External Dependencies-driven Architecture
Discovery and Analysis of Implemented Systems

DHARMALINGAM GANESAN, MIKAEL LINDVALL

Fraunhofer Center for Experimental Software Engineering (CESE),
College Park, Maryland, USA

MONICA RON
Honeywell, Greenbelt, Maryland, USA

A method for architecture discovery and analysis of implemented systems (AIS) is disclosed. The premise of
the method is that archilecture decisions are inspired and influenced by the external entities that the soflware
system makes use of. Examples of such external entitics arc COTS components, frameworks, and ultimately
cven the programming language itself and its libraries. Traces of these architecture decisions can thus be found
in the implemented software and is manifested in the way software sysiems use such external entities. While
this fact is ofien ignored in contemporary reverse engineering methods, the AIS method actively leverages and
makes use of the dependencies to external entities as a starting point for the architecture discovery, The AIS
method is demonstrated using the NASA's Space Network Access System (SNAS). The results show that, with
abundant cvidence, the method offers reusable and repeatable guidelines for discovering the architecture and
locating potential risks (e.g. low testability, decreased performance) that are hidden deep in the implementation,
The analysis is conducted by using external dependencies to identify, classily and review a minimal sct of key
source code [iles, Given the benefits of analyzing external dependencies as a way to discover architectures, it is
argued that external dependencies deserve to be treated as first-class citizens during reverse engineering. The
current structure of a knowledge base of external entities and analysis questions with strategies for getling
answers is also discussed.

Categories and Subject Descriptors: D 2.11 [Software Engineering]: Software
Archilectures; D.2.7 [Seftware Engineering]: Distribution, Maintenance, and
Enhancement - Documentation; restructuring, reverse engineering, and reengineering,
D.3.2 [Programming Languages): Language Classilications—C, C++, Java

Gengeral Terms: Documentation, Software Architecture, Reverse Engineering, Quality
Additional Key Words and Phrases: Concerns, Performance, Testability, External Entities

1. INTRODUCTION

The software architecture of a system to be built can be analyzed using state-of-the-art
architecture analysis methods [Krutchen et al. 2006, Shaw and Clements 2006]. These
analysis methods can be used to identify potential software-related risks such as low
maintainability and low performance. Once the risks have been identified, they can be
mitigated, for example, by choosing alternative architectural styles early in the software
lifecycle [Clements et al. 1995]. However, there are a large number of software systems
in use that were developed either before the invention of these state-of-the-art
architecture analysis methods or lacked an explicit software architecture design phase in
the first place. Even for systems that were developed using existing architecture analysis
methods, most of us will agree that the implemented architecture will most likely deviate
from the specified architecture after a couple of iterations, making the documented
architecture out of date and difficult to use [Krikhaar 1999, Murphy et al. 2001, Lindvall
et al. 2010]. Thus, for many existing software systems, there are no trustable and up-to-
date artifacts but the source code. In situations when the original developers are gone and
the documentation is either outdated or non-existent there is a practical need to reverse

Submitted to ACM Transactions on Soltware Engineering and Mcthodology.

2 D. Ganesan, M. Lindvall, and M. Ron

engineer the architecture from the implementation so that we can identify potential risks
and offer practical strategies to mitigate them.

Two authors of this paper work for CESE, which is an organization that analyzes
customers” existing software systems, for example in order to detect risks. The customers
of CESE want an “independent eye” to look into their implemented software systems,
evaluate the implemented architecture, identify high risk areas, and propose practical
suggestions for improvements and risk mitigations. Naturally, the customers expect the
analysis results to be delivered ““as soon as possible™ so that they can effectively make
use of the findings in their decision making process, incorporate improvements into their
products and processes, remove issues, and meet their goal to produce a high quality
software product on time. With this pressure to deliver critical and accurate architecture
insights regarding previously unfamiliar software systems in relatively short time, CESE
is always seeking ways to improve and make their analysis methods more efficient. The
AIS method, introduced in this article, is the result of more than 10 years of such analysis
and accompanying improvements. ;

One of the more fundamental insights that we have gained through our work is the
_ importance of being able to zoom in on and reason about individual software concemns
and how they are implemented in the source code. Modern (as well as many not so
modern) software systems are no-doubt large and inherently complex. Apart from
offering features, software systems manage multi-dimensional concerns, such as OS
variants, configuration parameters and settings, database interactions, remote
connections, inter-process communication, dynamic reconfiguration and updates,
licensing, security, error handlinF, internalization, etc. In the software systems we have
analyzed, any given source file' typically addresses more than one concern and each
concern is typically distributed across more than one source file. For example, a source
file may contain code that executes a database SQL query as well as code that writes each
database interaction, as well as other events, to a log file. Thus, the code in this file
addresses several concerns (i.e. database management and logging). In addition, several
source files may contain code that is involved in various kinds of database interactions.
Thus, code that address the database interaction concern is spread across several source
files.

We can conceptually imagine every source code file as being one point in a multi-
dimensional space, where each dimension refers to a concern. Most readers will agree
that it is beyond our capability to comprehend and visualize shapes in more than two or
three dimensions. Hence, we need to build abstractions of the software under study that
emphasize only the concerns we are interested in and suppress (for a moment) everything
else. Since the software under study is typically represented by source code only, we need
to create these abstractions using entities found in that source code. Thus, we can say that
we need to identify selected implementation concepts in order to recognize the
implementation of architecture concepts such as layers, styles, components, and
connectors that are typically used to express the high level software architecture and
which are often “hidden” in the multi-dimensional space of concerns in the source code.

Existing reverse engineering tools typically build abstractions using the directory
structure (or similar hierarchies that organizes the source code) and code relations (e.g.
calls, data accesses, and includes). Code level relations are lifted by composing them with

' We use the term “file” or “source file” to denote any file that contains computer
instructions that can be compiled.

Submitted to ACM Transactions on Soflware Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
3 -

the hierarchy structure. This lifted relation is basically a two-dimensional hierarchical
view of the system, Fraunhofer’s SAVE tool is an example of a tool that works this way
and its usefulness has been demonstrated in many different projects [Lindvall et al.
2010]. However, given that the implementation usually handles so many concerns, it is
not surprising that the projection from multi-dimensions to a two dimension hierarchical
graph looks like “spaghetti”. In several endeavors, we realized that hierarchical
dependency graphs alone do not convey the true architectural story of an unfamiliar
system, simply because there are too many concerns in the reverse engineered model.
Informally, it was not easy to see one or more “Lasagna” hidden inside the “Spaghetti”.
Using tools that produce two-dimensional hierarchical views, we had to work around the
problem by manually creating views based on certain implementation entities of the
software under study, which was sometimes very time consuming. In addition, we could
not pin-point testability and performance risks by only analyzing the dependency graphs
because some of the necessary information was missing.

We have also observed that analysts (ourselves included) applying the SAVE tool
tend to ignore dependencies to external entities such as programming language libraries,
COTS, Frameworks etc. The reason is that, in general, around 40-50% of function calls
(and other dependencies such as include/import) are to external entities and these
dependencies can easily affect the performance of the tool because the more
dependencies the tool has to process, the longer the processing time. In addition, the more
the dependencies the more they clutter the diagrams. It is not only users of the SAVE tool
that ignore external dependencies, but also users of other reverse engineering methods
and clustering tools. The reason is typically to minimize the size of the dependency
model of large systems or to avoid the influence of external entities in the search for
“good” clusters. The justification for doing so is the common misconception that external
dependencies are not “interesting” and less important than internal dependencies between
software components that are part of the software under study. However, ignoring such °
external dependencies comes at a significant cost. Once the external dependencies have
been removed from the extracted dependency model, the analyst cannot easily tell, for
example, whether the system is distributed (based on multiple processes in one or more
machines) or stand-alone, because the dependencies to the underlying libraries for Inter
Process Communication (IPC) were removed in the extracted code relations. As a
consequence, the analysts do not really get good architectural insights by analyzing the
remaining dependencies in the dependency model. This is because several concerns (e.g.
GUI, Persistence, and Security) are implemented using the support of external entities,
which were often removed in the extracted code relations.

Thus, the premise of the AIS method is that dependencies to the very same external
entities that were used to build the system can also be used to efficiently discover its
implemented architecture focusing on individual concerns as necessary. This will lead to
the discovery of potential risks hidden in the implementation, and can be achieved by
reviewing a limited number of files. :

This article will demonstrate a) how we can efficiently discover architectures by using
external dependencies coupled with knowledge about the semantics of such external
dependencies stored in a knowledge base, and b) how we can use external dependencies
to slice the implementation for individual concerns in order to gain deep concern-specific
architectural insights and potential risks.

The proposed method is based on the fact that much of the critical information about
an existing software system are stored in source files, and thus an analyst has to review

Submitted to ACM Transactions on Software Engineering and Methodology

4 D. Ganesan, M. Lindvall, and M. Ron

such files in order to understand critical parts. For a small system, it is not a problem
analyzing each and every file of the system. However, for larger systems there are
typically too many source files (10,000 files is not unusual) for the analyst to review.
Thus, we need a way to identify the most important parts of the source code for review.
We have discovered that external dependencies can help us identify the parts of the
source code that are most important — for the task at hand. Often the external dependency
is based on a file name as well as a function name of the external entity. We have
classified many of the commonly occurring external files and functions in such a way that -
we can select a perspective or category and can trace back to the files and functions in the
software under analysis that use them, Thus, by reviewing only those specific parts of the
source code, we can understand how a specific concern is handled by the system. This
technique also allows us to reason about other parts of the system that have similar
dependencies and we can draw conclusions about large portions of the source code
without having to review it all.

The acquired knowledge and insights of analyzing software systems are packaged
into a knowledge base, which on the one hand is used to analyze new systems more
efficiently. On the other hand, it is used to improve our understanding of various real-
world solutions to architectural challenges (e.g. how to architect database aspects for a
huge volume of transactions). These arrays of solutions are also discussed with our
customers as alternative solutions to their architectural problems, if any.

Using the AIS method on the relatively large (~600 KLOC) NASA Space Network
Access System (SNAS) system, the independent analyst, discovered several architectural
insights by reviewing less than 4% of the 1578 source files. Examples of architectural
insights are a) that the implemented architecture of the SNAS is based on a distributed
client-server architectural style, b) that the distributed subsystems exchange data by

" sending and receiving objects using the transfer object design pattern [Alur et al. 2003],
¢) that each subsystem of the SNAS has a dedicated layer for handling the persistence
concern, and d) that the GUI subsystem is based on an event-driven architecture.

In addition, with the help of external dependencies, several architecturally relevant
performance related constructs were discovered including the usage of a) a database
connection pool design pattern in order to overcome the performance overhead of
frequently creating and deleting database connections [Apache DBCP], b) the reactor
design pattern in order to reduce the overhead of frequently creating and deleting threads
for each client connection in a client-server architectural style [Schmidt 1995]. Some
testability problems due to a weak separation of GUI concepts with core logic were also
discovered as well as some performance risks due to threading models. The analysis,
detected problems, potential risks as well as concrete solutions and risk mitigation
strategies were reported to the SNAS team and are discussed in this article.

Software Engineering Contributions: We hope that this paper makes the following
novel software engineering contributions:

* A practically inspired and validated method to discover software architectures
from implementations using external dependencies.

* An architecture-centric framework for evaluating quality of implemented
systems without reviewing each individual file.

* Several concrete real-world code snippets to demonstrate the true meaning of
software architecture concepts such as abstraction, separation of concerns, and
design for testability and performance.

Submitted to ACM Transactions on Software Engincering and Mcthodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
5

2. The AIS Method

The goals of the AIS method are to support the analyst in a) discovering the software
architecture from the implementation, and b) evaluating the quality of the implementation
using the discovered architecture.

The goal is achieved by exploiting the dependencies on external entities for the
following reasons. First, frameworks (e.g. CORBA, EJB, and Hibernate) define the
reference architecture(s). Second, software connectors (e.g. middleware, sockets, queues,
and shared memory) and concerns (e.g. GUI, Persistence, Security, and licensing) are
usually built using external entities. Thus, the analyst could get a good overview of the
potential architecture concepts implemented in the system. Third, the analyst can classify
the code and assign responsibilities to the system under analysis by tracing back to the
internal entities that use external entities. Fourth, even if no documentation of the
software under study is available, external entities are often well-documented on vendors’
websites, and there are usually several example programs, user manuals, discussion
forums, blogs, etc. devoted to external entities facilitating understanding the external
entity, which can be used to understand the software under study. The analyst can use
such freely available resources to better understand the purposes of external entities with
little or no domain knowledge of the system under analysis. Furthermore, this knowledge
becomes a reusable asset for the analyst because he/she can reuse the knowledge in the
architecture analysis of other systems. Because of these novel benefits, the AIS method
treats external entities as first class elements for architectural analyses, instead of simply
excluding them as often the case in many reverse engineering approaches.

Now, we will explain how to use the dependencies to external entities for a)
discovering the architecture concepts such as Layers, Styles, Design Patterns,
Components, Connectors and Interfaces, and b) discovering the concerns in the
implementation which can be used to slice the system and offer concern-specific
architectural insights.

2.1. Working in Four Dimensions

The basic model of software systems our approach is built upon is based on the following
observations: Most systems are based on a collection of components (a.k.a. modules).
Those components are typically represented by source code stored in files organized in
folders. Components that form part of the same executable can use simple function calls,
whereas components in different executables must use other mechanisms such as shared
memory, shared files, remote procedure calls, and socket communication. Some
commonly occurring components are the GUI and the Database Management System
(DBMS). Often one or more code libraries and code frameworks are used, for example to
bridge the gap between the DBMS and the application.

Having this basic model of software systems in mind, one of the analyst’s first goals
is to understand what these components are, how they are organized in terms of files and
folders, how they are related and share source code, and how they communicate with
each other. In our approach, we use implementation concepts to discover facts related to
such components. The approach uses the directory structure because it often helps in
identifying components of the system.. For example, the directory structure can reveal

how components are organized as files and folders.

Submitted to ACM Transactions on Software Engincering and Methodology

6 D. Ganesan, M. Lindvall, and M. Ron

Architecture Concepts

meT

Styles and Pattemns
Components

Connectors

Implementation

Cnno:'pts
Extermal Dtrettuies Routines
Dependencies Files DataStructures

Figure | Conceptual dimensions of the AlS Mecthod. Concerns are identificd using dependencies on external
entities. The software architecture of an existing system is incrementally discovered by the slicing the system
using one concern at a time. The listed items on each axis are samples, and not a complete list.

Once the components and executables are understood, the next step is often to
understand how they communicate using software connectors (e.g. using sockets, pipes,
or queues), which can be accomplished using external dependencies. For instance, the use
of the header file socket.h suggests that components of the system communicate using
socket channels. Using this external dependency, an analyst can trace back and locate all
files that are involved in socket communication, review them, and determine how the
sockets are used. In several cases, we have also discovered layers related to
communication just by tracing dependencies to socket.h. More specifically, by
analyzing the extracted code relations the analyst quickly found that almost all usages of
the functions declared in socket.h were only using intermediate wrapper functions
that build upon primitive socket functions and offer a higher-level abstraction (i.e. hiding
the details of a specific connector) to the rest of the system. In addition, dependencies to-
socket.h were used to discover the components that are involved in the socket
communication, resulting in the discovery of a high-level component-connector view, as
described by [Shaw and Garlan 1996].

