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Outline

I Overview of all-sky network and data

I Discussion of shower and sporadic meteors

I Past and current projects that use all-sky data

I Potential student projects
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All-sky meteor camera and sample image
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Map
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Meteor detection
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Meteor detection
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Meteor detection
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False positives: satellites (ISS)
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False positives: satellites (Iridium Flare)
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False positives: airplanes
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False positives: vehicle headlights
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False positives: lightning

12 / 54



False positives: birds
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False positives: insects and spiders
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False positives

I Satellites: too high

I Airplanes: too low

I Headlights: only one camera

I Lightning: too low, track is erratic

I Birds and bugs: only one camera, track is erratic
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Meteor detection: false negatives

I We get false negatives as well (meteors that are rejected)

I We review these rejects near-daily and override as needed

I These show up in the log more than a day later
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Event data
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Event data
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Camera stations
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Position relative to cameras
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Brightness
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Orbit
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Orbit

time 20180108 4.7600 hours

lat 33 22 29.208 = 33.3748 deg

lon 250 53 24.216 = 250.8901 deg

ht 54.610 b -14.07390 7.06982 -5.75963 19.87105

alp 84.870 +/- 19.112 deg

del 22.386 +/- 10.702 deg

v_inf 21.555 +/- 2.256 km/s

v_avg 21.555 +/- 2.256 km/s

a 7.214 +/- 22.675 AU

e 0.888 +/- 0.338

incl 0.863 +/- 5.700 deg

omega 51.721 +/- 23.497 deg

asc_node 107.747 +/- 0.979 deg

v_g 18.350 +/- 2.643 km/s

v_h 41.004 +/- 4.713 km/s

alp_geo 84.476 +/- 20.584 deg

del_geo 21.582 +/- 11.588 deg

q_per 0.806 +/- 0.118 AU

q_aph 13.622 +/- 45.252 AU

lambda 85.120 +/- 19.140 deg

beta -1.757 +/- 11.604 deg

true anom 308.131 +/- 11.604 deg

T_j 1.8
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Shower vs. sporadic meteors

I It is a common misconception that all or most meteors belong
to meteor showers.

I Showers have steeper mass indices and are more important at
large sizes.

I But sporadic meteors are the majority even at fireball sizes:
2/3 of all-sky detections are classed as sporadic
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Shower vs. sporadic
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Shower vs. sporadic
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Shower vs. sporadic
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Shower vs. sporadic
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Daytime showers
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What you see is not an unbiased sample
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Meteor Data Center: 821 showers as of 7 Dec 2017
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International Meteor Organization (IMO): 37 showers in
2018 calendar

IMO INFO(2-17) 25

Table 5. Working List of Visual Meteor Showers. Details in this Table were correct
according to the best information available in June 2017, with maximum dates accurate only
for 2018. The parenthesized maximum date for the Puppids-Velids indicates a reference date
for the radiant only, not necessarily a true maximum. Some showers have ZHRs that vary from
year to year. The most recent reliable figure is given here, except for possibly periodic showers
which are noted as ‘Var’ = variable. For more information check the updates published e.g. in
the IMO Journal WGN.

Shower Activity Maximum Radiant V∞ r ZHR
Date λ⊙ α δ km/s

Antihelion Source (ANT) Dec 10–Sep 10 March–April, see Table 6 30 3.0 4
– late May, late June

