

Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

Results of the NASA Systems Engineering Research Consortium

www.incose.org/IW2018

Understanding Systems Engineering

- Definition System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system.
 - Elegant System A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation.

Primary Focus

- System Design and Integration
 - -Identify system couplings and interactions
 - -Identify system uncertainties and sensitivities
 - -Identify emergent properties
 - -Manage the effectiveness of the system
- Engineering Discipline Integration
 - Manage flow of information for system development and/or operations
 - -Maintain system activities within budget and schedule

Supporting Activities

Process application and execution

Systems Engineering Postulates

System Integration (physical/logical system) Discipline Integration (social system) Both System and Discipline Integration

- Postulate 1: Systems Engineering is product and environment specific, and context dependent.
- Postulate 2: The Systems Engineering domain consists of subsystems, their interactions among themselves, and their interactions with the system environment
- Postulate 3: The function of Systems Engineering is to integrate engineering disciplines in an elegant manner
- Postulate 4: Systems engineering influences and is influenced by organizational structure and culture
- Postulate 5: Systems engineering influences and is influenced by budget, schedule, policy, and law
- Postulate 6: Systems engineering spans the entire system life-cycle
- Postulate 7: Understanding of the system evolves as the system development or operation progresses
 - Postulate 7 Corollary: Understanding of the system degrades during operations if system understanding is not maintained.

MBSE Driver

Systems Engineering Principles

- Principle 1: Systems engineering integrates the system and the disciplines considering the budget and schedule constraints
- Principle 2: Complex Systems build Complex Systems
 - Principle 3: The focus of systems engineering during the development phase is a progressively deeper understanding of the interactions, sensitivities, and behaviors of the system
 - Sub-Principle 3(a): Requirements are specific, agreed to preferences by the developing organization
 - Sub-Principle 3(b): Requirements and design are progressively defined as the development progresses
 - Sub-Principle 3(c): Hierarchical structures are not sufficient to fully model system interactions and couplings
 - Sub-Principle 3(d): A Product Breakdown Structure (PBS) provides a structure to integrate cost and schedule with system functions
- Principle 4: Systems engineering spans the entire system life-cycle
 - Sub-Principle 4(a): Systems engineering obtains an understanding of the system
 - Sub-Principle 4(b): Systems engineering models the system
 - Sub-Principle 4(c): Systems engineering designs and analyzes the system
 - Sub-Principle 4(d): Systems engineering tests the system
 - Sub-Principle 4(e): Systems engineering has an essential role in the assembly and manufacturing of the system
 - Sub-Principle 4(f): Systems engineering has an essential role during operations and decommissioning

- Principle 5: Systems engineering is based on a middle range set of theories
 - Sub-Principle 5(a): Systems engineering has a physical/logical basis
 - Sub-Principle 5(b): Systems engineering has a mathematical basis
 - Sub-Principle 5(c): Systems engineering has a sociological basis
- Principle 6: Systems engineering maps and manages the discipline interactions within the organization
- Principle 7: Decision quality depends on the system knowledge represented in the decision-making process
- Principle 8: Both Policy and Law must be properly understood to not overly constrain or under constrain the system implementation
- Principle 9: Systems engineering decisions are made under uncertainty accounting for risk
- Principle 10: Verification is a demonstrated understanding of all the system functions and interactions in the operational environment
- Principle 11: Validation is a demonstrated understanding of the system's value to the system stakeholders
- Principle 12: Systems engineering solutions are constrained based on the decision timeframe for the system need

MBSE Driver

System Engineering Hypotheses

- Hypothesis 1: If a solution exists for a specific context, then there exists at least one ideal Systems Engineering solution for that specific context
 - Hamilton's Principle shows this for a physical system
 - $\int_{t_1}^{t_2} (\delta T \delta V + \delta W) dt = 0$
- Hypothesis 2: System complexity is greater than or equal to the ideal system complexity necessary to fulfill all system outputs
- Hypothesis 3: Key Stakeholders preferences can be represented mathematically
- Hypothesis 4: The real physical system is the perfect model of the system
 - Kullback-Liebler Information shows this for ideal information representations of systems
 - $I(f,g) = \int f(x)\log(f(x)) \, dx \int f(x)\log(g(x|\theta)) \, dx = 0$

System Models

System Model	Concept Definition	System Requirements	System Design	System Analysis	System Manufacturing	System Verification	System Validation	System Operation	System Disposal
System Integration									
Goal Function Tree (GFT)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
System Value Model	\checkmark	\checkmark					\checkmark		
Relationship Model (SysML based)	\checkmark	\checkmark				\checkmark			
System Integrating Physics (e.g., System Exergy, Optical Transfer Function, Loads)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
State Analysis Model			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Multidisciplinary Design Optimization (MDO)			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Engineering Statistics	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Discipline Integration									
System Dynamics	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Discrete Event Simulation (DES)					\checkmark	\checkmark		\checkmark	\checkmark
Agent Based Model (ABM)	\checkmark							\checkmark	\checkmark
January 31, 2018 www.incose.org/IW2018									

www.incose.org/IW2018

Consortium

- List of Consortium Members
 - Air Force Research Laboratory Wright Patterson, Multidisciplinary Science and Technology Center: Jose A. Camberos, Ph.D., Kirk L. Yerkes, Ph.D.
 - George Washington University: Zoe Szajnfarber, Ph.D.
 - Iowa State University: Christina L. Bloebaum, Ph.D., Michael C. Dorneich, Ph.D.
 - Missouri University of Science & Technology: David Riggins, Ph.D.
 - NASA Langley Research Center: Peter A. Parker, Ph.D.
 - The University of Alabama in Huntsville: Phillip A.
 Farrington, Ph.D., Dawn R. Utley, Ph.D., Laird Burns,
 Ph.D., Paul Collopy, Ph.D., Bryan Mesmer, Ph.D., P.
 J. Benfield, Ph.D., Wes Colley, Ph.D.
 - The University of Michigan: Panos Y. Papalambros, Ph.D.
 - Marshall Space Flight Center: Peter Berg
 - Glenn Research Center: Karl Vaden

- Previous Consortium Members
 - Massachusetts Institute of Technology: Maria C. Yang, Ph.D.
 - The University of Texas, Arlington: Paul Componation, Ph.D.
 - Texas A&M University: Richard Malak, Ph.D.
 - Tri-Vector Corporation: Joey Shelton, Ph.D., Robert
 S. Ryan, Kenny Mitchell
 - Doty Consulting: John Doty, Ph.D.
 - The University of Colorado Colorado Springs: Stephen B. Johnson, Ph.D.
 - The University of Dayton: John Doty, Ph.D.
 - Stevens Institute of Technology Dinesh Verma
 - Spaceworks John Olds (Cost Modeling Statistics)
 - Alabama A&M Emeka Dunu (Supply Chain Management)
 - George Mason John Gero (Agent Based Modeling)
 - Oregon State Irem Tumer (Electrical Power Grid Robustness)
 - Arkansas David Jensen (Failure Categorization)

 ~ 40 graduate students and 5 undergraduate students supported to date