Once the component-connector view has been established, the next step is often to
understand other important concems such as how the software under study handles OS
Variants or how it handles Persistence. To this end, the AIS method proposes to slice the
implementation based on concerns using dependencies to external entities. For example,
if ‘the system uses both the CreateThread C function for Windows and the
corresponding C function pthread_create for UNIX, then these external dependencies
indicate that the implementation manages several OS variants. Using our approach, the
analyst follows these external dependencies and identifies the source files that use these
functions, and by reviewing the code determine how the OS variants are architected in

Submitted to ACM Transactions on Soflware Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
7

the implementation. This might lead the analyst to discover an OS Abstraction Layer
(OSAL) that, for instance, offers an abstract interface and alternative implementations for
different types of OS, .

In our experiences with several commercial systems, we have found that external
dependencies help in producing a valuable list of concerns that are implemented in the
system, which the analyst can use to slice the system. This slicing by concerns allows the
architecture to be discovered in an incremental fashion focusing on one concern at a time.
Due to this concern-based slicing 'of the implementation, in many cases, the amount of
source code the analyst has to review is significantly reduced. Furthermore, the analyst
can now zoom-in to the details where devils usually hide and can reveal quality issues
such as testability and performance risks. Typically, a vast majority of the implemented
system’s source code can be covered if we analyze concerns including a) GUI, b)
Persistence, c) Variability of the OS, and d) Error or Exception Handling.

Once a basic understanding of the system has been established, the analyst can
proceed with the second goal, which is to evaluate implementation quality. Typical
evaluation perspectives that we repeatedly follow, because our customers found them
informative and useful for decision making are testability, performance, common look-
and-feel, code duplication, complexity analysis, and compliance to architectural rules, see
the “Evaluation of Quality” Axis in Figure 1. It is worth noting that on the one hand, the
analyst can use the discovered architecture to illustrate potential issues (e.g. Performance
risks due to threading models for events notification). On the other hand, the architecture
discovery activity can be influenced by the actual need to construct a special slice in
order to demonstrate a specific issue. The central idea is to evaluate quality using the
discovered architecture by focusing on one concern at a time.

One evaluation perspective is festability, which is evaluated by focusing on one
concern at a time. For example, testability can be evaluated with respect to the
persistence concern. That is, to answer the question: can the system’s core logic be tested
without the database being up and running? On the one hand, the analyst can use the
discovered architecture to show that it is impossible to test the system without the
database. On the other hand, the architecture discovery activity is also influenced by the
need to evaluate testability, meaning that the analyst should slice the system in such a
way that he can show evidence to the members of the project team why the system is not
possible to run and test without the database. Similarly, the analyst can evaluate
testability with respect to other aspects, for example the GUI. That is, to answer the
question: can the system’s core logic be tested without the GUI?

Another evaluation perspective is performance, which is also evaluated by focusing
on one concern at a time. For example, the analyst can take the persistence concern and
evaluate the performance of the database due to the style the implemented architecture
uses for database connections. Similarly, the analyst can focus on the GUI concern and
evaluate how the event listeners and dispatchers might impact the GUI performance. In
the AIS method, performance evaluation is conducted at an architectural-level, meaning
that the analyst focuses on high-level principles that influence the whole system. For
example, the threading mode! used by the implementation in order to read incoming data
from a socket and dispatch data to data processors can be considered architecturally
significant because if the same thread is used to read from the socket and synchronously
dispatched to data processors, then there is a risk that low performing data processors
might affect the rest of the system.

Submitted to ACM Transactions on Software Engineering and Methodology

8 D. Ganesan, M. Lindvall, and M. Ron

A third evaluation perspective is common look-and-feel. The purpose of the common
look-and-feel is to evaluate how different parts of the system implement the same
concern. For example, the analyst can focus on the persistence concern, which was
located above, and evaluate whether or not all modules use the database in the same way,
unless there is a need for differences. Another example is if the system is based on a
publisher-subscribe architectural style, then the analyst can analyze whether or not all
publishers send messages in the same way and all subscribers receive messages in the
same way, unless there is a need for differences. Good common look-and-feel is an
aesthetic property that helps programmers and new-comers to easily understand different
parts of the system.

The purpose of the code duplication or clone analysis is to understand how the
architecture abstracts commonality and manages variability. To achieve this, the analyst
interprets the collected clone data within a context of a concern using the discovered
architecture. For example, the analyst offers insights on code clones due to the
persistence concern.

The purpose of the complexity analysis is to understand and evaluate how complexity
is managed for each concern. For example, the analyst uses the discovered component-
connector view to analyze the complexity of transferring data from one end of the
communication channel to the other.

The purpose of evaluating compliance to architectural rules is to determine whether
or not the specified architecture is consistent with the actual (i.e. the implementation)
built architecture. If the existing documentation specifies that the interaction to a
hardware port should be only via the specified software interfaces of the hardware
abstraction layer, the goal of the verification is to check whether there are deviations to
this specification. We observed that by analyzing one concern at a time, verification of
architectural rules becomes focused and detected deviations are clearly explainable to the
development team [Ganesan et al. 2009]. In addition, the analyst was able to discover
undocumented architectural rules, for example, from the discovered architecture showing
how the COTS for logging is used by the implementation the analyst was able to identify
some code elements that by-pass the logging wrapper.

2.2. Choosing the Subspaces of the Four Dimensional Space
Although the AIS method has four conceptual dimensions for architecture discovery and
evaluation of quality, the analyst can choose certain subspaces of interest based on his
goals. For example, if the goal is to evaluate testability then the analyst can work on the
subspaces that include testability. That is, the analyst can focus on discovering
architectural information and create matching diagrams that can help in reasoning about
testability with respect to several concerns (e.g. GUI, Persistence). Similarly, if the goal
is to discover and document how the implementation handles the persistence concem, the
analyst can work within those subspaces that include persistence, and need not traverse
the “Evaluation of Quality” dimension. Basically, it is up to the analyst to decide which
subspace is of interest. The method does not enforce the order in which the analyst should
proceed in choosing the subspaces. Thus, the method offers flexibility to the analyst,
meaning that the analyst can incrementally cover the conceptual space of our method
based on goals and available effort.

Now, we introduce the knowledge base that facilitates architecture discovery and
analyses in a repeatable and reusable way.

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
9

2.3. The Knowledge Base for Architecture Discovery and Analysis ’
We realized that even though the dependencies to external entities are very useful to
discover software architectures from an implementation, there were additional challenges
that analysts typically faced including a) the obvious need to remember significant
function names and header files of programming language libraries, COTS, and
Frameworks, b) how to actually use the dependencies to external entities in constructing
the architectural story and pin-pointing potential risks in the implementation. In order to
address these challenges, we developed a knowledge base that supports the analysts in
architecture analysis endeavors.

i;:::::i:::;;z5 Tagged Excwldgs ﬂhrulhu-ﬂmﬂ &xhhdhnﬂ
l of Extemal Frthe I ______
‘lllllllllillll!!‘). E

e
.

\ l
—— e ‘.al \;
Tauntly Highiamsl PP q e
o >{ 1.6ul Archimetere Di I Aralprs
2 Sockst Commmnication & of il und
? 2 ocl e updains of snalyes gaids and gallary
L] -

Figure 2 The major Steps of the AIS method, showing the integration of the knowledge-base with reverse
engineering. Arrows denote data flow. Code relations (also called decpendency models) are extracted
automatically and stored as binary relations [Chen 1990].

2.3.1. Tagged Knowledge of External Entities

Given the source code, our approach discovers potential architecture concepts and
concerns that are implemented in the system using its external dependencies. To achieve
this, we created a classification and tagged the external entities that were used by the
systems we analyzed. For example, Hibernate is a framework for accessing databases,
and org.hibernate.Query is used for querying databases [Hibernate]. Thus
org.hibernate.Query is tagged as being an indicator of code that queries databases.
When our approach detects that the software under study makes use of (is dependent on)
org.hibernate.Query then it concludes that the software under study has a database
concern. Similarly, other concerns could be listed based on the knowledge of external
entities. For a person new to the system under analysis, this list is a good introduction to
potential concerns and architecture concepts that are implemented. Figure 4 shows a
snippet of the knowledge base drawn automatically by the Perfuse tool using a XML
representation of the knowledge base. We have also stored the tagged knowledge in a
relational model, allowing the analyst to formulate queries such as: “List all files that
depend on the Hibernate framework”. We use the RPA language to formulate queries on
extracted code relations [Feijs et al. 1998].

Submitted to ACM Transactions on Software Engineering and Methodology

10 - D. Ganesan, M. Lindvall, and M. Ron

Ay
Sturad ¥d Long ge Libra ks - Eatm
Java AME Adptattee Communication Crvi onment [ALE)
Middhowae — O ot By cear COREA Iimpbermes baticn fur sty el comm rication
ICE I dermiet Commi rilcstion Engine for e Publish- S dscribe archit beal sty
L4 Apexhe Loggh y Litray (for 1eea)
ots Loy Loges - Apabe Lo o) Lirary (for C, C++)
External - Phaos Libr aries for enuryption, oo HAc ate management, secure commuric tions
Crysec Libs aries for Seoue Socket Laye (53L)
Liceree Myagemant X-Formation Licensa Marager, distribntion, and lifecycls maragement AP[s
" Hardwxe 1D " Sertal Port, Parallel Port, and RSES Mot APls
P Hibwes riste Cioject Ralational Mapping Framewerk (1ava)
Porslotera Ot Relstional Maping Framewerk (C++)
Framevars Stripes Gl fiomewar for vad g pliations
anl -~ S g MVC Spring ramemerd, for e Model-View-Controlle & (it ra style
aonf Gl framewurk for X Windows system

Figure 3 A snippet of the knowledge base showing some COTS and Frameworks. The knowledge base was
tagged manually (c.g. Security is a concem if the system uses Phaos or Crysec COTS). Scripts could use the
dependencies to external entities and print high-level facts of the system (e.g. The System uses the ACE
Middleware and the Persistence framework for database interactions).

We also refined the high-level knowledge base shown in Figure 3 to the next more
detailed level allowing the analyst to drill down to the functions and features of COTS
and Frameworks that are actually used. On the one hand, this knowledge helps the analyst
to learn relevant portions of new and unfamiliar technologies. On the other hand, it helps
the analyst to obtain concrete architecture insights based on the implementation. For
example, Figure 4 shows the next level decomposition of knowledge related to the ACE
middleware [Schmidt 95]. Using the refined knowledge, scripts can detect where the
connection to a remote peer is established (see SOCK_Connector.h in Figure 4).

set_add Inibalize 1P Address
INET_Addr h ACE_IMET _Add (class) it : Initalze M
. rotify : Dispotrh user specifled avents
Rexlorh ACE_Rextor (chass: -
ACE - (class) hanvle_svents Deleg tes o registere] evant hardlas
% hondle_irput Callert when put events ocor (e, comection a data)
Everit_har ' ACE_Evertt_Hondber (class
‘ i o) handle_sipl Cadlend when et |5 shynaled by OS5
SO(K Corewctorh ACE SO Corvwctor(class) cornect Actively corrmet 1o 4 peer

Figure 4 A snippet of the tagged knowledge basc for the ACE middleware COTS. Scripts could use
this knowledge and identify, for example, code ¢lements that are involved in connecting to a
remote peer by using the connect method of the ACE_SOCK_Connector class,

Figure 5 shows excerpts of the tagged knowledge base of the C language library on
UNIX, respectively. It is clear that architecturally relevant concepts, such as
Communication, Concurrency, Dynamic Linking, and Error Handling are already
supported by the language libraries. Hence, we can take advantage of them for
architecture discovery. Similarly, a knowledge base is also constructed for different OS
types, such as Windows, Rtems, and Vxworks. Based on this knowledge, scripts can
determine the various OS platforms that are supported by the system-under-analysis.
Furthermore, the analyst can slice the system in order to analyze how the system handles
OS variants.

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
11

ma_open Open the queve coredtion
— mg_jeceive Aageve data iom the Queue
ma_send Send data o the guewe
mq_thone Close he queue commesbon
smat Attach the shared memory
Communication shim.h himet Detah diaed memory seqment
chmaet Get sha ed memory sagment
atupt Actept d New cofmeltion o 4 soul et
connect Connect a socl et
socl eth kten Listen for socket connecbore
recwifom Recerve 2 mestage from A wechet
sencto Send a message on 4 tocket
LhIn_open upen a shared memary object
miok Locl, arange of ocess address space
mmanh - murdoc]. Uniocl. a range of process sddiess space
0s W -, mmap Map poges of memory to & fle or shaed memary cbiject
1 mprotect Remove 3 shyed memery cbiject
Corureny
h piwead cancel © Canced execution of a thiead
. pirvead_creat Lreate anew thread
sweinglarely SEMm_nt Ewtidze 4 semapbone
copen Drynamcally QN access to an erecutabe chject Be
Dvnamic Lrksg ditnh -~ dsvm Ubtan the address of a symbal [Fom an object fie
r¥iose Cloee 3 objct fie
ENETDOWN Metworl, & down
&moh FIMTOUT Carmection tmed our
Error Handing EMNETRESET Cormechon dbo bed by netwerl:.
X dzm Germrates a dam sional
e wnidbi X
rase Habse 8 sgnd

Figure 5 A snippet of the knowledge base for the standard C libraries (under UNIX).
Scripts could, for example, highlight that the system under analysis may have a dynamic
reconfiguration capability if it uses dlopen, d1sym, and dlclose functions.

2.3.2. Architecture Analysis Guide

The architecture analysis guide is another building block of the knowledge base. For each
concern, we prepared a list of questions that the analyst may want to follow in order to
discover architectural insights efficiently. In addition, it contains step-by-step advice for
getting answers to them. For example, without reviewing say a few hundred files, how
can the analyst conclude that these files are equivalent or of the same category? The
analysis guide offers advice on what types of evidences the analyst has to collect in order
to claim that all these files are equivalent. For example, the evidence the analyst has to
collect in order to conclude that all files are equivalent database interaction files are that
a) all files depend on the external libraries related to SQL for preparing and embedding
SQL queries, b) all files depend on the external SQL exception files, c) all files depend
on the data beans (i.e. classes with getter and setters methods of data attributes) either for
inserting data to the database or to store the results of SQL queries into beans, and d) all
files are stateless, that is, classes do not contain member variables or attributes. We
codified such strategies for each concern and stored them in the knowledge base so that
analysts can share knowledge with other analysts and reuse them for analysis of other
systems.