Quadrantids (010 QUA) Dec 28–Jan 12 Jan 03 283 .◦15 230◦ +49◦ 41 2.1 110
γ-Ursae Minorids (404GUM) Jan 10–Jan 22 Jan 18 298◦ 228◦ +67◦ 31 3.0 3
α-Centaurids (102 ACE) Jan 31–Feb 20 Feb 08 319 .◦2 210◦ −59◦ 58 2.0 6
γ-Normids (118 GNO) Feb 25–Mar 28 Mar 14 354◦ 239◦ −50◦ 56 2.4 6
Lyrids (006 LYR) Apr 14–Apr 30 Apr 22 32 .◦32 271◦ +34◦ 49 2.1 18
π-Puppids (137 PPU) Apr 15–Apr 28 Apr 23 33 .◦5 110◦ −45◦ 18 2.0 Var
η-Aquariids (031 ETA) Apr 19–May 28 May 06 45 .◦5 338◦ −01◦ 66 2.4 50
η-Lyrids (145 ELY) May 03–May 14 May 09 48 .◦0 287◦ +44◦ 43 3.0 3
Dayt. Arietids (171 ARI) May 14–Jun 24 Jun 07 76 .◦6 44◦ +24◦ 38 2.8 30
June Bootids (170 JBO) Jun 22–Jul 02 Jun 27 95 .◦7 224◦ +48◦ 18 2.2 Var
Piscis Austr. (183 PAU) Jul 15–Aug 10 Jul 28 125◦ 341◦ −30◦ 35 3.2 5
S. δ-Aquariids (005 SDA) Jul 12–Aug 23 Jul 30 127◦ 340◦ −16◦ 41 2.5 25
α-Capricornids (001 CAP) Jul 03–Aug 15 Jul 30 127◦ 307◦ −10◦ 23 2.5 5
Perseids (007 PER) Jul 17–Aug 24 Aug 12 140 .◦0 48◦ +58◦ 59 2.2 110
κ-Cygnids (012 KCG) Aug 03–Aug 25 Aug 18 145◦ 286◦ +59◦ 25 3.0 3
Aurigids (206 AUR) Aug 28–Sep 05 Sep 01 158 .◦6 91◦ +39◦ 66 2.5 6
Sep. ε-Perseids (208 SPE) Sep 05–Sep 21 Sep 09 166 .◦7 48◦ +40◦ 64 3.0 5
Dayt. Sextantids (221 DSX) Sep 09–Oct 09 Sep 27 184 .◦3 152◦ +00◦ 32 2.5 5
Oct.Camelopard. (281 OCT)Oct 05–Oct 06 Oct 06 192 .◦58 164◦ +79◦ 47 2.5 5
Draconids (009 DRA) Oct 06–Oct 10 Oct 09 195 .◦4 262◦ +54◦ 20 2.6 10
S. Taurids (002 STA) Sep 10–Nov 20 Oct 10 197◦ 32◦ +09◦ 27 2.3 5
δ-Aurigids (224 DAU) Oct 10–Oct 18 Oct 11 198◦ 84◦ +44◦ 64 3.0 2
ε-Geminids (023 EGE) Oct 14–Oct 27 Oct 18 205◦ 102◦ +27◦ 70 3.0 3
Orionids (008 ORI) Oct 02–Nov 07 Oct 21 208◦ 95◦ +16◦ 66 2.5 20
Leonis Minorids (022 LMI) Oct 19–Oct 27 Oct 24 211◦ 162◦ +37◦ 62 3.0 2
N. Taurids (017 NTA) Oct 20–Dec 10 Nov 12 230◦ 58◦ +22◦ 29 2.3 5
Leonids (013 LEO) Nov 06–Nov 30 Nov 17 235 .◦27 152◦ +22◦ 71 2.5 15
α-Monocerotids (246AMO) Nov 15–Nov 25 Nov 21 239 .◦32 117◦ +01◦ 65 2.4 Var
Nov. Orionids (250 NOO) Nov 13–Dec 06 Nov 28 246◦ 91◦ +16◦ 44 3.0 3
Phoenicids (254 PHO) Nov 28–Dec 09 Dec 02 250 .◦0 18◦ −53◦ 18 2.8 Var
Puppid-Velids (301 PUP) Dec 01–Dec 15 (Dec 07) (255◦) 123◦ −45◦ 40 2.9 10
Monocerotids (019 MON) Dec 05–Dec 20 Dec 09 257◦ 100◦ +08◦ 41 3.0 2
σ-Hydrids (016 HYD) Dec 03–Dec 15 Dec 12 260◦ 127◦ +02◦ 58 3.0 3
Geminids (004 GEM) Dec 04–Dec 17 Dec 14 262 .◦2 112◦ +33◦ 35 2.6 120
ComaeBerenic. (020 COM) Dec 12–Dec 23 Dec 16 264◦ 175◦ +18◦ 65 3.0 3
Dec. L.Minorids (032 DLM) Dec 05–Feb 04 Dec 20 268◦ 161◦ +30◦ 64 3.0 5
Ursids (015 URS) Dec 17–Dec 26 Dec 22 270 .◦7 217◦ +76◦ 33 3.0 10

Table 6 (next page). Radiant positions during the year in α and δ.
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... plus 11 daytime showers

IMO INFO(2-17) 27

Table 7. Working List of Daytime Radio Meteor Showers. According to the naming rules, the
shower names should all have ‘Daytime’ added (it is omitted in this Table). An asterisk (‘*’) in the
‘Max date’ column indicates that source may have additional peak times, as noted in the text above.
See also the details given for the Arietids (171 ARI) and the Sextantids (221 DSX) in the text part of
the Calendar. Rates are expected to be low (L), medium (M) or high (H). An asterisk in the ‘Rate’
column shows the suggested rate may not recur in all years. (Thanks to Jean-Louis Rault and Cis
Verbeeck for comments on the Table.)

