Control system step response for the RL 

design, and the inset showing the initial speed of the 
system. 
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C.2 PID Control Design 

For the PID control design, the process is the same as described in Section 5.0, and for this process 
the PID controller design that seems to perform the best in terms of meeting the specs, including a 
padding pole to make the TF proper, is as follows. 

𝐺𝐺𝑐𝑐(𝑠𝑠) =
𝐾𝐾𝐼𝐼 �

𝐾𝐾𝐷𝐷
𝐾𝐾𝐼𝐼

𝑠𝑠2 + 𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼
𝑠𝑠 + 1�

𝑠𝑠 � 𝑠𝑠
100 + 1�

 

with Kp=10.86, Ki=5.25, Kd=5.61. 
Shown in Figure C.5 is the bode plot of this design, which meets the requirements, but with a smaller 

control bandwidth or crossover frequency. For instance, in this design the approximately 20 dB mid 
frequency gain is met, however, at a frequency of about 1/10th that of the RL control design, which means 
that this design will have significantly less disturbance rejection capability. The settling time in this 
design is considerably slower and the speed of the system is nowhere near that obtained in the RL control 
design (Figure C.6). That is, the PID control design is not able to take maximum advantage of the speed 
of the actuator in this system. 

 
 

 
Figure C.5.—Bode plots of the PID control design.  

 

 
Figure C.6.—Control system step response for 

the PID control design. 
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C.3 Loop Shaping Control Design 

For the LS control design in this example, a different control design approach will be demonstrated 
from that described in Section 3.0, which normally results in a lower order controller for cases in which 
the plant dynamics are not significantly underdamped. In this LS control design approach the design for 
the desired OL TF, Gd, will be the same as that shown in Section 3.1. However, for the actual OL TF 
design to match the bode plot of Gd, the approach here is to design the controller for the corresponding 
OL gain to match the gain of Gd, starting from low frequency – step-by-step, and without cancelling the 
plant dynamics. First, the low frequency factors in Gd(s), Kc/s, (i.e., Kc=Kd/Kp) are kept in the first 
attempt of the controller design to match these OL gains. After that, the 3 dB separation in these two 
gains is to be found successively (one at a time), and a zero is inserted at these frequencies (one at a time) 
and the process is repeated in order to match these gains at progressively higher and higher frequencies, 
up to the cross over frequency. If the bode gain of this design happens to be higher than that of the desired 
OL gain, Gd, poles will be inserted instead of zeros.  

The design of Gd in this example is carried out here with its zero selected at the frequency of 
7.5 rad/s, which is higher than the recommended frequency range of its zero of 1/4th to ½ the frequency of 
its pole. Here again, the frequency of the pole in the TF Gd(s) is placed at 1/10th the cross over frequency. 
The placement of the zero at higher than the recommended frequency is done here independently, for the 
purpose of speeding the response; this will somewhat compromise the robustness of the system. The 
recommended frequency range of this zero causes the control system response to transition to a first order 
type response somewhere at near 90% of the response, for enhanced system stability and robustness. 
Based on that, the desired OL gain Gd is as follows. 

 𝐺𝐺𝑑𝑑(𝑠𝑠) = 7.5(𝑠𝑠/0.75+1)
𝑠𝑠(𝑠𝑠/1+1)

 

The matching process of the OL TF of the control system design with the bode gain of Gd(s) in steps 
is shown in Figure C.7. The topmost frequency response is that of Gd(s), while the rest of the responses 
show progressively increased matching with Gd(s), starting from the bottommost response (red) and 
moving up. The final attempt matches the response of Gd(s) up to the cross-over frequency of 10 rad/s, 
almost indistinguishably for this resolution, with a slight difference shown in phase matching (blue vs. 
cyan colors). The controller design for these successive matching steps are as follows: Gc(s)= 30/s; 
30(s/0.75+1)/s; 30(s/0.75+1)(s/1.355+1)/s; 30(s/0.75+1)(s/1.355+1)(s/2.9+1)/s; 
30(s/0.75+1)(s/1.355+1)(s/2.9+1)/s)(s/8.5+1)/s. Notice the controller successive designs displayed here 
do not constitute proper TFs. However, each of these expressions together with the plant is handled as a 
single TF to generate the responses in Figure C.8 (ex., bode(30*(s/0.75+1)/s)*Ga*Gp)). Thus, for this 
design the controller TF, including the padding poles at 10x or more the cross-over frequency is  

𝐺𝐺𝑐𝑐1(𝑠𝑠) =
30(𝑠𝑠/0.75 + 1)(𝑠𝑠/1.355 + 1)(𝑠𝑠/2.9 + 1)(𝑠𝑠/8.5 + 1)

𝑠𝑠(𝑠𝑠/100 + 1)(𝑠𝑠/120 + 1)(𝑠𝑠/140 + 1)
 

The feedback system step response with this controller design is shown in Figure C.8, with the inset 
showing a settling time of approximately 0.23 s. For the desired OL TF, Gd(s), the settling time instead, 
was 0.6 s. The difference is due to the underdamped dynamics in the process and the matching performed 
for the control system design, which does not exactly match at the frequency of the process underdamped 
dynamics. The initial response or the fastest speed of the process (not shown here) is approximately 
8.3 m/s for this design, which is near, but under the limit of 10 m/s that is specified. 
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Figure C.7.—Frequency response of Gd(s), and that of the 

designed control system OL TF, in successive attempts to match 
these responses.  

 
 

 
Figure C.8.—Control system step response for the LS control design. 
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