2.3.3. Architecture Gallery
Because we want to store architecture knowledge and experience gained in analyses of
implemented systems in a systematic way, we include an architectural gallery in our

Submitted to ACM Transactions on Software Engineering and Methodology

12 D. Ganesan, M. Lindvall, and M. Ron

knowledge base. An architectural gallery contains architectures of systems that were -
analyzed in the past. In many cases, code snippets were also stored to provide a precise
description of the discovered architecture. For example, the gallery contains descriptions
of how one project designed a software bus for inter-subsystem communication. This
architectural gallery is a source of knowledge of best and failed practices, which the
analyst can use during discussions with customers for recommending alternative.
architectural solutions.

2.3.4. Updating the Knowledge base

The knowledge base of external entities is updated if the system under analysis uses new
COTS, frameworks, and programming language libraries or parts thereof that were not
stored in the knowledge base. Our scripts compare the existing entries of the knowledge
base with external entities used by the system under analysis, and reports missing entities
that need to be added to the knowledge base. The analyst reviews the missing entities
before adding them to the knowledge base. It is crucial to update the knowledge base in
order to facilitate the analysis of future systems. In addition, the knowledge base is also
updated if the analyst detects that the system under analysis follows a different strategy
for the implementation of a specific concern. In this way, knowledge is incrementally
added to the reverse engineering environment, and the knowledge base becomes a novel
collection of best and failed practices of commercial systems, thus acting as an
experience factory [Basili et al. 92].

2.4. Tools used in the AIS method)

In order to efficiently perform architectural analysis of commercial systems using
knowledge bases, analysts require several tools. In order to deploy the AIS method,
analysts use several tools including the tools (or scripts) listed in Table 1.

Table 1 Tools used in the AlS method

Tool Purposes

The Understand tool | This commercial tool helps in extracting code-level dependency models
from the source code. It also identifies dead code elements.

The RPA tool This tool supports in efficiently querying the extracted dependency models.
It offers several relational algebraic operators cnabling the analyst to casily
query and filter the necessary information from the large dependency
models [Feijs et al. 1998, Krikhaar 1999].

The SAVE tool This tool supports in visualizing the extracted dependency models
[Lindvall et al. 2010]. It provides user interfaces to import dependency
data collected from external parsers (see http:/www.fc-md.umd.cdu/save/).

The Prefuse tool This tool supports a variety of visualization, layout, and animation
features. It helps in visualizing the directed and undirected graphs, tree
views, and tree maps (see http://prefuse.org/)

Text Similarity tool This tool finds a list of files similar (in terms of text) to the given file. Used
' here for detecting code cloncs or duplications,

3. The AIS method in Action

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
13 J

In this section, the applicability of the method is demonstrated using examples from
NASA’s Space Network Access System (SNAS) system, developed by Honeywell. The
SNAS is intended to be a customer interface to the Tracking and Data Relay Satellite
System (TDRSS) and is used for planning, scheduling and real-time service monitoring
and control of the Space Network (SN). The SNAS is implemented in Java and in SQL.
Excluding the test code present in the test folder, the SNAS has 650KLOC Java code and
30KLOC SQL code, including blank lines and comments. All code is handwritten and
thus there is no generated code.

3.1. The reasons why the SNAS was chosen for validation of the method

We have applied the AIS method onto several commercial systems, implemented in
several languages including Ada, FORTRAN, C/C++, and Java. In many cases, there
were limited or no possibility to validate the findings of the method because the people
(often contractors) who built the system were not accessible. In the SNAS case,
fortunately we have access to several members of the team who are familiar with
different parts of the system. It should be noted that we-never had a meeting or technical
discussion during our analysis of the SNAS source code. All the findings explained here
were performed completely independent of the SNAS team. Once the analysis was
completed, the analysis results were presented and feedback was collected from the
SNAS team. Thus there were no influences whatsoever from the SNAS team on the
results described here, unless explicitly stated.

In this section, we will describe how the analyst applied the proposed method to the
SNAS system. We will first describe the directory or package dependency diagram
before demonstrating how the external dependencies can offer novel help in architecture
analysis.

3.1.1. Directory or Package Dependency Diagrams

The source code dependencies between subsystems, i.e., the top folders on the disk, of
the SNAS are shown in Figure 6. While this figure offers a useful overview of how the
source code is organized on the disk, and which folder uses other folders, there are some
limitations if one analyzes architectures only from this dependency diagram alone. For
example, we also need to get answers to the following questions: a) Do the subsystems
communicate at run-time using intermediate connectors? b) Do the subsystems run in the
same machine or is the system distributed? c) If there is a database, what is the
interaction style or pattern used by different subsystems? These questions are not
straightforward to answer by looking at the dependency diagram alone.

¥l

|_sve | mocclient I l oamclient I | snif I | dsdm I
N

/
I shareclient I I sdif I
sam

Figure 6 Dependencies of the SNAS, boxes represent folders and arrows are code relations (e.g. import, inherit,
and call). The common and framework folders are used by all folders. sve to sam dependency is due to dead
code. dsdm to sdif dependency is due to the sharing of a string utility class.

Submitted to ACM Transactions on Software Engineering and Methodology

14 D. Ganesan, M. Lindvall, and M. Ron

We will now show how an analyst can answer such questions by using external
dependencies and information stored in the knowledge base.

3.1.2. Some Facts about the SNAS using its External Dependencies

The analyst starts by producing a high-level summary using a collection of scripts that
use the extracted source code relations of the SNAS and the knowledge base as inputs,
see Figure 7. One of the advantages of this generated summary is that it shows the list of
concerns (e.g. GUI, Database, Configuration, Security, and Logging) built inside the
SNAS. It also shows some potential architectural connectors (e.g. Sockets) implemented
in the SNAS.

A Snippet of summ ary produced using the knowledgs of Extemal Dependencies
<<SNAS> has
GUIbecause it uses java. awt and javax. swing packages
Database because it uses the java.sql package
Secured Socket Layer (SSL) because it uses the COTS crysec. ssl package
UDP socketsbecause it uses the java.net.DatagramSocket class
TCP sockets because it uses the ava.net, ServerSocket and java.net.Socket classes
Non-blocking Socket channels because it uses java.nio,ServerSocketChannel
Configuration files because it usesjava.util.Properites (load, getProperty) msthods
OS interaction because it uses java. lang.Runtime (exec) method
Logging because it uses the org. apache. log4) package

Figure 7 An Excerpt of the high-level summary produced using the knowledge of external dependencics used
by the SNAS.

3.2. Discovering Architectural Styles and Communication Patterns using External
Dependencies of SNAS

The analyst understands from the high-level summary that the SNAS uses sockets.
Therefore, it is reasonable to assume that the subsystems of the SNAS might be
communicating using sockets as runtime connectors. Thus, the analyst’s natural next step
is to identify server-side and client-side sockets.

Table 2 Analysis Questions for Discovering Server-side sockets, Client-side sockets, and
Connection ports.

* Discovering Server-side sockets: Which subsystems create instances of
java.net.ServerSocket, java.nio.ServerSocketChannel, and

crysec.ssl.SSLServerSocket?

+ Discovering Client-side sockets: Which subsystems create instances of
java.net.Socket, crysec.ssl.SSLSocket,
DatagramChannel.socket(), and SocketChannel.connect(...)?

* Discovering Socket Wrappers: Also check whether there are wrapper classes to
external socket libraries, because socket instances could be indirectly created by
creating instances of wrappers.

* Discovering Ports: Use dependencies to the java.util.Properties class and
locate configuration files. Experience tells us that IP addresses and port numbers
are often specified in configuration files.

3.2.1. Discovering Server Subsystems using External Dependencies

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
15

Based on the strategies stored in the knowledge base (see Table 2), the analyst queried
the extracted code relations of the SNAS .in order to identify all subsystems that create
instances of the java.net.ServerSocket class. The results showed that the dsdm and
sdif subsystems create one instance of the ServerSocket class, see Figure 8 (a) and
(b). Since the SNAS also uses Java's non-blocking Input/Output class
java.nio.ServerSocketChannel, the analyst also queried the code relations for
dependencies on this class. The query detected that the ServerSocketAcceptor within
the framework folder create a socket instance using
java.nio.ServerSocketChannel. After a quick glance at the
ServerSocketAcceptor class it became clear to the analyst that this is a wrapper class
for creating server side socket instances. Thus, the analyst queried the code relations in
order to find all subsystems that create instances of this wrapper class. The analyst found
that snif creates two instances of this server socket wrapper class and that sam creates
four instances; see the unfilled circles of Figure 8 (c), (d). However, the mocclient has
a different: strategy to create server socket instances. The analyst found that the
mocclient has a base class that uses the wrapper class of the framework to create a
server socket instance. In addition, there are six children of the base class that indirectly
create their server-side socket ports using calls to the super method of their parent
class, see Figure 8 (e).

ONENONNOIONNOIOX010 OOOOGOE
mocclient

dsdm sdif snif sam

(a) (b) © (@ | (e)

Figure 8 Discovered Server-side sockets using the architecture discovery guide of the knowledge base. Filled
circles denote instances of crysec.ssl.SSLServerSocket. Unfilled circles are the instances of .
java.net.ServerSocket. All the server socket instances are created in different files of cach subsystem,

Since there were also dependencies from the SNAS to the
crysec.ssl.SSLServerSocket, which is a COTS component, the analyst also
queried the dependency model in order to find all subsystems that create instances of this
class. It turned out that the sam subsystem is the only subsystem that creates and uses two
secured server side instances of the SsLServersocket, see the filled circles of Figure

8 (d).

3.2.2. Discovering Client Subsystems using External Dependencies

The analyst repeated the above process and discovered the client side socket instances,
using external dependencies to Java's client-side socket class java.net.Socket and
Crysec’s ssLsocket class.

ololoYoYolololoYolololeYolo -
sdif snif sve mocdlent_ camclient
(a) ’ (b) (c) {d) (e)

Figure 9 Discovercd Client-Side sockets. Filled circles denote instances of crysec.ssl.SSLSocket.
Unfilled circles are the instances of java.net.Socket. All the client socket instances are created in
different files of cach subsystem.

3.2.3. Connecting Server and Client Side Ports using External Dependencies

Submitted to ACM Transactions on Software Engincering and Methodology

16 D. Ganesan, M. Lindvall, and M. Ron

In order to connect client-side and server-side ports, the analyst used Java’s Properties
file used for configuring each subsystem. The analyst located the right set of property
files using dependencies to the java.util.Properties class. These property or
configuration files contain the IP address of each subsystem together with the actual port
values. From this information, the analyst was able to map the server side ports to the
client side ports. The names of the files involved in socket communication contain a good
prefix (e.g. ‘sam2sveConnector.java), offering additional valuable data to connect the
ports. The external dependencies to Java’s Datagram socket class, which contains
methods for implementing the UDP protocol, showed the analyst that the UDP protocol is
used between the sve and snif subsystems (see Figure 10).

oamdient H
SsL

@ Client-sideSocket port
@ ‘Server-sideSocket port

@ Secured port
Socket channel

Figure 10 Discovered Run-time Architecture (Blue boxes are back-end systems that interact with the SNAS).
Objects are sent between subsystems using the Transfer Object Design Pattern [Alur 2003].

3.2.4. Discovery of Transfer Object Design Pattern for Transportlng Data over
Sockets using External Dependencies

The extracted code relations showed that the files that are involved in socket
communication use the java.io.ObjectStream.writeObject and
java.io.ObjectStream.readObject methods. The analyst reviewed those files and
found that the subsystems of the SNAS use the writeObject and the readObject
method for sending and receiving serialized objects over the socket, as required by the
Transfer Object Design Pattern [Alur 2003]. The central idea of this pattern is to transfer
objects across communication channels, instead of making remote procedure calls to

Submitted to ACM Transactions on Soflware Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
17 :

overcome the inherent network performance overhead of RPC [Waldo et al. 1994]. In
addition, the extracted code relations had shown the analyst that all those serialized
objects that are sent over sockets are located in the common folder explaining why all
subsystems depend on the common folder. Had the analyst excluded the external
dependencies to Java’s writeObject and readObject methods, it would not have been
straightforward to discover this design pattern hidden in the implementation.

The analyst noticed that there are 384 files (or classes) inside the common folder.
Without reviewing all those files the analyst concluded that all of them are equivalent
bean classes (i.e. data containers) because a) all the classes of the common directly or
indirectly (i.e. using inheritance) implement the Serializable interface, a vital
condition for transferring objects on sockets, b) all methods of all common classes are
simple setters and getters, i.e. they have the prefix get, set, and toString (in some
cases), ¢) in addition, the collected code metrics showed that almost all methods of the
common classes are one-line getters or setters, d) and there were no logging which
matches the fact that in general, bean classes do not typically log their activities. A few
classes do use logging, but the majority of them do not use logging, and e) there were no
outgoing dependencies from common to other subsystems, except that some the classes of
common use utilities of the framework. Using these gathered evidences, the analyst
inferred that all classes of the common folder are equivalent bean classes, which are used
for just transferring data among distributed subsystems. This capability to generalize a
collection of classes and summarize their role in one sentence is so crucial in architecture
discovery because now the analyst knows that these 384 files are beans that are used for
transmitting data across communication channels between subsystems.

For this paper, it was not possible to analyze the back-end systems (colored boxes in
Figure 10) without discussing with the SNAS team because the analyst did not have
access to the source code. The SNAS team told the analyst after the analysis was
completed that the reason for having 6 client-side socket ports at the snif subsystem is
due to its counterpart back-end: the NCCDS system, which was developed many years
before the SNAS was developed. Similarly, a new requirement drove them to introduce 6
server-side socket ports at the mocclient subsystem, in order to allow the EPS system
to communicate with the NCCDS system.

Finally, the SSL is used for the connection between mocclient, oamclient and the
sam because both clients are deployed in an open network and the connection must be
secure. These are the kinds of design rationale we will not be able to discover from the
source code alone, and definitely need to talk to the people (if available). There is a limit
for Reverse Engineering.

3.3. Analyzing the Discovered Run-time Architecture

The analyst then discovered the run-time software architecture of the SNAS using the
following questions: 1) What are the performance influencing architectural decisions
from the communication perspective? 2) How complex is the implementation from the
communication perspective? 3) Is there a common look-and-feel from the communication
perspective? 4) Are the files involved in interactions with communication channels
cloned from each other? and 5) Can the subsystems of the system be tested
independently?

3.3.1. Performance and Communication: The analyst has just concluded that the
distributed subsystems of the SNAS communicate using the Transfer Object Design

Submitted to ACM Transactions on Software Engincering and Methodology

18 D. Ganesan, M. Lindvall, and M. Ron

pattern by sending and receiving serialized objects over the sockets. SUN’s book
mentions that Remote Procedure Calls (RPC) using the Java’s Remote Method
Invocation (RMI) can be slow due to communication overhead [Alur et al. 2003], despite
the fact that RMI is simple and fairly easy to understand and program. [Alur et al. 2003]
also argue that by using the Transfer Object Design pattern, performance can be
improved. However, according to the SNAS team the introduction of Transfer Object
Design pattern did not solve all performance problems, because if objects are sent over
sockets, then there is an issue of managing the waiting time in the sockets before the
receiver picks-up the objects for processing. To avoid potential delays and degraded
performance, the SNAS team introduced additional ports to different subsystems and
transferred different types of objects through different ports. For example, the four socket
connections between the sam and sve are used for exchanging four different types of
objects, see Figure 10. By doing so, the SNAS team attempted to reduce the waiting time
of objects on sockets. .

