Fireballs and meteor showers as seen by the NASA All Sky Fireball Network

Althea Moorhead

NASA Meteoroid Environment Office, MSFC

- Overview of all-sky network and data
- Discussion of shower and sporadic meteors
- Past and current projects that use all-sky data
- Potential student projects

All-sky meteor camera and sample image

Мар

Meteor detection

Meteor detection

Meteor detection

False positives: satellites (ISS)

False positives: satellites (Iridium Flare)

False positives: airplanes

False positives: vehicle headlights

False positives: lightning

False positives: birds

False positives: insects and spiders

- Satellites: too high
- Airplanes: too low
- Headlights: only one camera
- Lightning: too low, track is erratic
- Birds and bugs: only one camera, track is erratic

- ▶ We get false negatives as well (meteors that are rejected)
- We review these rejects near-daily and override as needed
- These show up in the log more than a day later

Event data

Event data

Camera stations

Position relative to cameras

Brightness

Orbit

Orbit

time 20180108 4 7600 hours lat 33 22 29.208 = 33.3748 deg lon 250 53 24.216 = 250.8901 deg ht 54.610 b -14.07390 7.06982 -5.75963 19.87105 alp 84.870 +/- 19.112 deg del 22.386 +/- 10.702 deg v_inf 21.555 +/- 2.256 km/s v avg 21.555 +/- 2.256 km/s a 7.214 +/- 22.675 AU e 0.888 +/- 0.338 incl 0.863 +/- 5.700 deg omega 51.721 +/- 23.497 deg asc node 107.747 +/- 0.979 deg vg 18.350 +/- 2.643 km/s v_h 41.004 +/- 4.713 km/s alp_geo 84.476 +/- 20.584 deg del_geo 21.582 +/- 11.588 deg q_per 0.806 +/- 0.118 AU g_aph 13.622 +/- 45.252 AU lambda 85.120 +/- 19.140 deg beta -1.757 +/- 11.604 deg true anom 308.131 +/- 11.604 deg

T_j 1.8

- It is a common misconception that all or most meteors belong to meteor showers.
- Showers have steeper mass indices and are more important at large sizes.
- But sporadic meteors are the majority even at fireball sizes: 2/3 of all-sky detections are classed as sporadic

Shower vs. sporadic

Shower vs. sporadic

Sun-centered ecliptic coordinates

 $\lambda-\lambda_{\odot}$, β

Shower vs. sporadic

Shower vs. sporadic

Daytime showers

What you see is not an unbiased sample

Meteor Data Center: 821 showers as of 7 Dec 2017

00006	LYR	April Lyrids
00007	PER	Perseids
00008	ORI	Orionids
00009	DRA	October Draconids
00010	QUA	Quadrantids
00011	EVI	eta Virginids
00012	KCG	kappa Cygnids
00013	LEO	Leonids
00014	XOR	chi Orionid Complex
00015	URS	Ursids
00016	HYD	sigma Hydrids
00017	NTA	Northern Taurids
00018	AND	Andromedids
00019	MON	December Monocerotids
00020	COM	Comae Berenicids
00021	AVB	alpha Virginids
00022	LMI	Leonis Minorids
00023	EGE	epsilon Geminids
00025	NOA	Northern October delta Arietids
00026	NDA	Northern delta Aquariids
00027	KSE	kappa Serpentids
00028	SOA	Southern October delta Arietida
00029	DLE	delta Leonid Complex
00030	PSC	Piscid Complex
00031	ETA	eta Aquariids
00033	NIA	Northern iota Aquariids
00034	DSE	delta Serpentids
00038	CUR	xi Ursae Majorids
00039	NAL	Northern alpha Leonids
00040	ZCY	zeta Cygnids
00043	ZSE	zeta Serpentids
00045	PDF	phi Draconids
00046	BCR	beta Craterids
00047	DLI	mu Virginids
00049	LVI	lambda Virginids
00050	VIR	March Virginid Complex
00052	OUM	omega Ursae Majorids
00061	TAH	tau Herculids
00063	COR	Corvids
00065	GDE	gamma Delphinids
00066	NSC	Northern omega Scorpiids
00067	NCA	Northern mu Sacittariide

