
External Dependencies-driven Architecture
Discovery and Analysis of Implemented Systems

DHARMALINGAM GANESAN, MIKAEL LINDVALL
Fraunhofer Center. for Experimental Software Engineering (CESE),
College Park, Maryland, USA

MONICA RON
Honeywell, Greenbelt, Maryland, USA

A method for !!rchitcctun: discovery and !!nalysis of implemented fil'Stems (AIS) is disclosed. The premise of
the method is that orchilcclurc decisions arc inspired and inllucnccd by the external entities that the software
system makes use of. Examples of such external entities nrc COTS components, frameworks. and ultimately
even the progrumming language itself and its libraries. Traces of these architecture decisions can thus be found
in the implemented software and is manifested in the way software systems use such external entities. While
this fact is often ignored in contemporary reverse engineering methods. the AIS method nctivcly leverages ond
makes use of the dependencies to .external entities as a starting point for the architecture discovery. The AIS
method is demonstrated using the NASA's Space Network Access System (SNAS). The results show that. with
abundant evidence, the method offers reusable and repeatable guidelines for discovering the architecture and
locnling potential risks (e.g. low testability. decreased pcrfonnancc) that are hidden deep in the implementation.
The analysis is conducted by using external dependencies to identify, classify and review a minimal set of key
source code lilcs. Given the benefits of nnalyzing external depcndenci.:s a.~ a way to discover architectures, it is
argued that external dependencies deserve 10 be treated as first-class citizens during reverse engineering. The
current structure of a knowledge base of external entities and analysis questions with strategies for getting
answers is also discussed.

Categories and Subject Descriptors: D 2.11 !Software Engineering]: Software
Architectures; 0 .2. 7 [Software Engineering]: Distribution, Maintenance, and
Enhancement - D0c11111elllalion; restructuring, rewrse engineering, and reengineering;
D.3.2 [Program ming Languages]: Lnngu11ge Clussifiet1tions--C, C++, Jnva

General Terms: Documentnlion, Sofiware Architecture. Reverse Engineering, Quality

Additionnl Key Words ond Phrnses: Concerns, Perfonnance, Testability, External Entities

1. INTRODUCTION
The software architecture of a system to be built can be analyzed using state-of-the-art
architecture analysis methods [Krutchen et al. 2006, Shaw and Clements 2006]. These
analysis methods can be used to identify potential software-related risks such as low
maintainability and low perfonnance. Once the risks have been identified, they can be
mitigated, for example, by choosing alternative architectural styles early in the software
lifecycle [Clements et al. 1995]. However, there are a large number of software systems
in use that were developed either before the invention of these state-of-the-art
architecture analysis methods or lacked an explicit software architecture design phase in
the first place. Even for systems that were developed using existing architecture analysis
methods, most of us will agree that the implemented architecture will most likely dev iate
from the specified architecture after a couple of iterations, making the documented
architecture out of date and difficult to use [Krikhaar I 999, Murphy et al. 200 I, Lindvall
et al. 20 IO]. Thus, for many existing software systems, there are no trustable and up-Io
date artifacts but the source code. In situations when the original developers are gone and
the documentation is either outdated or non-existent there is a practical need to reverse

Submitlcd to ACM Transactions on Sol\warc Engineering and Ml!thodology.

2 D. Ganesan, M. Lindvall, and M. Aon

engineer the architecture from the implementation so that we can identify potential risks
and offer practical strategies to mitigate them.

Two authors of this paper work for CESE, which is an organization that analyzes
customers' existing software systems, for example in order to detect risks. The customers
of CESE want an "independent eye" to .look into their implemented software systems,
evaluate the implemented architecture, identify high risk areas, and propose practical
suggestions for improvements and risk mitigations. Naturally, the customers expect the
analysis results to be delivered ·•as soon as possible" so that they can effectively make
use of the findings in their decision making process, incorporate improvements into their
products and processes, remove issues, and meet their goal to produce a high quality
software product on time. With this pressure to deliver critical and accurate architecture
insights regarding previously unfamiliar software systems in relatively short time, CESE
is always seeking ways to improve and make their analysis methods more efficient. The
AIS method, introduced in this article, is the result of more than 10 years of such analysis
and accompanying improvements.

One of the more fundamental insights that we have gained through our work is the
importance of being able to zoom in on and reason about individual software concerns
and how they are implemented in the source code. Modem (as well as many not so
modern) software systems are no-doubt large and inherently complex. Apart from
offering features, software systems manage multi-dimensional concerns, such as OS
variants, configuration parameters and settings, database interactions, remote
connections, inter-process communication, dynamic reconfiguration and updates,
licensing, security, error handlinF' internalization, etc. In the software systems we have
analyzed, any given source file typically addresses more than one concern and each
concern is typically distributed across more than one source file. For example, a source
file may contain code that executes a database SQL query as well as code that writes each
database interaction, as well as other events, to a log file. Thus, the code in this file
addresses several concerns (i.e. database management and logging). In addition, several
source files may contain code that is involved in various kinds of database interactions.
Thus, code that address the database interaction concern is spread across several source
files.