Traditionally, socket programming uses one thread per client connection. However,
frequently creating and destroying threads due to short-lived sessions would incur
performance overhead. Also, valuable CPU time can be wasted just because of context
switching due to threads. In order to overcome these performance issues, Java 1.4
introduced a new architecture concept called non-blocking socket communication
channels for client-server communication. The analyst found that the files that are
involved in socket communication use the java.nio.channels.SelectionKey and
the java.nio.channels.Selector classes. These two classes are the core for
implementing the reactor design pattern in Java (see [Schmidt 1995] and [Naccarato
2002] for details). In this pattern, the event demultiplexer waits for events that indicate
when a socket is ready for a read or write operation. The demultiplexer passes this event
to the appropriate handler, which is responsible for performing the actual read or write.
Based on these collected evidences, the analyst hypothesized that the SNAS inter-
subsystem communication architecture is inspired by performance goals.

3.3.2. Complexity and Communication: In order to reason about complexity from the
communication perspective, the analyst reviewed the files involved in socket
communication. Because the Transfer Object Design pattern is used for transferring data,
some of the files that read objects from the socket channels contain a lengthy sequence of
if/then/else statements for deciding the data type of the incoming objects in order to
delegate them to methods responsible for processing each particular object type. Thus,
some of the complexity can be attributed to the Transfer Object Design pattern.

3.3.3. Common look-and-feel and Communication: The analyst detected some
common look-and-feel issues due to the by-pass of the socket wrapper defined in the
shared framework folder, In particular, both the dsdm and sdif subsystems create
instances of server sockets by directly using the java.net.ServerSocket class.
Similarly, the mocclient, oamclient, and sdif subystems create instances of client
sockets by directly using the java.net.Socket class instead of using the wrapper,
Thus, the look-and-feel from a communication point of view is different among the
subsystems. The reasons for differences in look-and-feel will be discussed together with
other architectural violations at the end of this paper.

3.3.4. Code Cloning and Communication: The analyst used the similarity tool to
compare all files of the SNAS and produced a similarity table that contains pairs of

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
19

potential file clones. Since the list of files involved in socket communication was located
during the discovery of the SNAS runtime architecture, the similarity table was sliced
with respect to those files only. This gave the analyst remarkable insights into code
cloning from a very specific perspective, i.e., the communication perspective.

HeaReconfighcoepter Java

® o’!"p

& HooSchStatusConneotor java

HecSchReqCenneolor jave

097 - "
HecAoqStareRoceptorfava Ilce‘l‘nﬁljnukooputi.l e ".o‘i QQ, 0’ ”
. ot - cg' | o NecRaconfigl. tor. g
; Z o ! R i Ne config ?nnn java
09§ o 9 /)
i o ‘0 .o :oa ; : @
¥ o , b’ %, NeoAoqStoreConnactorjava "@' . i
: | % o HooP nbaiaton neotar java
HooSchReqAcoaplor java

0.90 NocSehStatusAcceplor)
PR s

Gg) % 0.87 Hec'l'ﬂﬁl_.oué-;nnulor,jau

Nqub;I.}nu.hr]:u
(a)
Figure 11 (a). Similarity among the 6 files of the mocclient involved in the server-side socket

communication. (b). Similarity among the 6 files of snif involved in the client-side socket communication,
Similarity value toward 1 means high code duplication between the file pairs.

(b}

The analyst concluded that all six files (see Figure |1 (a)) which accept client
connections and act as server-side socket ports of the mocclient are very similar to
each other. It is interesting to note that even though there is a base class for each of those
six classes in mocclient, there is a lot of code duplication between these six files. In
addition, the six files that act as client-side socket ports of the snif are very similar
despite the fact that they have the same base class. This means that shared behavior is not
properly abstracted yet, see Figure 11 (b). The two server side socket files of the sam
subsystem are also cloned. Similarly, the files that are involved in the client-side socket
communication of the camclient and mocclient are very similar. There are many
methods in these two files which are exact copies of each and could be moved to the
shareclient, which is a shared infrastructure for both client types.

3.8.5. Testing and Communication: Because of the distributed client-server
architectural style, clients can be tested with fake servers, and vice-versa without
changing any source code. However, some changes (e.g. IP address and ports) are needed
in the configuration file. In fact, the SNAS team has also developed simulators for back-
end systems so that the SNAS can be tested without the real back-end systems being up
and running. These simulators can send data over the socket to subsystems of the SNAS.
Classes involved in the socket communication will read the incoming object types as in
the real scenario. More details on testability issues due to Databases and GUI are
discussed below.

3.4. Discovery of the Database Interaction Architecture using External
Dependencies .

Our approach for analysis of database concerns is based on the following observations of
several commercial systems: Many systems implement their need for persistence by
using 2 RDBMS that is based on the SQL language, which is typically external to the
software under study. Thus the software under study needs to connect to and disconnect
from the database, communicate with and transfer data to and from the database, as well
as manage errors during interaction with the database. It is also desirable if the software

Submitted to ACM Transactions on Software Engineering and Methodology

20 D. Ganesan, M. Lindvall, and M. Ron

under study is not directly dependent on the database so that the software under study can
be tested without the database and so that the database can be replaced if necessary.
Many systems implement DAOs (Data Access Objects) layer which contains classes that
are responsible for interacting with databases for storing and retrieving data from the
database. On the one hand, DAOs collect the results of database queries and convert them
into data beans which are basically data containers with getters and setters. On the other
hand, if we want to store a bean into a database table, the bean object is passed as an
argument to the methods of the responsible DAO [Alur et al. 2003].

Based on this model, we derive the following questions: 1) Is there a DAO (Data
Access Object) layer that abstracts the physical database? 2) What is the general strategy
for managing database connections? 3) Can the system be tested without the database
being up and running? 4) Are database errors abstracted and propagated upwards in such
a way that higher-level layers are not aware of databases? 5) Is there a common look-and-
feel in the way database tables are accessed by different subsystems? and 6) What are the
different DBMSs the system supports?

In order to answer these questions, the analyst started by slicing the system with
respect to dependencies on database tables. The analyst used a parser that identifies files
that use the database tables based on regular expressions involving key SQL statements,
for example, “select”, “insert”, “update”, and “delete”. The extracted dependency relation
from the SNAS source code files to database tables is shown in Figure 12. Once the
analyst had determined that such dependencies existed, the conclusion was that the
system must be using a database in a direct way, instead of using indirect database
dependencies that can be created using java.persistence. Such indirect database
dependencies can make use of a database without using any of the SQL keywords listed
above, which the analyst confirmed was not the case for the SNAS. The analyst then
made the observation that there is a good common look-and-feel in the way the files that
are using database tables are organized on the disk because there is a db folder per
subsystem, each containing the classes that interact with database tables using SQL
statements. The analyst’s other observation was that snif, dsdm, sve, and sdif depend
on a database and thus interact with it in some way, but camclient, mocclient, and
sam do not depend on a database.

Figure 12 Sliced View of the SNAS showing dependencics on database tables. Arrows denote SQL queries
from Java files of the db folders.

Here, the answers to above questions are presented using the knowledge of external
dependencies.

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
21

3.4.1. Discovering the Database Interaction Architecture of the snif subsystem
using External Dependencies

The analyst selected the snif subsystem, which is one of the four subsystems that
depend on a database, and proceeded to analyze the snif subsystem’s database
interaction style. The knowledge base knows that the methods of the
java.sql.PreparedStatement class can be used to prepare and execute database
queries in Java. Using that knowledge, the analyst queried the extracted code relations
and found that all classes of the snif that prepares database queries are organized in one
" folder/package: snif.db, see Figure 13 (a). In addition, the analyst observed that all
Java files that use SQL statements such as select, insert, update, and delete are
only present in the snif.db folder, thus confirming that all direct database interactions
are limited to the db folder. ;

The analyst then proceeded to analyze how the execution of SQL queries is managed.
The analyst used the knowledge that in order to execute SQL queries from Java, a
java.sql.Connection object is needed. The analyst then found, by analyzing the
extracted code relations for dependencies to java.sql.Connection, that each class in
snif.db contains a method called setDbConn which takes the Connection object as a
parameter, see Figure 13 (b).

The analyst then concluded that all classes of the snif.db folder can be safely
categorized as DAOs because of the following evidences: a) all classes in snif.db
depend on the java.sql package, b) all classes in snif.db use classes of common,
which contains data beans as shown earlier, and these data beans are either used to
convert SQL results into objects or to insert data into database tables as explained above,
c) there are no out-going dependencies from snif.db to other folders of snif, and d)
each class in snif.db gets a database connection object from outside through the
setDbConn method. Based on these collected evidences and without reviewing all
classes in snif.db, the analyst inferred that the snif subsystem has clear separation of
database table concepts from other concepts.

| s awvetans] | soif @ Obalent | |mir woesic] . | e dbDoTa 1 b DoAlert wif b DESic
wold seelbsonn|Comneccion cami | | woid swbbConn|Connection connl | | void secDblonn Camection cannl
PP psTdrwl) i Eiemalefes gethlarc(h ERepulrien gucSlolisti]y
Preparedtmen e

BasileSet suncut efueryils
Apm swscutelUlpdael))

6]
Figure 13 (a) Classes interacting with the java.sql.PreparedStatement class used for preparing SQL
queries. (b): The DAO layer containing all classes that are using the database tables via SQL queries.
DBResultSet (the return type) has an array of objects where cach object corresponds to one row of the
queried table.

3.4.2. Clones due to the Java Language and Exception Handling in the DAO
Layer of the snif Subsystem
The analyst now knows that there is a dedicated DAO layer consisting of the classes in
snif.db, which interact with database tables, see Figure 13. The analyst also knows,
thanks to the extracted dependency relations, that the classes of the DAO layer are
independent of each other.

The analyst proceeded to run the similarity tool on the files in the DAO layer, which
reported occurrences of clones. The analyst analyzed some of the reported clones to gain

Submitted to ACM Transactions on Software Engineering and Methodology

22 D. Ganesan, M. Lindvall, and M. Ron

insights into the underlying reason behind cloning, The analysis showed that the catch
and finally blocks in each file of the DAO layer are identical. In the catch block, the
error code stored in the SQLException is processed and converted into a SQL
independent error code. The catch block contains code that is used to roll back database
transactions that did not complete properly. In the £inally block, all classes call the
close method of the java.sql.PreparedStatement object and commits successful
database transactions. :

In our opinion, the developers are not to blame for these clones in the DAO layer.
Rather, this is an inherent limitation of the Java language and its way of supporting
database programming because it leads to_the creation of boiler-plate code that is
identical across all DAO classes except for only a few parameters that differ. The boiler-
plate code the catch block includes, for example, code to a) manage the database
connection, b) create an instance of Preparedstateéement, c¢) handle SQL exceptions,
_and rollback of transactions, and d) close the Preparedstatement object. It is not
straightforward to abstract the catch block into a modular unit. Modern frameworks
(e.g. Hibemate and javax.persistence) were invented exactly to solve these code
redundancy problems in database interactions, making a solid business case with ample
evidence to migrate to modern frameworks in the future.

3.4.3. Is the snif Subsystem testable without a running database?)

In order to evaluate testability from the database point of view, the analyst first had to
understand how the DAOs (i.e. classes in the snif.db package shown in Figure 13) are
used within the snif subsystem. More specifically, the analyst must understand whether
or not it is possible to avoid interactions with the database. To this end, the analyst
checked whether or not the DAOs that interact with the database are instantiated by other
classes of the snif in a hard-wired way. To achieve this, the analyst extracted all
incoming dependencies to the DAO layer and found that no other class is using the DAO
layer except the sSnifDatabaseManager class, which creates instances of all classes of
the DAO layer, see Figure 14 (b). The analyst also found that the
SnifDatabaseManager is instantiated only by the ServiceManager class, which gets
all necessary database parameters such as login, password, and url, from the
configuration file. Based on these findings, the analyst concluded that the
SnifDatabaseManager class is the gateway for interaction with the DAO layer, see
Figure 14 (a). By studying the extracted dependency relations, the analyst also noted that
the SnifDatabaseManager class uses the DBConnectionPool class in the
framework. This discovery is fully explained in the next section. The analyst reviewed
the snifDatabaseManager class and found that it creates a pool of database
connections with the capacity of eight connections, see Figure 14 (c). The review also
showed that the SnifDatabaseManager distributes the eight database connections
among the several classes of the DAO layer, based on the knowledge of frequency of

access to different database tables, through calling the set DbConn method DAOs, see -

Figure 14 (d). These findings led the analyst to conclude that the snif subsystem’s
database interaction architecture is driven by performance goals because it creates several
database connections and distributes them among the classes of the DAO layer. This
example also shows the power of slicing the extracted code relations using concerns;
otherwise we cannot easily see the beauty of hidden lasagnas in spaghetti of complex
dependency relations or graphs.

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
23

i Sendcehnnager
diwir Loxfuvw. com: Db leginetosem]
’:::‘ m'-.-" l T awwwdetosen; LaDbBnskeled= fales
] Snif .clgtae
public sni@acs s
l lons ameng DAGe
4/ Crsace dma accawn sbjects waid prop [

T - — privace woid cresaliBel) | i} Uss u shared used tahles
s e this, * naw DbTdesi); Connection dafaulc _comn= ﬂul -—hl.'mc—ull-li
publ i 301 Datsh av Manage riPering ®Url, this sicDAO0 = mewDBSic(); chis. sicOA0. seUbCammidetuale_connd

ring logia, his. alereDA0 ® naw Dhilere()) this. alereDAd, -nne—-lnrn_m;

ring pasword ¥ .

boclean La0hEnabled))]

- /7 Uss u gesparate conpaction, for freguantly used tables
privace oo peelCepacivy = B 1 n tdrs conn = this. Lond) s
privacs n:: oremellOstly this. pds A0, weeDbComn| tdr s _somni §
privats ve -
/7 Creats & tml- peal

privace wold pumuﬂc-uml-m Sivmed vtk " ‘ L
publie Dilesulcfer gueTdcmi) this.connFool » m“ e - u [t}
public MlesicSe gendlerc()) L i papre
Public DERsmlster geefickist()) y g, pemieer)

| .
walf cb DETdra| | snif.db Dblert Iﬂﬁuﬂ =

Y

E l
)

Figure 14 (a): All accesses to DAOs (i.e. snif.db. ‘) are only using the database manager class, indicating that
database concepts are separated from other concepts. Database connections are shared among DAOs. For
example, Tdrs has its own database connection (the red dotted arrow), Alert and Sic tables share a database
connection (the green arrows). Note that the set of public mcthods (e.g. getTdrs, getAlert, getSic) are the union
of public methods offered by all classes of the DAO layer (shown earlier in Figure 13(b)). (b). The database
manager is creating instances of all classes of the DAO layer. (c). A connection pool with a capacity of 8
connections is created using the DBConnectionPool class, and (d). Database connections are distributed among
DAOs based on the frequency of access to different tables.