00223	GVI	Daytime gamma Virginids
00224	DAU	October delta Aurigids
00225	SOR	sigma Orionids
00226	ZTA	zeta Taurids
00227	OMO	October Monocerotids
00228	OLY	October Lyncids
00229	NAU	nu Aurigids
00230	ICS	October iota Cassiopeiids
00231	ACM	Daytime alpha Canis Majorids
00232	BCN	Daytime beta Cancrids
00233	OCC	October Capricornids
00234	EPC	October epsilon Piscids
00235	LCY	lambda Cygnids
00236	GPS	gamma Piscids
00237	SSA	sigma Arietids
00238	DOR	alpha Doradids
00239	GPU	October gamma Puppids
00240	DFV	Daytime psi Virginids
00241	OUI	October Ursae Minorids
00242	XDR	xi Draconids
00243	ZCN	zeta Cancrids
00244	PAR	psi1 Aurigids
00245	NHD	November Hydrids
00246	AMO	alpha Monocerotids
00247	TAU	Taurid Complex
00249	NAR	November nu Arietids
00250	NOO	November Orionids
00251	IVI	Daytime iota Virginids
00252	ALY	alpha Lyncids
00253	CMI	December Canis Minorids
00254	PHO	Phoenicids
00255	PUV	Puppid-Velid I Complex
00256	ORN	Northern chi Orionids
00257	ORS	Southern chi Orionids
00258	DAR	December alpha Aurigids
00259	CAR	Carinid Complex
00260	GTI	gamma Triangulids
00261	DDC	Daytime delta Scorpiids
00262	KLI	Daytime kappa Librids
00263	NAN	nu Andromedids
00264	XCE	xi Cetids
00265	JGD	January camma Delphinids

00409	NCY	nu Cygnids
00410	DPI	delta Piscids
00411	CAN	c Andromedids
00412	FOP	f Ophiuchids
00413	MUL	mu Lyrids
00414	ATR	alpha Triangulids
00415	AUP	August Piscids
00416	SIC	September iota Cassiopeiids
00417	ETT	eta Taurids
00418	BHE	beta Herculids
00419	DAC	Daytime April Cetids
00420	CCA	chi Capricornids
00421	MMI	May Microscopiids
00422	NLL	Northern Librids-Lupids
00423	SLL	Southern Librids-Lupids
00424	SOL	September-October Lyncids
00425	PSA	psi Aurigids
00426	DCR	Daytime Craterids
00427	FED	February eta Draconids
00428	DSV	December sigma Virginids
00429	ACB	alpha Coronae Borealids
00430	POR	September pi Orionids
00431	JIP	June iota Pegasids
00432	NBO	nu Bootids
00433	ETP	eta Pegasids
00434	BAR	beta Arietids
00435	MPR	mu Perseids
00436	GCP	gamma Cepheids
00437	NLY	November Lyncids
00438	MLE	mu Leonids
00439	ASX	alpha Sextantids
00440	NLM	November Leonis Minorids
00441	NLD	November lambda Draconids
00442	RLE	rho Leonids
00443	DCL	December Leonids
00444	ZCS	zeta Cassiopeiids
00445	KUM	kappa Ursae Majorids
00446	DPC	December phi Cassiopeiids
00448	AAL	April alpha Librids
00449	ABS	April beta Sextantids
00450	AED	April epsilon Delphinids
00451	CAM	Camelopardalids

00599	POS	72 Ophiuchids
00600	FAU	43 Aurigids
00601	ICT	iota Craterids
00602	KCR	kappa Craterids
00603	FCR	15 Cancrids
00604	ACZ	zeta1 Cancrids
00605	FHR	52 Herculids
00606	JAU	January alpha Ursae Majorida
00607	TBO	12 Bootids
00608	FAR	14 Aurigids
00609	BOT	37 Comae Berenicids
00610	SGM	68 Geminids
00611	VCF	4 Canum Venaticids
00612	NCA	19 Canum Venaticids
00613	TLY	31 Lyncids
00614	JOS	January omega Serpentids
00615	TOR	35 Comae Berenicids
00616	TOB	26 Comae Berenicids
00617	IUM	iota Ursae Majorids
00618	THD	12 Hydrids
00619	SLM	7 Leonis Minorids
00620	SBO	sigma Bootids
00621	SUA	73 Ursae Majorids
00622	PUA	phi Ursae Majorids
00623	XTC	xi2 Capricornids
00624	XAR	xi Arietids
00625	LTA	lambda Taurids
00626	LCT	lambda Cetids
00627	MPI	mu Piscids
00628	STS	s Taurids
00629	ATS	A2 Taurids
00630	TAR	tau Arietids
00631	DAT	delta Arietids
00632	NET	November eta Taurids
00633	PTS	p Taurids
00634	TAT	tau Taurids
00635	ATU	A1 Taurids
00636	MTA	m Taurids
00637	FTR	f Taurids
00638	DZT	December zeta Taurids
00640	AOA	August omicron Aquariids
00641	DRG	December rho Geminids