We can conceptually imagine every source code file as being one point in a multi
dimensional space, where each dimension refers to a concern. Most readers will agree
that it is beyond our capability to comprehend and visualize shapes in more than two or
three dimensions. Hence, we need to build abstractions of the software under study that
emphasize only the concerns we are interested in and suppress (for a moment) everything
else. Since the software under study is typically represented by source code only, we need
to create these abstractions using entities found in that source code. Thus, we can· say that
we need to identify selected implementation concepts in order to recognize the
implementation of architecture concepts such as layers, styles, components, and
connectors that are typically used to express the high level software architecture and
which are often "hidden" in the multi-dimensional space of concerns in the source code.

Existing reverse engineering tools typically build abstractions using the directory
structure (or si milar hierarchies that organizes the source code) and code relations (e.g.
calls, data accesses, and includes). Code level relations are lifted by composing them with

1 We use the term "file" or "source file" to denote any file that contains computer
instructions that can be compiled.

Submitted to ACM Transactions on Software Engineering and Methodology

,

External Dependencies-driven Architecture Discovery and Analysis of lmpler:nented Systems
3

the hierarchy structure. This lifted relation is basically a two-dimensional hierarchical
view of the system. Fraunhofer's SA VE tool is an example of a tool that works this way
and its usefulness has been demonstrated in many different projects [Lindvall et al.
20 I OJ. However, given that the implementation usually handles so many concerns, it is
not surprising that the projection from multi-dimensions.to a two dimension hierarchical
graph looks like ''spaghetti". In several endeavors, we realized that hierarchical
dependency graphs alone do not convey the true architectural story of an unfamiliar
system, simply because there are too many concerns in the reverse engineered model.
lnfonnally, it was not easy to see one or more "Lasagna" hidden inside the "Spaghetti".
Using tools that produce two-dimensional hierarchical views, we had to work around the
problem by manually creating views based on certain implementation entities of the
software under study, which was sometimes very time consuming. In addition, we could
not pin-point testability and performance risks by only analyzing the dependency graphs
because some of the necessary infonnation was missing.

We have also observed that analysts (ourselves included) applying the SAVE tool
tend to ignore dependencies to external entities such as programming language libraries,
COTS, Frameworks etc. The reason is that, in general, around 40-50% of function calls
(and ot~er dependencies such as include/import) are to external entities and these
dependencies can easily affect the perfonnance of the .tool because the more
dependencies the tool has to process, the longer the processing time. In addition, the more
the dependencies the more they clutter the diagrams. It is not only users of the SA VE tool
that ignore external dependencies, but also users of other reverse engineering methods
and clustering tools. The reason is typically to minimize the size of the dependency
model of large systems or to avoid the influence of external entities in the search for
"good" clusters. The justification for doing so is the ·common misconception that external
dependencies are not "interesting" and less important than internal dependencies between
software components that are part of the software under study. However, ignoring such ·
external dependencies comes at a significant cost. Once the external dependencies have
been removed from the extracted dependency model, the analyst can.not easily 'tell, for
example, whether the system is distributed (based on multiple processes in one or more
machines) or stand-alone, because the dependencies to the underlying libraries for Inter
Process Communication (IPC) were removed in the extracted code relations. As a
consequence, the analysts do not really get good architectural insights by analyzing the
remaining dependencies in the dependency model. This is because several concerns (e.g.
GUI, Persistence, and Security) are implemented using the support of external entities,
which were often removed in the extracted code relations.

Thus, the premise of the AIS method is that dependencies to the very same external
entities that were used to build the system can also be used to efficiently discover its
implemented architecture focusing on individual concerns as necessary. This will lead to
the discovery of potential risks hidden in the implementation, and can be achieved by
reviewing a limited number of files.

This article will demonstrate a) how we can efficiently discover architectures by using
external dependencies coupled with knowledge about the semantics of such external
dependencies stored in a knowledge base, and b) how we can use external dependencies
to slice the implementation for individual concerns in order to gain deep concern-specific
architectural insights and potential risks.