During the review of the SnifDatabaseManager class, the analyst also found that its
constructor has a boolean flag called isDbEnabled. If the flag is false, then the public
methods of the SnifDatabaseManager call the “dummy” methods of the classes of the
DAO layer. The analyst randomly picked one of the dummy methods of one of the DAOs
and found that it populates dummy data for testing purposes. The extracted code relations
also showed that each class of the DAO layer contains methods with the name “dummy”
in it, which confirmed the analyst’s hypothesis that this construct existed to facilitate
testing. For example, if the higher-level layers call the getSicList method of the
SnifDatabaseManager then either the real getSicList defined in DbSic or the
dummy getDummySicList method will be called, see Figure 15 (b). Note that the users
of the snif database manager do not have to change the source code for unit testing
because it is enough the change the configuration file (snif cfg.txt) and set the
isDbEnabled parameter to false.

Although the snif subystem has the capablllty for testing without running the
database, the analyst concluded that there is a mix of testing concerns with the real
behavior: the isDbEnabled flag is used as a control to switch been real and dummy
DAO methods at run-time. Our recommendation is to separate the testing concemn using
dependency injection concepts proposed in [Spring] or Google’s [Guice] frameworks as
follows. The core idea is to let each class within the DAO layer implement an interface
of the services it offers. In addition, corresponding to each real DAO class, there is a
separate dummy DAO class with the same interface but with an implementation that
populates fake or dummy data. Instead of creating instances of DAO classes in a hard
way, as is currently the case, the database manager will create instances of DAO
interfaces. These interface can be bound either to real DAO instances or to dummy

Submitted to ACM Transactions on Software Engineering and Methodology

24 D. Ganesan, M. Lindvall, and M. Ron

.

instances for testing. This can be done with the help of configuration concepts used in the
Spring or the Guice frameworks. Thus, using this design one could separate testing
concerns from the real code, which would increase testability and readability
significantly.

snif SnifDatabaseMannger il SnifDatabaseManager
public Snifateb ing &Url,) public DEResulcSer geeSiclisc() {
Scring login, DEResulcSec rasult = null;
Bering paseword
boolemn LylbEaarled) § if(chis. isDbRnsbled) {
result = sicDAO. geeSiclive();
) alse
:\‘:::: mm: ﬂlt:::‘ e T
Paiis Ma '“"‘u”:l Y } resule = sicDAO. getDummySicliss) 4
- L\A return result;
)
4 o . =
salf.db DbT drs snif db.DbAlert if.db DESic
DBRswultSet geeTdru(); DBRawuleSet geellest()) DERawileSer geeSiclisti}) 2
DERsmuleSet geelnwmw Tdesl)) DERswuleSer gecinamhlert()s DERssultSer gecluraiSicliss() 3
L]

Figure 15 Testability is built into the design. (a): if the database manager is instantiated with i sDbEnabled as
false, then dummy methods of the DAOs will be called - similar to the method shown in (b).

3.4.4. Discovery of the Database Connection Pool Design Pattern using External
Dependencies

As mentioned above, the analyst noted that the SnifDatabaseManager class uses the
DBConnectionPool class in the framework. The analyst’s next step was to
understand the details of how the connection to the database was managed and
discovered that the DBConnectionPool class within the framework uses the
DriverManager class, see Figure 16 (a).

fxmmework. DBConmectlmPoal framework, DIConnect infool
public BECommscs LanPosliion “-ﬂl ‘}: /* cesaze cormections md add them te the pool */
Fering user, Baald
public woid - ¥i
) Suring paswwerd)) y throws Exceptim [
ery
public vold inicialisefne cspacicy)) for(ing 4 = 0; 1 < capacity; LH) {
PR = p Lo s » Didesslt - Lot}
public veider 1 T Sy MConnPosl. mid|conn) §
l_ } catch (Racspeion o)
throw &)
o sqi DriverMoneger 1] (2]
F—— 4 an(Sering url, !
Sering ussr, String owe 5oL (L]

L]
Figure 16 (a): Discovered slice of database connections, (b): code snippet for creating a connection pool (see the
for-loop), and (c) The call graph showing how a database connection is created. The initialize method is
shown in Figure 17.

The analyst then reviewed the CreatePooledConnection method because it calls
the DriverManager’s getConnection method, which drew the analyst’s attention
because the knowledge base says that the getConnection method of the
java.sql.DriverManager is used to create connections to the database. The review
showed that a pool of database connections is created in a for-loop of the
createPooledConnection method, see Figure 16 (b). The for-loop calls the
java.sql.DriverManager.getConnection method, which returns a database
connection object that will be stored in the connection pool. This discovered pattern is
called the Database Connection Pool design pattern: The core idea is that a set of

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
25 .

connection objects are created up-front, as demonstrated here, and when a component
needs to access a database table they can take one already created connection object from
the pool, and return it to the pool after using it. Thus saving the time it takes to create and
destroy they connection [Apache DBCP]. This discovered slice of the SNAS indicates
that the database interaction architecture is driven by performance goals because
experience reminds us that frequently creating and destroying connections to a database
can affect performance of the system. This concrete example highlights the value of the
knowledge base of external entities helping us in easily finding the file and the methods
that implement the design pattern for database connections.

3.45. An Error Handling Issue in the Connection Pool Design Pattern
Implementation

During the process of analyzing the database connection management strategy, the
analyst also noted that the java.sql.DriverManager.getConnection method
throws a SQLException, see Figure 16 (a). In order to learn more about the error
management strategy utilized by the SNAS in the context of database connections, the
analyst proceeded by analyzing how this exception is handled. The analyst noticed that
the createPooledConnection method, which calls the getConnection method,
catches the exception, see Figure 16 (b & c), and throws it to the caller method, namely
the initialize method, see Figure 17. The initialize method logs the exception
but fails to propagate problems (e.g. database connection failures) to higher-level layers.
The analyst also noted that the return type is void, which prevents the method from
communicating any result to the caller, The analyst concluded that the developers applied
an elegant connection pool design pattern to achieve high performance for database
connection that were provided as a reusable asset for all subsystems to use, but did not
pay sufficient attention to error handling strategy.

public void initialize(int capacity) {

try {
createPooledConnection(capacity);

} .

catch (Exception e)
LogService.logException(..);

}

}

Figure 17 The initialize method does not throw the exception upward, instead it just logs the exception.
Thus, higher-level layers have no idea in case something goes wrong during the creation of a database
connection.

3.5. Discovering the Database Interaction Architecture of the sdif Subsystem
using External Dependencies

Similar to the analysis of the snif subsystem database interaction architecture, the
analyst used the dependencies to the java.sql.PreparedStatement class and
discovered that the only class that prepares SQL statements is sdif.db.DbInteractor.
The extracted call graph of this class showed that almost all of its methods use methods
of PreparedStatement in order to prepare and execute SQL queries. In addition, the
analyst found that the only outgoing dependency from the DbInteractor class is to the
common folder, which contains data beans as explained earlier. The only exception is
dependencies to logging methods. Based on these evidences the analyst concluded that

Submitted to ACM Transactions on Software Engineering and Methodology

26 D. Ganesan, M. Lindvall, and M. Ron

the DbInteractor is the only class of its DAO layer and that it is responsible for
interacting with several database tables, in contrast to a collection of several DAO classes
in other subsystems. '

The analyst also noticed that there were no dependencies from the DbInteractor
class to the database connection creation method getConnection of the
java.sql.DriverManager class. This led the analyst to investigate further how the
sdif subsystem creates database connections. The extracted dependency relations
showed that the only class that depends on the DriverManager class is the
sdif.db.DbConnectionManager class. The analyst reviewed this class and found
that it uses the Singleton design pattern [Gamma et al. 1995] and creates only one
instance of the database connection, see Figure 18 (b), as opposed to dividing the
database traffic among several database connections using a Database Connection Pool as
was the case for snif . In addition, the analyst queried the extracted code relations and
found that the database connection manager class gets all parameters (e.g. database url,
login) from a configuration file, see Figure 18 (a).

ar Lex v e oom | saf SDIFMain adif. & .Ib0 =
gia fe—
ublic weatls wold maini) #/ Creacs ths singlecon comnect lon chisct
Dhpasswirtonem; [cead| P e . i e . -0 S o jov .]
malf_cigoes o it (chis.comnectlion == pull ||
) o flich o acere this, connection. teclossd}} |
ey {
& this - -‘_ £, Lod Vi
oh S{lizceptlon
s4i . & .[hComectiontanager ' “mws:u.f-. wale) {
aamic 1, o Pp——"
Sl @login, pasewdls }muu‘mm-
1 donl) throws BOLXx ")

™

jara sql Drivecfanager
Lo connecticn gelonnect ion(Sczing usrl,
Scring user,
Ering password
theeows FOLException)
(L] '

Figure 18 Discovered Singleton Design Pattern for database connections in the sdif subsystem.

The extracted call graph of the methods of the DbInteractor class showed that all its
public methods use the methods of the DbConnectionManager class in order to get an
instance of a database connection. The analyst reviewed some of the methods of
DbInteractor and concluded that they all follow a general pattern:
First, in order to get an instance of the DbConnecticnManager, all methods of the
DbInteractor call the static getSingletondDBCInstance method. Second, using
that instance of the database manager, all methods of the DbInteractor call the
getConnection method of the database connection manager. Third, all methods of the
DbInteractor run SQL queries and return results to their callers. These three steps are
summarized in Figure 19 (b). Note that there is an architectural mismatch due to the way
the DAOs of the sdif and snif subsystems create a database connection: the DAOs of
sdif are responsible for getting an instance of the database connection, whereas the
DAOs of snif are assigned an instance by the data manager. Thus, these two subsystems
have different common look-and-feel with respect to the database connection concern.

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
27

#dif. Delncesaceer At @ (RCannect LanMasages
public bee geelipdi_) threws BE |—y|eeate [4 (] 2
public Bering peeSar(jtheews S0lfsewpeion,| |connecsiom ahzews TOL

:

™ :
Figure 19 The DbInteractor class offers public methods that queries database tables and return the results
to the callers. (b): First, all public methods of the DbInteractor «call the static
getSingletonJDBCInstance method in order to get an instance of the database connection manager.
Second, they call the getConnection method to get a database connection. Third, they run SQL queries by
calling the executeQuery method.

3.5.1. Database Error Abstraction Issues in the sdif Subsystem

The analyst has concluded that all accesses of database tables are only using the methods
of the sdif.db.DbInteractor class, see Figure 19(a). The analyst also noted that all
the public methods of DbInteractor throw SQLException, see the methods
declarations in Figure 19(a). As a consequence, the knowledge of the database concepts
had leaked into the higher-level layer because it has to handle sQLExceptions being
thrown by the methods of DbInteractor. Thus, in contrast to the other subsystems, the
DAO layer in sdif (i.e. the DbInteractor class) fails to abstract the SQLException
into an error object type that is free of database concepts. This example shows that the
developers implemented the DAO layer but did not give sufficient attention in abstracting
the error raised by the lower-level layer.

3.5.2. Testability Issues in the sdif Subsystem

The analyst then proceeded to analyze whether it is possible to test the sdif subsystem
without the database. Having known that the sdif.db.DbInteractor is the only class
that interacts with the database, the analyst queried the extracted call relation and found
that all instances of the DbInteractor class is created within constructors, e.g. see
Figure 20 (a), of higher-level layers.

sdif.ActiveSchedule sdif.ActiveSchedule
public ActiveSchedule() (public int processUpd() (
this.dbInteractor = new DbInteractor(l; int upd = this. dbInteractor.getUpd();
} -
}
(a)

(b)
Figure 20 Because constructors cannot be overriden, the methods of the ActiveSchedule class are not

testable without a database due to the hard-wired dependency to the DbInteractor class, which queries
database tables (also sec Figure 19 (a)).

The analyst recalled the fact that constructors cannot be overridden. As a
consequence, none of the public methods of those classes that use methods of the
DbInteractor can be tested unless the database is running. Figure 20 (b) shows an
example method that cannot be tested without the database because it uses an instance of
the DbInteractor in a hard-wired way for calling the getUpd method, which accesses
database tables, also see Figure 19 (a). The analyst found that there is no way to stop the
control flow from reaching the physical database and the analyst found that there are 20

Submitted to ACM Transactions on Software Engineering and Methodology

28 . D. Ganesan, M. Lindvall, and M. Ron

classes which unfortunately create /instances of the DbInteractor within their
constructors similar to the pattern shown in Figure 20. Hence, the sdif subsystem, in
contrast to the other subsystems, is not testable without a running database. The code
could be refactored to allow for testing without database [Flower 1999]. However,
experience reminds us that managers are generally nervous about investing in refactoring
because it does not add value to the product from the end-user’s point of view. However,
in our opinion, managers are open to refactorings if the proposed solution will make
testing easier, as offered in this concrete case. Thus, this analysis helped to make a
business case for refactoring to improve the testing capability. [Jacobson 1992] says, “To
make the design minimally affected by the DBMS, as few parts of our system as possible
should know about the DBMS’s interface.” Yes, this analysis has shown that the
subsystems of the SNAS satisfy this quote in general. There are a few cases where the
database exception knowledge is mixed with business logic as shown above.

The other subsystems (sve and dsdm) have a similar database interaction architecutre.
Thus, we will not discuss them here. The analyst has not yet reviewed the stored
procedures and Entity-Relationship models. Hence, the analyst cannot answer how the
SNAS handles variants in DBMS (e.g. Oracle or MySQL). This example shows that the
AlS method offers flexibility because the analyst can decide whether or not to address
each question mentioned in the analysis guide, based on the available effort and the
needs.

Now, the analyst proceeds to the analysis of GUI architecture using external
dependencies of the SNAS.

3.6. Discovery of the GUI Architecture using External Dependencies

The model we base the analysis of the GUI concern on is based on the following
observations of several commercial systems: In the interaction with users, the GUI:
prompts the user to enter data, validates and accepts user data. The data is processed and
stored locally and/or sent elsewhere for processing and/or storing. If the data is processed
elsewhere, then the processed data most likely needs to be communicated back to the
GUI. Often data from other data sources are communicated to the GUI. The GUI displays
such data as well as error messages to the user. To achieve this, the GUI often has a
supporting data model that holds both user data and processed data. If the GUI is part of a
client that communicates with a server, then there needs to be a strategy for how to
communicate the data between the client and the server (or between peers). Of course,
there are other important GUI-related concerns such as the layout of GUI panels, fields,
buttons, undo/redo support, etc. In this analysis, we do not address such concerns because
this analysis focuses on how the GUI is architected.