Shower Activity Max λ⊙ Radiant Rate
Date 2000 α δ

Capricornids/Sagittariids (115 DCS) Jan 13–Feb 04 Feb 01∗ 312 .◦5 299◦ −15◦ M∗

χ-Capricornids (114 DXC) Jan 29–Feb 28 Feb 13∗ 324 .◦7 315◦ −24◦ L∗

April Piscids (144 APS) Apr 20–Apr 26 Apr 22 32 .◦5 9◦ +11◦ L
ε-Arietids (154 DEA) Apr 24–May 27 May 09 48 .◦7 44◦ +21◦ L
May Arietids (294 DMA) May 04–Jun 06 May 16 55 .◦5 37◦ +18◦ L
o-Cetids (293 DCE) May 05–Jun 02 May 20 59 .◦3 28◦ −04◦ M∗

Arietids (171 ARI) May 14–Jun 24 Jun 07 76 .◦6 42◦ +25◦ H
ζ-Perseids (172 ZPE) May 20–Jul 05 Jun 09∗ 78 .◦6 62◦ +23◦ H
β-Taurids (173 BTA) Jun 05–Jul 17 Jun 28 96 .◦7 86◦ +19◦ M
γ-Leonids (203 GLE) Aug 14–Sep 12 Aug 25 152 .◦2 155◦ +20◦ L∗

Daytime Sextantids (221 DSX) Sep 09–Oct 09 Sep 27∗ 184 .◦3 152◦ 0◦ M∗
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Cluster algorithm

I We see new showers and outbursts from time to time:
I 2014 May Camelopardalids
I 2014 Phoenicids
I 2016 γ Draconids

I Former intern Josh Burt wrote a script to automatically detect
clusters of 5 or more meteors in 3 day intervals (Burt et
al. 2014):

35 / 54



Shower surveys

I Shower surveys are a fun way to begin working with meteor data

I Former MEO intern Glenn Sugar used density-based cluster
algorithm DBSCAN to automatically detect showers in the
all-sky data (Sugar et al. 2017)

36 / 54



Shower surveys

180°270°

Meteor radiant density in Sun-
centered ecliptic coordinates. 
Detected showers are labeled. 
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Shower surveys
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Shower significance

I The sporadic background is
not isotropic

I False positives for shower
association depend on nearby
sporadics

I But showers are shorter-lived
than sporadics

I So how does clustering around
a given orbit (measured by
DN) vary by time of year?

The use of D-criteria to assess meteor shower signi�cance

Introduction

I The anisotropy of the sporadic meteor background complicates
meteor shower extraction.

I Using static orbital similarity criteria to identify shower members
can produce too many false positives near sporadic sources.

I Concept: We use shower “analogs" to characterize the density of
meteor orbits in a region of parameter space when the shower is not
active.

Orbital Similarity Criteria

I D-parameters quantify orbital similarity.
I We obtained the best results using DN [1]:

∆„a = 2 sin 1
2(„2 ≠ „1)

∆„b = 2 sin 1
2(fi + „2 ≠ „1)

∆⁄a = 2 sin 1
2(⁄§,2 ≠ ⁄§,1)

∆⁄b = 2 sin 1
2(fi + ⁄§,2 ≠ ⁄§,1)

∆›2 = min(∆„2
a + ∆⁄2

a, ∆„2
b + ∆⁄2

b)
D2

N = (u2 ≠ u1)
2 + w1(cos ◊2 ≠ cos ◊1)

2 + ∆›2

where u = vg/vü, ◊ = cos≠1 (uy/u), and „ = tan≠1 (ux/uz).
I DN is based on geocentric speed and radiant (̨vg) and solar longitude

(⁄§) instead of orbital elements.

Construction of shower analogs

I We construct a set of analogs for each
shower.

I Analogs have the same geocentric
speed and sun-centered ecliptic radiant,
but are o�set from the shower by at
least 60¶ in ⁄§.

I This e�ectively defines a shower as an
enhancement lasting < 4 months.

I We calculate DN of all meteors relative to each analog and to the
shower and compare.

I This provides us with an estimate of the false positive rate for
shower association as a function of DN .

Data

I We apply our method to 36,617 all-sky meteors from NASA All Sky
Fireball Network [2] and the Southern Ontario Meteor Network
(SOMN) [3].