International Meteor Organization (IMO): 37 showers in 2018 calendar

Shower	Activity	M Da	/laxii te	$_{\lambda_{\odot}}$	$\operatorname{Rac}_{\alpha}$	$liant \delta$	$\begin{array}{c} V_{\infty} \\ \rm km/s \end{array}$	r	ZHR
Antihelion Source (ANT)	Dec 10–Sep 10 _	Marc late N	h–A ⁄Iay,	pril, late June	see T	able 6	30	3.0	4
Quadrantids (010 QUA)	Dec 28–Jan 12	Jan	03	$283^{\circ}15$	230°	$+49^{\circ}$	41	2.1	110
γ -Ursae Minorids (404 GUM)	Jan 10–Jan 22	Jan	18	298°	228°	$+67^{\circ}$	31	3.0	3
α -Centaurids (102 ACE)	Jan 31–Feb 20	Feb	08	$319^{\circ}2$	210°	-59°	58	2.0	6
γ -Normids (118 GNO)	Feb 25–Mar 28	Mar	14	354°	239°	-50°	56	2.4	6
Lyrids (006 LYR)	Apr 14–Apr 30	Apr	22	$32^{\circ}.32$	271°	$+34^{\circ}$	49	2.1	18
π -Puppids (137 PPU)	Apr 15–Apr 28	Apr	23	$33^{\circ}5$	110°	-45°	18	2.0	Var
η -Aquariids (031 ETA)	Apr 19–May 28	May	06	$45.^{\circ}5$	338°	-01°	66	2.4	50
η -Lyrids (145 ELY)	May 03–May 14	May	09	$48^{\circ}0$	287°	$+44^{\circ}$	43	3.0	3
Dayt. Arietids (171 ARI)	May 14–Jun 24	Jun	07	76?6	44°	$+24^{\circ}$	38	2.8	30
June Bootids (170 JBO)	Jun 22–Jul $$ 02	Jun	27	95?7	224°	$+48^{\circ}$	18	2.2	Var
Piscis Austr. (183 PAU)	Jul 15–Aug 10	Jul	28	125°	341°	-30°	35	3.2	5
S. δ -Aquariids (005 SDA)	Jul 12–Aug 23	Jul	30	127°	340°	-16°	41	2.5	25
α -Capricornids (001 CAP)	Jul 03–Aug 15	Jul	30	127°	307°	-10°	23	2.5	5
Perseids (007 PER)	Jul 17–Aug 24	Aug	12	$140^{\circ}0$	48°	$+58^{\circ}$	59	2.2	110
κ -Cygnids (012 KCG)	Aug 03–Aug 25	Aug	18	145°	286°	$+59^{\circ}$	25	3.0	3
Aurigids (206 AUR)	Aug 28–Sep 05	Sep	01	$158^{\circ}6$	91°	$+39^{\circ}$	66	2.5	6
Sep. ε -Perseids (208 SPE)	Sep 05–Sep 21	Sep	09	$166 \stackrel{\circ}{.} 7$	48°	$+40^{\circ}$	64	3.0	5
Dayt. Sextantids (221 DSX)	Sep 09–Oct 09	Sep	27	$184^{\circ}3$	152°	$+00^{\circ}$	32	2.5	5
Oct. Camelopard. (281 OCT)	Oct 05–Oct 06	Oct	06	$192^\circ58$	164°	$+79^{\circ}$	47	2.5	5
Draconids (009 DRA)	Oct 06–Oct 10	Oct	09	$195^{\circ}4$	262°	$+54^{\circ}$	20	2.6	10
S. Taurids (002 STA)	Sep 10–Nov 20	Oct	10	197°	32°	$+09^{\circ}$	27	2.3	5