Based on this model, we derive the following questions for discovering and analyzing
the architecture of SNAS GUIs, which is based on the previous discoveries of clients and
servers etc: 1) How is data that was entered using GUI panels communicated to servers?
2) How is data communicated from servers to GUI panels? 3) How do GUI panels
manage their data model? 4) What is the general threading model for GUI panels? 5)
How does the user interact with the GUI? 6) How do GUI panels validate user input data?
7) Can the system be tested without the GUI being up and running? 8) Are there clones
among the GUI related files? 9) Where and how is data processed?

We believe the above questions are architecturally significant because they are related
to global principles that are of interest to all GUI panels. SNAS has 273 panels, thus it
would be a time consuming task for the analyst to discover the architecture and answer

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
29

the above questions. Fortunately, the analyst can use the knowledge of external entities to
detect the basic set of files that spans the GUI architectural subspace of the whole
architectural space. The analyst first ran the summary generator, which reported that the
SNAS implements GUI concepts because it uses classes in the javax.swing and
java.awt packages. We built a knowledge base for the Swing and AWT packages in
order to support the discovery of GUI architectures of implemented systems, and answer
the above questions.

Event Generation Java utl] EventOhject All event state objects shall be derived from this class
. Java.awt.evert Action Listener The listerer Interface for receiving action events
Evertlistener - . java awt.event WindowListener The listener interface for raceiving window everts
Javacswing.event EventListenerList A class that holds a list of Evenilisterars
Event Management Java.awt EvenitQueus Extract events from queue and dispatches based on event hypes
Irput Validation + javacswing InputVerifler - Used to validate Input data
GJI-v:\':‘ Mery Bar javax swing. MoruBar - Used for creating & menu bar and add manus
. Password Jwvacswing PaswordField Provides speclalized flelds for password entry
Progess Bar Javax swing. ProgressBar Used for displaying the progress of some wark
' Tok g Javarswing SwingUtilites Lised for nunning task on the Event Dispatching Thiead
' Jorvax swing SwingWor ker Used for lengthy GUl-interacting tashs In a dedicated tread
N - Javaxswing Frame AFrame Is a window with a title and a borde
Javax swing Pael - - A pererie lightwelght contalear of GUI cbjects

Figure 21 A snippet of the knowledge base for Java GUI librarics

By analyzing the dependencies, the analyst then discovered that that the mocclient and
the oamclient subsystems depend on Java's Swing and AWT package, Figure 22 (a).
The analyst also noted that the Jpanel, which is a lightweight container of GUI objects
that is used to hold other GUI objects (e.g. Button, Text Fields), is used in both
subsystems within the GUI package, Figure 22 (b). The analyst has already determined
that these two subsystems can be executed separately, which implies the SNAS has two
GUI interfaces., The analyst also discovers that both subsystems have a menu bar each,
see Figure 22 (c).

[] ol [m gl | [ow i | | gui panel | | gui M: 1
: : H
jrm iwing rawt | [Ljmvax swing spanal |
(a) (b} (C]

Figure 22 Discovered view showing that mocclient and oamclient are the subsystems that have dependencies to
swing and awt and therefore the analyst concluded that they are the only ones that deal with GUI concepts. (b).
There is a sub-package called GUI in both subsystcms that depends on JPanel. (c). the main classes that
construct the menu bar of the SNAS,

This paper will only discuss the analysis of the GUI architecture of the mocclient

subsystem because the oamclient is similar to the mocclient.

[gul |] model ” event ” logic | I_ gui Il mode) | l event || logic]

Figure 23 Package conlainment view for mocclient and oamclient showing that they both have four sub
packages. x

3.6.1. Locating the Main Menu using External Dependencies

Submitted to ACM Transactions on Software Engineering and Mcthodology

30) D. Ganesan, M. Lindvall, and M. Ron

Because the SNAS uses the Swing’s JMenuBar class, the analyst decided to locate the
class that implements the menu bar. By querying the extracted dependency relations the
main panel class gui.MainControlPanel was discovered, see Figure 22 (c). The
analyst reviewed this file and found that this is the main GUI panel for the mocclient.
The analyst discovered that the gui.MainControlPanel creates several menus and
delegates all menu events to the class model.MainControlModel, The dependency
relation also showed that the MainControlModel class depends on almost all model
classes in the model directory and all gui panel classes in the gui directory. This triggered
the analyst to review the model.MainControlModel class after which the analyst
concluded that this class is indeed the main controller of almost all gui panels and models
as the name suggests. That is, all public methods of the main model class create and start
instances of models and panels upon being invoked by the main panel class, see Figure
24 (a). The analyst reviewed the extracted code relations and concluded that almost all
panels implement the ActionListener interface of the Java AWT. In addition, almost
all panels take a model class as the argument to their constructors, see Figure 24 (b), such
general patterns are good for architecture discovery because they indicate there is an
underlying architectural skeleton where all panels and models could be plugged-in.

[M’m ontrollmnel _I gui.AFansl inplemants ActionListenss :
\lr public APaneliimodsl modsl);
[moda1 Matncontromoda | public void actimPerformed(ActionBvent)
&)

[[gui. Apanel | [mode1.AModes I] [Luui-sl?m-l] [-ml—mdﬂ: _

{s) ;
Figure 24 (a). The high level structure of GUI, (b). All panels implement the java.awt.ActionListener
interface.

3.6.2. How is data communicated from servers to GUI panels?
The analyst discovered above that the mocclient connects to the sam server using an
instance of sSLsocket, see Figure 10. The analyst queried the extracted dependency
relations and located the gateway class DataManager, which is the only way for data to
come in and go out of the mocclient subsystem, see Figure 25 (a).

l Lme.nm.ﬂ] .log'.l.e.lhnm!ﬂli | u.u-.lm:u-ﬂ _

-

i e
stacic void setAProcessor (Aprocessor aProc); (e}
stacic vold weeB {Bp bProc) ;
.
stacic vold senddbiect (biect coSend ;
(a) stacic wvoid processBaceiveddbiect(.);
)]

Figure 25 (a). The remote server connection is established by the ServerConn class. DataManager creates
an instance of the ServerConn. All data comes in and goes out of the mocclient only via the
DataManager - it is the gateway, (b). The DataManager has a static method (sendObject) for sending
data objects to the remote server. All processors call the corresponding set method to initialize their instance for
call-backs from DataManager, when it reads response from the socket, it delegates to processors based on the
response object type as shown in (c).

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
31

The analyst reviewed the DataManager and found that when responses come in from the
sam server, the data manager delegates to appropriate data processors based on the
incoming response data type. The analyst reviewed the extracted dependency model and
found that there are many data processor classes that depend on the data manager and
vice-versa. The analyst also found that all data processors call the set methods of the
data manager in order to pass their object ids, which will be used by the data manager to
call-back methods of the data processors, see Figure 25 (b) and (c).

The analyst queried the dependency model in order to locate the classes that create
instances of the data processors and the data manager. The query revealed that the class
model.DataBroker creates instances of all data processors and the data manager. The
MainControlMcdel create an instance of the data broker, see Figure 26 (a). The analyst
determined that the MainControlModel gets references to the data processors in order
to send data to the sam server and this is done using the DataBroker instance.

[model, MainCantrolModel I I:-..mu.hmnhg-%

[sves Noes ticaes antvent]

modal.DataBroker

[1ogtc.omattmagez| [togtc.aprocensod [logte Brrocensor]
(]

| l |
!-vm.llnul lwnt.n lnq {mn-. l::n‘u*

f6)

Figure 26 (a). An Arrow denotes a call to a constructor (i.e. an object creation). DataBroker creates an instance
of DataManager and also several processors. MainControlModel creates an instance of the DataBroker. Using
the DataBroker instance, the MainControlMo del can get references to processors in order to send data to the
remote server. (b). Arrows denote the inheritance relation. The event driven architecture is followed to notify
events to GUI pancls based on the response from the remote server.

Because the mocclient uses the java.util.EventObject class, the analyst
hypothesized that the GUI architecture is influenced by an event driven architecture. The
extracted inheritance structure further supported that claim because one of the base
classes of the SNAS inherits from the EventObject, see Figure 26 (b). The analyst
queried the extracted dependency model to locate the classes that use the
NotificationEvent class. The query showed that the DataManager class calls the
constructors of children of the NotificationEvent class. The analyst also determined
that if the pataManager receives, for example, a PasswordExpired object from the
sam server, then it creates a PasswordExpiredEvent instance and fires this event. All
panels that are registered for this PasswordExpiredEvent will then get notified.
Similarly, panels and processors can also create events, and other registered panels and
data processors will get notified.

Above we discussed how the analyst discovered answers to the analysis questions
such as a) how panels are controlled, b) how panels get data from the server, ¢) how
panels get notified when data comes from the server. Based on these answers, the analyst
concluded that he discovered the architectural skeleton where all 750 files of clients
could be plugged-in. We often do not need to understand and review all 750 files of
clients, however, we do need to locate and understand the file that controls all panels, the
file that sends and receives data from remote servers, and the file that handles event

Submitted to ACM Transactions on Software Engineering and Methodology

32 D. Ganesan, M. Lindvall, and M. Ron

processing. This analysis showed that knowledge of external dependencies can help in
locating those files that spans or controls the GUI sub-space.

Some design decisions invite bugs - the SNAS Maintainer's view: The
DataBroker is one place where objects are being reused and data is getting mixed up.
For example, ReportProcessor has a single instance in DataBroker, which causes
problems if the user requests a second report before the first one is finished. Other
processors are used by multiple windows, so the user could be doing what appears to
him/her to be two entirely separate operations, but because DataBroker only has one
instance of the processor, the operations sometimes interfere with each other. To allow
the user to perform multiple operations at once, the whole DataBroker class should
likely be removed—or, at least, the singleton pattern should replaced by multiple
instances so a new processor is returned instead of reusing the existing singleton one.
Also, the fact that almost all of the pataManager’s fields are ‘static’ can cause issues
when the user logs out and logs back in very quickly (using Logout/Login on Main
Menu, instead of Exit and restarting from scratch)—the re-initialization of the values may
occur before the cleanup of the old values, and this can cause a number of problems. This
is because, even though a new DataManager instance is created if the user
Logout/Login, the static variables are retained because they are initialized only once by
the Java Virtual Machine (JVM), in addition the cleanup process and the login process
run in different threads.

3.6.3. GUI Architecture and Performance Analysis using External Dependencies
This subsection demonstrates how the knowledge of external entities can help in locating
architectural decisions that have potential performance risks.

3.6.3.1. Some Performance Problems in Event Notification Architectural Style

In order to keep the GUI responsive, the threading model and the event dispatchers need
to be carefully designed and the analyst wanted to analyze how that part was constructed.
The analyst used the fact that the knowledge base knows that the
javax.swing.event.EventListenerList class is typically used to store the list of
event listeners. Using that knowledge, the analyst discovered the method that calls the
event listeners, see Figure 27. The analyst determined that there is a problem with this
solution: if any one of the event listeners has a slow eventStarted method, it will
affect other listeners too because all event listeners eventStarted methods are called in
the same thread synchronously. If a new event listener is introduced into the system and
its eventStarted method is slow, then the entire system has the risk of slowing down.
The analyst noted that Java S has a new flexible threading model to exactly solve this
synchronous event dispatching problem. The class java.util.Executor allows
listeners to be executed asynchronously, using the concept of thread pools, so that slow
listeners do not affect other event listeners. The SNAS team revealed that they are facing
this issue in the current version and therefore the proposed solution, which takes
advantage of the services of Java 5’s Executor, is being considered for the upcoming
release.

Submitted 1o ACM Transactions on Software Enginecring and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
33

// This method is used te fire Notificacionfvents to all lisceners SnasTrame
public static void fireNocificacd dfocd ticasiond ave) |
Object(] liscenecs = SnasFrane. geclistaner.getlictrmerkist () "'"‘I:"“'"-_E"""-“""‘“ gutlistanad){
for (int 4 » 0; i < Lsteners.lmgtly 14e2) (return tenan;
if{lisceners(i] == Necifice imnlventListener.clasd ('
14 [L). o axt Vi ™
]
]
)
0]

Figure 27 (a) Performance risk if some listeners have a slow implementation of the eventstarted method
they will affect other listeners. (b). This performance issue was detected using dependencies to the
javax.swing.event.EventListenerList class.

3.6.3.2. Some Performance Problems Due to Thread Models and Socket Timeout
The analyst discovered above that the pataManager class is responsible for reading
responses from the socket connected to the remote server, and delegating these messages
to appropriate processing classes, see Figure 25 (a). The analyst tried to understand the
threading strategy used for reading the data from the socket and dispatching it to the
appropriate processors. To achieve this, the analyst reviewed the run method within the
DataManager that reads data from the socket. The analyst revealed that the method uses
the same thread for reading data from the socket and also synchronously dispatching it to
the data processors. The analyst then concluded that due to this synchronous threading
model, slow performing methods of data processor classes may hurt the entire system
since data cannot be read from the socket until control returns from the data processors to
the pataManager.

We discussed this potential issue with the SNAS team, and they acknowledged this
problem and even mentioned that the socket timeout happens before processing all data
in the socket due to synchronous method calls. We are discussing the possibility of either
introducing a thread pool design pattern using the java.util.Executor class to
resolve this performance problem, or to introduce additional queues so that the data from
the socket can be just transferred to different queues, and thus socket timeout can be
avoided. The SNAS team is evaluating these solutions for the next release.

3.6.4. GUI Architecture and Testability Analysis using External Dependencies

The analyst discovered earlier that every panel class has an associated data model, see
Figure 24, When the analyst reviewed some of the panel classes he observed that each of
them has a small main method which populates a dummy data model. The analyst
queried the extracted dependency model and found that nearly all panel classes contain a
main method. Based on these findings, the analyst concluded that each panel can be
tested without running the whole system.

The analyst already determined that the SNAS uses the gpanel class, which allows
users to input data into various fields, and therefore wonders: Does the SNAS use the
input verifier capability built-in the Java Swing architecture? The analyst therefore
queried the extracted code relations and found that the SNAS wuses the
javax.swing.InputVerifier, and overrides the call-back verify method as
demanded by the Swing architecture. The analyst concluded, however, that the logic
behind the verify method is not that trivial, which means it has to tested well, see
Figure 28 (a). Unfortunately, the verify method is not easily testable without running
the GUI and filling the input into the fields of panels. The analyst thus concluded that the
risk is that the verify method is not tested in-depth as required (e.g. using JUnit)
because it assumes that the data is provided by a GUI panel. Most readers will agree that

Submitted to ACM Transactions on Software Engineering and Methodology

34 D. Ganesan, M. Lindvall, and M. Ron

regular expressions can be error-prone, and unit test programs are needed to test them. If
we refactor the verify method, as in Figure 28 (b), thereby separating the GUI concept
from the validation of the IP address, then the method isvalidIpAddress can be
easily tested using the JUnit test framework, for example, see Figure 28 (c). This
analysis, with the help of the knowledge base on Java’s Swing libraries, also detected
other panels that verify the user input, such as range constraints, numeric constraints, and
alpha-numeric constraints,

0 f public Tyjmmy T8 " o g Ipadares){
1 "
A lsaork Aestdobiad Steing rege » A0, AV W, IRV NGEE, TR\, 31
{ m Sstgbint» notk W {ipaddrams mamches (ragec)}{
if " If [companantimtencesd TeFied) | faisn:
, Tt o Tared) compare) guTan} tant w ((TectFiaid) componant) guTaxt(}] Pt
} :
 ehnckinputs langth wyl
1 {ftaxt s=nul || tethsngth) <e 01 { Fyarphoyor{ s SEROTRD InatAddrass getByNam el etk
compenant.requertFecs(l component requestFoas(})
raturn fulse; ratum false; u:‘:l:::umm- o
String rege = Va2, PN Wal1, 3PN \Na{L, 30 e, 31 ratum tros;
1 et machesiragaxi]{) raturn bValldpAddranfiet |)
) :mrn faina; ®} e}
y{
InwtAddress geibyNamsh e}
| emteh (Unknawriortin coption o) {
;;tmfﬂ-;
ratum troe;
(0]

Figure 28 (a). A testability issue because the validation logic is mixed with GUI concepis. (b). A better version
of the verify method we proposed to the SNAS team, that separates the gui from validation logic for
improved testability. (c). The Validation of a IP addrcss can now be tested without the gui being up and
running!