I Possible showers were identified using orbital element heat maps
(see below) or as short-lived clusters of meteors [4]
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Application #1: Testing Shower Significance

I Example 1: The October Lyncids (OLY) were not detected: meteor
density around the shower and its analogs is similar.

I Example 2: The July “ Draconids (GDR) were detected: meteor
density around the shower exceeded the false positive rate.
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Application #2: Shower membership probability

I The ratio of meteors that lie close to the shower orbit vs. its shower
analogs provides an estimate of shower membership probability as a
function of D:

P(shower|D) ƒ ND ≠ Nspor,D

ND

Application #3: Limiting Sporadic Contamination

I Shower analogs yield a false positive rate
I Dmax can be chosen to limit this to a desired percentage
I Example 1: Dmax = 0.15 limits sporadic contamination to less than

10% for the July “ Draconids (GDR).
I Example 2: Dmax = 0.475 limits sporadic contamination to less than

10% for the Perseids (PER).
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Application #4: Shower strength estimates

I It is not necessary to identify each shower member in order to
estimate the strength of a meteor shower.

I Example: This CDF indicates that we have ¥ 1870 Geminids (GEM)
in our data set.
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Shower significance

The use of D-criteria to assess meteor shower signi�cance

Introduction

I The anisotropy of the sporadic meteor background complicates
meteor shower extraction.

I Using static orbital similarity criteria to identify shower members
can produce too many false positives near sporadic sources.

I Concept: We use shower “analogs" to characterize the density of
meteor orbits in a region of parameter space when the shower is not
active.

Orbital Similarity Criteria

I D-parameters quantify orbital similarity.
I We obtained the best results using DN [1]:

∆„a = 2 sin 1
2(„2 ≠ „1)

∆„b = 2 sin 1
2(fi + „2 ≠ „1)

∆⁄a = 2 sin 1
2(⁄§,2 ≠ ⁄§,1)

∆⁄b = 2 sin 1
2(fi + ⁄§,2 ≠ ⁄§,1)

∆›2 = min(∆„2
a + ∆⁄2

a, ∆„2
b + ∆⁄2

b)
D2

N = (u2 ≠ u1)
2 + w1(cos ◊2 ≠ cos ◊1)

2 + ∆›2

where u = vg/vü, ◊ = cos≠1 (uy/u), and „ = tan≠1 (ux/uz).
I DN is based on geocentric speed and radiant (̨vg) and solar longitude

(⁄§) instead of orbital elements.

Construction of shower analogs

I We construct a set of analogs for each
shower.

I Analogs have the same geocentric
speed and sun-centered ecliptic radiant,
but are o�set from the shower by at
least 60¶ in ⁄§.

I This e�ectively defines a shower as an
enhancement lasting < 4 months.

I We calculate DN of all meteors relative to each analog and to the
shower and compare.

I This provides us with an estimate of the false positive rate for
shower association as a function of DN .

Data

I We apply our method to 36,617 all-sky meteors from NASA All Sky
Fireball Network [2] and the Southern Ontario Meteor Network
(SOMN) [3].

I Possible showers were identified using orbital element heat maps
(see below) or as short-lived clusters of meteors [4]
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Application #1: Testing Shower Significance

I Example 1: The October Lyncids (OLY) were not detected: meteor
density around the shower and its analogs is similar.

I Example 2: The July “ Draconids (GDR) were detected: meteor
density around the shower exceeded the false positive rate.
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Application #2: Shower membership probability

I The ratio of meteors that lie close to the shower orbit vs. its shower
analogs provides an estimate of shower membership probability as a
function of D:

P(shower|D) ƒ ND ≠ Nspor,D

ND

Application #3: Limiting Sporadic Contamination

I Shower analogs yield a false positive rate
I Dmax can be chosen to limit this to a desired percentage
I Example 1: Dmax = 0.15 limits sporadic contamination to less than

10% for the July “ Draconids (GDR).
I Example 2: Dmax = 0.475 limits sporadic contamination to less than

10% for the Perseids (PER).
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Application #4: Shower strength estimates

I It is not necessary to identify each shower member in order to
estimate the strength of a meteor shower.

I Example: This CDF indicates that we have ¥ 1870 Geminids (GEM)
in our data set.
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Shower significance

The use of D-criteria to assess meteor shower signi�cance

Introduction

I The anisotropy of the sporadic meteor background complicates
meteor shower extraction.