33 / 54

... plus 11 daytime showers

Shower	Activity	Max	λ_{\odot}	Rad	liant	Rate
		Date	2000	α	δ	
Capricornids/Sagittariids (115 DCS)	Jan 13–Feb 04	Feb 01^*	$312{}^\circ\!5$	299°	-15°	M^*
χ -Capricornids (114 DXC)	Jan 29–Feb 28	Feb 13^*	$324\overset{\circ}{.}7$	315°	-24°	L^*
AprilPiscids (144 APS)	Apr 20–Apr 26	Apr 22	$32^{\circ}.5$	9°	$+11^{\circ}$	L
ε -Arietids (154 DEA)	Apr 24–May 27	May 09	$48^{\circ}.7$	44°	$+21^{\circ}$	L
May Arietids (294 DMA)	May 04–Jun 06	May 16	$55^{\circ}5$	37°	$+18^{\circ}$	L
o-Cetids (293 DCE)	May 05–Jun 02	May 20	$59^{\circ}3$	28°	-04°	M^*
Arietids (171 ARI)	May 14–Jun 24	Jun 07	76 °.6	42°	$+25^{\circ}$	Η
ζ -Perseids (172 ZPE)	May 20–Jul 05	Jun 09^{\ast}	78 °.6	62°	$+23^{\circ}$	Η
β -Taurids (173 BTA)	Jun 05–Jul 17	Jun 28	$96^{\circ}.7$	86°	$+19^{\circ}$	Μ
γ -Leonids (203 GLE)	Aug 14–Sep 12	Aug 25	$152^{\circ}2$	155°	$+20^{\circ}$	L^*
Daytime Sextantids (221 DSX)	Sep 09–Oct 09	$Sep 27^*$	$184^{\circ}.3$	152°	0°	M^*

Cluster algorithm

- ▶ We see new showers and outbursts from time to time:
 - 2014 May Camelopardalids
 - 2014 Phoenicids
 - 2016 \(\gamma\) Draconids
- Former intern Josh Burt wrote a script to automatically detect clusters of 5 or more meteors in 3 day intervals (Burt et al. 2014):

Shower surveys

- Shower surveys are a fun way to begin working with meteor data
- Former MEO intern Glenn Sugar used density-based cluster algorithm DBSCAN to automatically detect showers in the all-sky data (Sugar et al. 2017)

Shower surveys

Shower surveys

Shower significance

- The sporadic background is not isotropic
- False positives for shower association depend on nearby sporadics
- But showers are shorter-lived than sporadics
- So how does clustering around a given orbit (measured by D_N) vary by time of year?

Shower significance

Shower significance

Individual showers

 κ Cygnid outburst in 2014

Diffuse radiant makes membership determination tricky

Individual showers

Shower reports

ground tracks for all-sky Geminids

orbits of all-sky Geminids

sample all-sky Geminid

sample wide-field Geminid

"Skyfalls" Map of observer reports from amsmeteors.org

"Skyfalls"

"Skyfalls"

Meteorite falls

Meteorite falls

Meteorite pieces found near Addison, AL by Stephen Beck, Tommy Brown, Jerry Hinkle, and Robert Woolard. Credit: Tommy Brown

Potential projects: Cloud detection

- Clouds are another bias (seasonal effect)
- Can partially or wholly obscure the sky
- Appearance varies by site and moon phase
- Historical cloud cover data only partially useful
- Opportunity to try machine learning?

Potential projects: Saturation correction

Potential projects: Mass indices

Potential projects: Slow shower survey

- We generally use geocentric radiant to identify meteor showers
- This can increase the apparent dispersion for slower showers
- Could survey using heliocentric radiant instead

Summary

- Embry-Riddle and UCF host two of the newest cameras in the NASA All Sky Fireball Network (welcome!)
- The data from this network are used in a variety of tasks and projects
 - shower detection
 - shower surveys
 - shower reports
 - bright bolide analyses ("skyfalls")
 - meteorite hunts
- The data can be used for student research projects. Potential projects include:
 - cloud detection
 - saturation correction
 - mass indices
 - a survey of slow showers