To sum up, even if one tries to construct a JUnit test suite, the source code has to be
“open” for testing; in the sense GUI concepts ought to be separated from logic. The
principle of abstraction and separation of concerns is one of the foundational pillars of
software engineering [Parnas 1985, Tarr 1999], but perhaps developers (also code
reviewers) either overlook this fact or there is a lack of concrete examples to really
understand the concrete meaning behind this principle in order to apply in practice.
That’s why this paper uses code snippets to demonstrate fundamental software
engineering principles. Only because of the knowledge base of Java’s GUI classes, it was
possible for us to easily discover code elements that affect testability.

3.6.5. GUI Architecture and Clones
Experience tells us that clones often exist in the GUI portion of the system. Thus, the
analyst used the similarity tool to automatically analyze all files of the mocclient and
oamclient subsystem, and discovered that nearly every file that is present in the
mocclient is also present in the oamclient, with very small differences in content.
Discussions with the SNAS team revealed that the mocclient and camclient are
variants for two different groups of users. The analysis pointed out there is a still a large
number of GUI related files that could be moved to the shareclient folder in order to
minimize duplication. The similarity tool also reported clones between GUI panels within
these subsystems. The problem is that in order to develop a GUI panel, there are basic
boiler-plate code elements (e.g. defining the GUI panel structure, fields, buttons, etc) that
every program must implement, which naturally results in code cloning. It is not easy to

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
35

solve this cloning problem. However, other projects that we have analyzed have positive
experiences with generating Java Swing GUI code using the Jigloo Editor. This was
recommended to the team so that, at least in the future, new panels can be generated
using such code generators thereby avoiding copy of bugs due to copy-and-paste of code.
Now the analyst proceeds to analyzing the OS interaction strategy using the external
dependencies of the SNAS.

3.7. An Analysis of the OS Concern using External Dependencies
The model on which we base the analysis of the OS concern is based on the following
observations: a) any software system needs an Operating System to run and some need to
run on more than one operating system, and b) there should be some strategy (good or
bad) to manage OS variants. From this model, we derive the following questions: I)
What are the different OS types the system supports? 2) How does the system abstract
underlying OS and when does binding to a particular OS take place? and 3) How are OS
concerns separated from other concerns?

For the Java programming language, the snippet of the knowledge base, shown in
Figure 29, helps in discovering architectural insights from the OS perspective.

Flle Separator Javalang System. getPrope ty(file sopas ator) Reburrs 'f for Undx, and ' for Windows
_Path Separator Java lang System getProperty(path separ ater) Retums ' for Unix, and ¥}’ for Windows
it " 05 Architechre Jwalang System getProperty(os.arch) - Returms the ai chitecture of the machine
= 08 Command Javalang Rurtime evec - Exewta the glven OS command
OS5 Mame favalang System.getiroperty(os name) The name of the U5 that runs the Java program
05 Version Java.lang System gelFroperty(os.version) Pebars the version of the 05

Figure 29 A Snippet of the Knowledge base for analyses of OS concerns.

The analyst queried the extracted dependency model of the SNAS and discovered the
files that use the exec method of the java.lang.Runtime class that helps for
interacting with the OS (see Figure 29). The query showed that all OS commands are
executed only through the pidService class (see Figure 30 (a)) defined in the
framework folder. The analyst reviewed this class and found that the OS type and the
OS command to run must be passed as arguments to the methods of PidService (see
method parameters of Figure 30 (a)). The analyst extracted all dependencies to the
methods of the PidService. The extracted dependency diagram showed that the higher-
level layers ((see Figure 30 (b)) must pass the OS command and the OS type to run the
methods of the PidService. This clearly implies that OS concerns penetrated and mixed
with other concerns, and the architecture did not offer a separate OS abstraction interface
that hides the actual OS type.

Submitted to ACM Transactions on Software Engineering and Methodology

36 D. Ganesan, M. Lindvall, and M. Ron

framework PidService

// Returns CPU usage for the given PID |“""] ["'"] l’“ I
public static String sxtractPercentageCPU(String pid,
String command,

Scring onType);
IR hread for ths given process id tramework. PidService
public static String sxtractThreadCount|Scring pid,
Scring command, {b)

String osType);

[javasang Runtime

IP:oem exec(String command) ;

(a)
Figure 30 (a). All OS commands are executed using the PidService class defined in the framework. (b).
However, the higher-level layers are also dealing with OS concerns such as the OS type and the OS command
to run (sce the parameters of methods of PidService). This problem can be solved if PidService uses
Java’s APIs to discover automatically the current OS type and then decide which OS command to run,

The recommended solution to this OS variation management problem is to let the
PidService use Java's APIs (e.g. System.getProperty(os.name)) and
automatically discover the OS type and then decide what OS commands to run. By doing
so, the higher-level layers will become agnostic to OS variations. Thus, the complexity
due to managing OS variants can be controlled in a cleaner and consistent way across all
subsystems, resulting in a good common look-and-feel. This example reminds us that
having a system implemented in Java does not necessarily imply the system is ready-to-
run in all OS platforms; it has to be architected to manage OS variants. The devil is in the
details, by slicing the implementation using external dependencies we were able to
discover novel insights and deep architectural problems, and furthermore offer
constructive solutions where possible.

The analyst did not spend effort on identifying the different types of OS supported by
the SNAS because when he reviewed some of the configuration files used for configuring
IP address, ports, etc, his eyes also saw a configuration variable called osType, with
commented lines such as “set osType=Unix or set osType=Windows”. Thus the analyst
admitted that it was some luck that pointed him to the OS types used in the SNAS.
Otherwise, he had a strategy of searching of “/” or “\" used file names, for example, to
identify OS types. It was commented in the configuration files that for testing purposes
one can choose the OS type by modifying configuration parameters.

3.8 Summary

3.8.1. Summary on Wrapper Violations and Heritage of the SNAS

During this analysis, the analyst discovered many potential rules such as: All usages of
the logging COTS (Apache Logd4J) should be done using the logging service wrapper
defined in the framework folder, and: All usages of threads should be done through a
wrapper class defined in the framework. However, the analyst noticed that the sdif
subsystem violated many of the potential rules..In fact, the sdif has its own wrapper
class offering logging service. The analyst also discovered during the analysis of the
database concern that the sdif has a different style for implementing database
connections and the DAO layer. Basically, the sdif lives in its own world. Discussions
with the SNAS team revealed that the sdi f was taken from the predecessor of the SNAS
called SWSI. The SNAS team has done a lot of refactoring to integrate the sdif with the

Submitted to ACM Transactions on Software Engincering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
ar

SNAS, but time was not spent on cleaning-up the architectural differences with other
subsystems, We noted earlier some subsystems by-pass wrappers to sockets, defined in
the framework folder, and directly use Java socket libraries. Discussions with the SNAS
team revealed that wrappers were not there in the first-place, and therefore it is not
practical to expect that all subsystems use the wrappers. These are some “classical”
examples of individual parts looking good but if we take one step up and see the whole
system, there are architectural deviations in common look-and-feel, partly because of
organizational factors and migrating or merging existing systems.

3.8.2. Can Two Requirements influence the Architecture and Size of the System
so much?

This analysis shows that the SNAS contains many performance-oriented architectural
design decisions. For example, a) it uses the transfer object design pattern to overcome
communication overhead due to remote procedure calls, b) it uses multiple ports to
reduce the waiting time of objects in socket channels, ¢) it uses a reactor design pattern to
facilitate non-blocking 1/0 of socket channels, and d) it uses a database connection pool
to reduce the overhead of frequently creating and destroying connections. Naturally, we
were more than curious and asked the SNAS team what is the real need for this
elaborated architectural design. They pointed to two requirements (see Figure 31) out of
the many hundreds, We can notice that both requirements deal with timing aspects.

4.1,6 The 3NAS whall not excesd two seconds from the ipt of & to the ission of that .
4,1.7 The 5NAS shall not exceed five seconds from the receipt of a request to reteieve data from the INAS databass CTo

ransmission of cthe result.

3.4.1
1.4.1
the ¢

Figure 31 The two requirements (snippet) behind the elaborated performance driven architecture.

The number of transfer objects (or bean) files is 384 out of 1578 Java files. The beans
contribute 80KLOC (including comments and spaces) out of 650KLOC. We mentioned
in the GUI analysis that the SNAS uses event-driven architectural style by creating event
objects for each type of incoming object from the remote server. For example, if the
incoming object is LoginFailed type then the corresponding LoginFailedEvent
object is created and notified to registered panels to display the login failure message.
There are around 60 event files, contributing 10KLOC. We also noted earlier that the
GUI architecture has data models for each panel. The data models contribute 40KLOC
out of 650KLOC. Unfortunately, there is not much difference between data models and
transfer objects, except the latter implements the Serializable interface to transfer
objects across the network. They both contain data attributes with get and set methods.
Also note that GUI data are present inside Java’s internal model of Swing. In addition,
database tables contain the same data present in data models and transfer objects.
Basically, data are redundantly present in different formats. This analysis offered insights
on the influence of the transfer object design, mainly chosen for overcoming the inherent
limitations of remote procedure call, on the overall size of the system. We are discussing
with the requirements team in order to understand the rationale behind the timing values
and how stringent they must be followed. Also, we are discussing whether or not anyone
measured the running system’s response time to satisfy those timing constraints. The
major lesson from this study is that requirements analysts (also architects) must be
careful in specifying and analyzing timing constraints; otherwise there is a danger of
over-engineering with an “elaborated” architecture and a lot of source code to develop,
test, maintain, and evolve. '

Submitted to ACM Transactions on Software Engincering and Methodology

' 38 D. Ganesan, M. Lindvall, and M. Ron

3.8.2. Summary of the Number of Files Reviewed

The analyst took notes on the number of files he has reviewed during the analysis of the
SNAS. The analyst mentioned that he has good experience with the RPA query language
[Feijs et al. 1998, Krikhaar 1999, and Ganesan et al. 2009] used for automatically finding
files with certain characteristics. For example, using RPA it is straightforward to detect
all files that directly or indirectly (i.e. through inheritance) implement the
java.awt.event.ActionListener interface. If the analyst is not familiar with RPA-
like query languages, then he has to use some other source code search tool and may have
to open many more files. In addition, the analyst agreed that there is a learning effect that
fortunately reduced the number of files to be reviewed. For example, when the analyst
opened a file to understand how data from the socket is read and delegated to data
processors, his eyes also saw other concerns such as the error-handling strategy used for
automatically reconnecting to the remote server if the connection is lost for some reasons,
That helped the analyst because he learned more than what he was originally intending to
do with that file. Table 3 shows the number of files reviewed for each goal. Although
this is honestly collected data, the analyst agreed he might have forgotten to count some
files, but the paper has provided abundant evidence that the dependencies on external
entities can be of great value in finding the right entry points into the system.

Table 3 Summary of files reviewed for each goal

Goals |# of Files Manually Reviewed

Discovery of Server-side Socket Ports |10 out of 1578 Java files

Discavery of Client-side Socket Ports |12 out of 1578 Java files

Discovery of Port Connections 5 out of 25 configuration files

Discovery of Data Beans 5 out of 384 Jave bean files

Discovery of the DAQ layer 10 out of 112 Java files dealing with datebase interaction

Discovery of GUI Architecture 20 out of 723 Java files in the mocclient, oamclisnt, shareclisnt folders
Discovery of OS Varisbility 4 out of 1578 Jave file)

Total |61 out of 1578 Java files (Le. 4% of Java files) were reviewed

3.8.3. Discussion

Can the analysis be done in-any order? Yes, we believe that the method of following
external dependencies into the application can be done in any order and for any purpose.
For example, the analyst could have applied the AIS method first for discovering the
architecture of the GUI concern and then for the Persistence concern. However, the
analyst found it useful to first discover the component-connector view before slicing the
implementation based on concerns. For example, if the analyst did not know the fact that
the SNAS follows a distributed architecture using sockets as connectors, then the analyst
may not have known easily the fact that the GUI parts send and receive data to a remote
server,

Are there threats to the validity of the architecture discovered using the AIS
method? There may be some threats to the classification of roles played by a huge
collection of files based on collected evidences. As we noted earlier, for example, the
analyst without reviewing 384 Java files claimed that all of them are data beans because
the criteria of a class being considered as a bean is based on characteristics collected from
his experience (e.g. almost all methods are getters and setters, no calls to logging,
implements Serializable interface, etc). There may be some files within the 384 files

Submitted to ACM Transactions on Sollware Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
39

which are doing more than what a data bean is suppose to do. A common threat in any
reverse engineering method is the correctness and completeness of the code relations
extracted by parsers.

Is the AIS method flexible? The method is flexible because the analyst can decide,
based on his goals, which subspace of the four dimensional space is appropriate to work
(recall Figure 1). The analyst can select a concern of his interest; refine it to the necessary
depth. The method neither enforces the order in which the analyst has to select a concern
nor the level of depth in refining and analyzing the selected concern. The external
dependencies can still support the analyst even if he wants to go further deep and analyze,
for example, how all GUI panels implement windows close action, which are also often
implemented using the APIs of the underlying external entities. Almost all programming
language libraries support common concems and architecture connectors. Therefore, we
are more than confident to claim that external dependencies play a novel role in reverse
engineering.

Is the AIS method repeatable on other systems and/or other languages?
Although the case study is in Java, the method has evolved from analyses of several
systems implemented in the C/C++, ADA, and FORTRAN languages [Stratton et al.
2007, Ganesan et al. 2009, Lindvall et al. 2010]. Yes, the analysis questions and the
reasoning process are certainly repeatable on other systems. Experiences with formal
query languages and basic knowledge of programming language libraries are important in
order for other analysts to repeat and produce the same results discussed in the case
study. The knowledge base of external entities can help analysts who are not familiar
with the classes and methods of programming language libraries. In general analysts are
like a detective, the method is trying to codify, reuse, and share experiences so that they
can analyze commercial strength systems efficiently.