I Using static orbital similarity criteria to identify shower members
can produce too many false positives near sporadic sources.

I Concept: We use shower “analogs" to characterize the density of
meteor orbits in a region of parameter space when the shower is not
active.

Orbital Similarity Criteria

I D-parameters quantify orbital similarity.
I We obtained the best results using DN [1]:

∆„a = 2 sin 1
2(„2 ≠ „1)

∆„b = 2 sin 1
2(fi + „2 ≠ „1)

∆⁄a = 2 sin 1
2(⁄§,2 ≠ ⁄§,1)

∆⁄b = 2 sin 1
2(fi + ⁄§,2 ≠ ⁄§,1)

∆›2 = min(∆„2
a + ∆⁄2

a, ∆„2
b + ∆⁄2

b)
D2

N = (u2 ≠ u1)
2 + w1(cos ◊2 ≠ cos ◊1)

2 + ∆›2

where u = vg/vü, ◊ = cos≠1 (uy/u), and „ = tan≠1 (ux/uz).
I DN is based on geocentric speed and radiant (̨vg) and solar longitude

(⁄§) instead of orbital elements.

Construction of shower analogs

I We construct a set of analogs for each
shower.

I Analogs have the same geocentric
speed and sun-centered ecliptic radiant,
but are o�set from the shower by at
least 60¶ in ⁄§.

I This e�ectively defines a shower as an
enhancement lasting < 4 months.

I We calculate DN of all meteors relative to each analog and to the
shower and compare.

I This provides us with an estimate of the false positive rate for
shower association as a function of DN .

Data

I We apply our method to 36,617 all-sky meteors from NASA All Sky
Fireball Network [2] and the Southern Ontario Meteor Network
(SOMN) [3].

I Possible showers were identified using orbital element heat maps
(see below) or as short-lived clusters of meteors [4]
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Application #1: Testing Shower Significance

I Example 1: The October Lyncids (OLY) were not detected: meteor
density around the shower and its analogs is similar.

I Example 2: The July “ Draconids (GDR) were detected: meteor
density around the shower exceeded the false positive rate.

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

DN

N

shower (OLY)
analogs

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

DN

shower (GDR)
analogs

Application #2: Shower membership probability

I The ratio of meteors that lie close to the shower orbit vs. its shower
analogs provides an estimate of shower membership probability as a
function of D:

P(shower|D) ƒ ND ≠ Nspor,D

ND

Application #3: Limiting Sporadic Contamination

I Shower analogs yield a false positive rate
I Dmax can be chosen to limit this to a desired percentage
I Example 1: Dmax = 0.15 limits sporadic contamination to less than

10% for the July “ Draconids (GDR).
I Example 2: Dmax = 0.475 limits sporadic contamination to less than

10% for the Perseids (PER).
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Application #4: Shower strength estimates

I It is not necessary to identify each shower member in order to
estimate the strength of a meteor shower.

I Example: This CDF indicates that we have ¥ 1870 Geminids (GEM)
in our data set.
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Individual showers
κ Cygnid outburst in 2014

I Diffuse radiant makes membership determination tricky
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Individual showers
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Shower reports

ground tracks for all-sky Geminids sample all-sky Geminid

orbits of all-sky Geminids sample wide-field Geminid

map of active radar meteor showers
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“Skyfalls”
Map of observer reports from amsmeteors.org
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“Skyfalls”
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“Skyfalls”
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Meteorite falls
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Meteorite falls

Meteorite pieces found near Addison, AL by Stephen Beck, Tommy

Brown, Jerry Hinkle, and Robert Woolard. Credit: Tommy Brown
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Potential projects: Cloud detection

I Clouds are another bias (seasonal effect)

I Can partially or wholly obscure the sky

I Appearance varies by site and moon phase

I Historical cloud cover data only partially useful

I Opportunity to try machine learning?
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Potential projects: Saturation correction
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Potential projects: Mass indices
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Potential projects: Slow shower survey

I We generally use geocentric
radiant to identify meteor
showers

I This can increase the apparent
dispersion for slower showers

I Could survey using heliocentric
radiant instead
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Summary

I Embry-Riddle and UCF host two of the newest cameras in the
NASA All Sky Fireball Network (welcome!)

I The data from this network are used in a variety of tasks and
projects
I shower detection
I shower surveys
I shower reports
I bright bolide analyses (“skyfalls”)
I meteorite hunts

I The data can be used for student research projects. Potential
projects include:
I cloud detection
I saturation correction
I mass indices
I a survey of slow showers
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