4. Comparison to Existing work
Here, we will highlight some key differences between our method and the exlstlng work
related to architecture analysis, knowledge-based reverse engineering, pattern-based
architecture discovery, clustering, software clones, exception handling, and testability.

Architecture-Analysis in the early phase of the lifecycle: The SAAM method
uses “what-if” scenarios to evaluate the proposed architecture in a workshop with the -
project team [Kazman 1994, Clements 1995]. Their method was designed to be applied in
the early phases before the implementation starts and thus architectural risks can be
identified early. We believe our architecture analysis method complements the SAAM
because it helps in discovering the implemented architecture which could be used in
conjunction with their method for analyzing evolving systems. [Rozanski and Woods
2005] use a catalog of concerns to construct and analyze views of the architecture. We
also use such a catalog but to slice the implementation and discover the architecture for
each concern. [Martin 2005] discusses architectural principles for bypassing the GUI and
database for testing. [Binder 1994] discusses design principles for testability. [Wirfs-
brock 2006] discusses best practices for managing exceptions, including abstraction of
exceptions raised by lower-level layers. We use these principles and best practices for
evaluations of implemented systems. We share the vision of storing best (or problematic)
practices with Booch’s handbook of software architectures [Booch].

Knowledge-based Reverse Engineering: The PROUST tool takes as input a text
description of a program and uses its knowledge base for detecting errors novice
programmers make and help them correct their mistakes [Soloway and Johnson 1985].

Submitted to ACM Transactions on Software Engineering and Methodology

40 D. Ganesan, M. Lindvall, and M. Ron

The PAT tool generates a high-level specification (i.e. an algorithm) of a given program
using its rule-based inference engine [Harandi and Ning 1990]. In contrast to our
approach, these approaches are small scale as they focus on understanding and generating
specifications at the sub-routine level, while our approach focuses on understanding large
systems.,

We share the LaSSIE’s high-level goal of solving the “invisibility” problem inherent
in software systems [Devanbu 1991]. LaSSIE helps in understanding of how and where
features are implemented using its domain ontology. In our opinion, LaSSIE does not
focus on discovering testability and performance risks as discussed in our method. We
are exploring ways to enrich our knowledge base with domain concepts for facilitating a
. domain-oriented architectural reasoning. The MIDAS approach uses a knowledge base
for automatic reengineering of database programs from the network model to the
relational model [Chiang 1995]. Our method supports discovering and analyzing the
database interaction .architecture and its testability. The MORPH process uses a
knowledge base for migrating text-based user interfaces into GUIs [Moore and Rugaber
1997]. Our method supports discovering and analyzing the GUI architecture of systems
that already have a GUI. [Michail 2002] uses GUI messages and function names of GUI
frameworks used by the system under analysis for browsing and searching the source
code in order to overcome limitations of general text search tools. MicroScope is a tool-
suite for maintenance activities. Our future work can benefit from its rule-based inference
engine [Ambras and O'Day 1988]. MicroScope can also benefit from our knowledge-
base that helps in discovery of software architectures.

Pattern-based Architecture Discovery: |Dong et al. 2007] review methods and
research tools for recognition of design patterns from the source code. We have shown
where several patterns were implemented simply by using the programming language
libraries, which are often excluded in many research methods. It would be interesting to
investigate how pattern discovery methods can benefit from a knowledge base of external
dependencies. [Harris et al. 1995] constructs a library of architecture concepts
recognizers in the source code. A challenge, in our experience, is that it is difficult to
codify the way different systems implement the same architecture concepts. In some
cases, the same architecture concept might have been implemented in different styles by
different subsystems, as is the case for the database abstraction layer of the SNAS, for
example. Thus, it is difficult to automatically discover architecture concepts.

Clustering: [Maqgbool and Babri 2007] provided a long discussion on clustering
methods and how they could shed some light on the software structure. One of the
challenges is that, especially in GUI parts, function calls occur indirectly using event-
driven concepts and implicit invocations, and thus the call graph is often broken into
disconnected graphs. Also, many systems contain intermediate connectors for
communication. Another challenge is that the architecture concepts (e.g. Interfaces,
Connectors, and Components) are invisible in the output of clustering, and is not easy to
do a detailed analysis, because all concerns are still part of the clustered model. In
general, clustering methods do not give names to subsystems or summarize in a few
sentences the role played (e.g. DAO layer, OSAL layer) by them. After all, it is the name
and the brief summary that helps in understanding the architectural roles played by a
huge collection of files. It would be fruitful to investigate how the existing clustering
methods behave if they are combined with a knowledge base of external dependencies.

Software Clones: |Koschke 2007] discusses several clone detection inethods in
detail. Our focus is on analyzing the detected clones by concentrating on one concern at a

Submitted to ACM Transactions on Soflware Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
a1)

time and interpreting them using the discovered software architecture so that we can offer
constructive advices where possible. For example, we have discussed clones in GUI
panels and across files in database abstraction layers. We offered concrete advices on
how to migrate to new technologies in order to overcome inherent cloning problems due
to the Java language. ,

Exception Handling: The Jex tool was used for analyzing the flow of exceptions
[Robillard and Murphy 1999]. We analyzed exceptions using dependencies to external
entities and selecting a concern of interest. We interpreted the flow of exceptions from an
architecture point of view. For example, we have shown cases where the database is
abstracted but database errors had leaked into the higher-level layers. Also, using the
knowledge of dependencies to external entities, we have shown how we can find how the
system handles specific exception types such as the socket timeout exception or host not
available exception. Thus, we believe Jex-can also benefit from a knowledge base. [Shah
et al. 2010] reported that, in their survey, novices make mistakes in exception handling.
Of course, the truth is in the source code, experts also make mistakes because exception
handling is often not given much attention during the architecture design.

Assessment of Testability: We share the spirit of understanding “What is it that
makes code hard to test” as [Bruntink and Deursen 2004] formulates -this important
question. In contrast to their testability assessment model, our method covers testability
in the presence of a GUI or a database. [Feathers 2004] offers a piece of “clean” code
(e.g. good method/variable names, comments) that was not easy to test because of a hard-
binding to a remote stock server, which cannot be replaced by a dummy server for testing
purposes. We collect such anti-testing patterns into our knowledge base and analyze
implemented systems for the existence. [Ganesan et al. 2010] provide insights on “What
types of architectural decisions make unit testing easier/harder” in a product line context.

Closing Remarks

Yes, external entities offer novel insights during reverse engineering. This paper has
offered abundant evidence that by leveraging the semantics of external entities, we can
efficiently discover the software architecture hidden in the implementation. Most
architectural problems are hidden deep in the source code. As shown in this paper,
external entities help us to efficiently locate the details where devils hide. The paper also
disclosed a knowledge base for reverse engineering. Construction of a knowledge base is
an investment. We have shown how one can incrementally build a knowledge base over
time using external entities used by systems under analysis. If your organization is
regularly conducting architectural analysis of several implemented systems, you could
reap the benefits of your investment in a knowledge base. Our future prospects include a)
improving the usability of the tool-chains so that analysts can easily add their knowledge
of analyzing commercial systems, and b) building “intelligent” analysis environments to
further improve the productivity of our analysts.

REFERENCES

ALUR, D,, CRUPI, J., AND MALKS, D. 2003. Core J2EE Patterns. Sun Microsystcms press.

AMBRAS, J. AND O'DAY, V. 1988. MicroScope: A Knowledge-Based Programming Environment. IEEE
Solftware, 5(3), 50-58.

Apache DBCP. Open Source Database Connection Pool, http://commons.apache.org/dbep/

BASILI, V., CALDIERA, G., McGARRY, F., PAJERSKI, R., PAGE, G., AND WALIGORA, S. 1992, The
Software Engincering Laboratory: An Operational Software Experience Factory. Proceedings of ICSE, 370-
381,

Submitted to ACM Transactions on Software Enginecring and Methodology

42 D. Ganesan, M. Lindvall, and M. Fton

BINDER, R.1994. Design for lcstnblhty in object-oriented syslems Communication of the ACM, 37(9), 87-
101.

BRUNTINK, M. AND DEURSEN, A.V. 2004, Prcdicting Class Testability using Object-Oriented Metrics.
Proceedings of the Source Code Analysis and Manipulation Conference, 136-145,

BOOCH, G. hitp://www.handbookofsoftwarearchitecture.com,

CHEN, Y.-F.,, NISHIMOTO, M. Y., AND RAMAMOORTHY, C. 1990. The C information abstraction system.
IEEE Transaction on Soflware Engineering, 16, 3, 325-334.

CHIANG, H.L.R. 1995. A knowledge-based system for performing reverse engineering of relational databases.
Decision Support Systems, 13, 295-312,

CLEMENTS, P., BASS, L., KAZMAN, R.,, AND ABOWD, G. 1995. Predicting Software Quality by
Architectural-Level Evaluation. Procecdings of the Confercnce on Soflware Quality. 485-497.

DEVANBU, P., BRACHMAN, R.J., SELFRDIGE, P.G., BALLARD, B.W. 1991. LaSSIE: a Knowledge-based
Software Information System. Communication of the ACM, 34(5), 34-49.

DONG, J., ZHAO, Y., AND PENG, T. 2007. Architecture and Design Pattern Discovery Techniques — A
Review. International Conference on Software Engineering Rescarch and Practice, 621-627.

FEATHERS, M. 2004. Before Clarity. IEEE Sofiware, 21(6), 86-88.

FEUS, L., KRIKHAAR, R., AND OMMERING, R. 1998. A Reclational Approach to Support Soflware
Architecture Analysis. Software Practice and Expericnce, 28(4), 371-400.

FLOWER, M., BECK, M., BRANT, J., OPDYKE, W., AND ROBERTS, D. 1999. Refactoring: Improving the
Design of Existing Code. Addison-Wesley.

GAMMA, E,, HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995, Design Patterns—Elements of Reusable
Object-Orientcd Software. Professional Computing Series. Addison-Wesley.

GANESAN, D,, LINDVALL, M., McCOMAS, D., AND BARTHOLOMEW., M. 2009. Verifying architectural
design rules of the flight software product line. Proceedings of the Software Product Line Conference, 161-170.
GANESAN, D., LINDVALL, M., McCOMAS, D., BARTHOLOMEW, M., SLEGEL, S, AND MEDINA, B.
2010. Architecture-based Unit testing of the flight software product line. Proceedings of the Software Product
Line Conference.

Google’s Guice Framework, http://code. google.com/p/google-guice/

IHHARANDI, M.H. AND NING, J.Q. 1990. Knowledge-Based Program Analysis. IEEE Software, 7(1), 74-81.
HARRIS, D.R., REUBENSTEIN, H.B., AND YEH, A.S. 1995. Reverse Enginecring to the Architectural Level,
Proceedings of ICSE. 186-195.

Hibernate Framework, hitp://www.hibernate.org/

JACOBSON, 1. 1992, Object Oriented Soltware Engincering, Addlson-Weslcy :

KAZMAN, R., BASS, L., ABOWD, G.,, AND WEBB, M. 1994, SAAM: A Method for Analyzing the
Properties of So&warc Architectures, Pmcocdings of ICSE, 81-90. :

KOSCIIKE, R. 2007, Survey of Research on Software Clones. Proceedings of Dagstuhl Seminar 06301.
KRIKHAAR, R. 1999, Software Architecturc Reconstruction, PhD Thesis, University of Amsterdam. _
KRUCHTEN, P., OBBINK, H., AND STAFFORD, J. 2006. The Past, Prescnt, and Future of Software
Architecture. IEEE Software, 23(2) 22-30.)
LINDVALL, M. 2010. Connecting rescarch and practice: an experience report on rescnrch infusion with
software architecture visualization and cvaluation. NASA’s Journal on Innovations in Systems and Software
Enginecring.

MAQBOOL, O. AND BABRI, H. 2007. Hierarchical Clustering for Soflware Architecture Recovery. IEEE
Trans. Software Eng., 33(11), 759-778.

MARTIN, R.C. 2005. The Test Bus Imperative: Architectures that support automated acccptancc testing. IEEE
Software, 22(4), 65-67.

MICHAIL, A. 2002. Browsing and scarching source code of applications written using a GUI framework.
Proccedings of ICSE. 327-337.

MOORE, M. AND RUGABER, 5.1997. Using Knowledge Representation to Understand Interactive Systems.
Proceedings of the International Workshop on Program Comprehension, 60-67.

MURPHY, G.C., NOTKIN, D., AND SULLIVAN, K. 2001. Software Reflexion Models: Bﬂdgmg the Gap
between Design and Implcmenlahon IEEE Transactions on Software Engineering, 27(4), 364-380.
NACCARATO, G. 2002, Introducing Nonblocking Sockets. O'Reily Publications.

PARNAS, D.L., CLEMENTS, P, AND WEISS, D. 1985. The Modular Structure of Complex Systcms. |EEE
Trans. Software Eng., 11(3), 259-266.

ROBILLARD, P.M. AND MURPHY, C.G. 1999, Analyzing Exception Flow in Java Programs. Proceedings of
ESEC/FSE, 322-337.

ROZANSKI, N. AND WOODS, E. 2005. Software Systems Architecture, Addison-Wesley.

SCHMIDT, D. 1995. Using Design Patterns to Develop Reusable Object-Oriented Communication Software.
CACM, 38(10), 65-74.

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
43

SHAH, B. H., GOERG, C., AND HARROLD, M.J. 2010, Understanding Exception Handling: Viewpoints of
Novices and Experts, IEEE Transaction on Software Engincering, 36(2), 150-161.

SHAW, M. AND CLEMENTS, P. 2006. The Golden Age of Software Architecture. I[EEE Software, 23(2), 31-
39.

SHAW, M. AND GARLAN, D. 1996. Software Architecture: Perspectives on an Emerging Discipline,
Prentice-Hall,

SOLOWAY, E. AND JOHNSON, W.L. 1985. PROUST: Knowledge-Based Program Understanding. IEEE
Transactions on Soflware Engineering, 11(3), 267-275.

Spring Framework, http://www.springsource.org/

STRATTON, W., SIBOL, D., LINDVALL, M., AND COSTA, P. 2007. The SAVE Tool and Process Applied
to Ground Software Development at JHU/APL: An Experience Report on Technology Infusion. SEW, 187-193.
TARR, P., OSSHER, H., HARRISON, W., AND SUTTON, S. M. 1999. N degrees of separation:
Multidimensional separation of concerns. Proccedings of ICSE, 107-119.

WALDO, J., WYANT, G., WOLLRATH, A., AND KENDALL, S. 1994. A note on Distributed Computing.
Sun Microsystems, TR-94-29.

WIRFS-BROCK, R.J. 2006. Toward Exception-Handling Best Practices and Patterns. IEEE Soflware, 23(5),
11-13.

Submitted to ACM Transactions on Software Engineering and Methodology