The proposed method is based on the fact that much of the critical infonnation about
an existing software system.are stored in source files, and thus an analyst has to review

Submitted to i\CM Transactions 'on Software Engineering and Methodology

4 D. Ganesan, M. Undvall, and M. Ron

such fil es \n order to understand critical parts. For a small system, it is not a problem
analyzing each and every file of the system. However, for larger systems there are
typically too many source files (I 0,000 files is not unusual) for the analyst to review.
Thus, we need a way to identify the most important parts of the source code for review.
We have discovered that external dependencies can help us identify the parts of the
source code that are most important - for the task at hand. Often the external dependency
is based on a file name as well as a function name of the external entity. We have
classified many of the commonly occurring external .files and functions in such a way that
we can select a perspective or category and can trace back to the fil es and functions in the
software under analysis that use them. Thus, by reviewing only those specific parts of the
source code, we can understand how a specific concern is handled by the system. This
technique also allows us to reason about other parts of the system that have similar
dependencies and y.,e can draw conclusions about large portions of the source code
without having to review it all.

The acquired knowledge and insights of analyzing software systems are packaged
into a knowledge base, which on the one hand is used to analyze new systems more
efficiently. On the other hand, it is used to improve our understanding of various real
world solutions to architectural challenges (e.g. how to architect database aspects for a
huge volume of transactions). These arrays of solutions are also discussed with our
customers as alternative solutions to their architectural problems, if any.

Using the AIS method on the relatively large (-600 KLOC) NASA Space Network
Access System (SNAS) system, the independent analyst, discovered several architectural
insights by reviewing less than 4% of the 1578 source files. Examples of architectural
insights are a) that the implemented architecture of the SNAS is based on a distributed
client-server architectural style, b) that the distributed subsystems exchange data by

· sending and receiving objects using the transfer object design pattern [Alur et al. 2003],
c) that each subsystem of the SNAS has a dedicated layer for handling the persistence
concern, and d) that the GUI subsystem is based on an event-driven architecture.

In addition, with the help of external dependencies, several architecturally relevant
perfonnance related constructs were discovered including the usage of a) a database
connection pool design pattern in order to overcome the perfonnance overhead of
frequently creating and deleting database connections [Apache DBCP], b) the reactor
design pattern in order to reduce the overhead of frequently creating and deleting threads
for each client connection in a client-server architectural style [Schmidt 1995]. Some
testability problems due to a weak separation of GUI concepts with core logic were also
discovered as well as some perfonnance risks due to threading models. The analysis,
detected problems, potential risks as well as concrete solutions and risk mitigation
strategies were reported to the SNAS team and are discussed in this article.

Software Engineering Contributions: We hope that this paper makes the following
novel software engineering contributions:

• A practically inspired and validated method to discover software architectures
from implementations using external dependencies.

• An architecture-centric framework for evaluating quality of implemented
systems without review ing each individual file .

• Several concrete real-world code snippets to demonstrate the true meaning of
software architecture concepts such as abstraction, separation of concerns, and
design for testability and perfonnance.

Submitted to ACM Transactions on Son ware Engineering and Methodology

'·

External Dependencies-driven Architecrure Discovery and Analysis of Implemented Systems
5

2. The AIS Method
The goals of the AIS method are to support the analyst in a) discovering the software
architecture from the implementation, and b) evaluating the quality of the implementation
using the discovered architecture. · ·

The goal is achieved by exploiting the dependencies on external entities for the
following reasons. First, frameworks (e.g. CORBA, EJB, and Hibernate) define the
reference architecture(s). Second, software connectors (e.g. middleware, sockets, queues,
and shared memory) and concerns (e.g. GUI, Persistence, Security, and licensing) are
usually built using external entities. Thus, the analyst could get a good overview of the
potential architecture concepts implemented in the system. Third, the analyst can classify
the code and assign responsibilities to the system under analysis by tracing back to the
internal entities that use external entities. Fourth, even if no documentation of the
software under study is available, external entities are often well-documented on vendors'
websites, and there are usually several example programs, user manuals, discussion
forums, biogs, etc. devoted to external entities facilitating understanding the external
entity, which can be used to understand the software under study. The analyst can use
such freely available resources to better understand the purposes of external entities with
little or no domain knowledge of the system under analysis. Furthennore, this knowledge
becomes a reusable asset for the analyst because he/she can reuse the knowledge in the
architecture analysis of other systems. Because of these novel benefits, the AIS method
treats external entities as first class elements for architectural analyses, instead of simply
excluding them as often the case in many reverse engineering approaches.

Now, we will explain how to use the dependencies to external entities for a)
discovering the architecture concepts such as Layers, Styles, Design Patterns,
Components, Connectors and Interfaces, and b) discovering the concerns in the
implementation which can be used to slice the system and offer concern-specific
architectural insights.

2.1. Working in Four Dimensions
The basic model of software systems our approach is built upon is based on the following
observations: Most systems are based on a collection of components (a.k.a. modules).
Those components are typically represented by source code stored in files organized in
folders. Components that fonn part of the same executable can use simple function calls,
whereas components in different executables must use other mechanisms such as shared
memory, shared files, remote procedure calls, and socket communication. Some
commonly occurring components are the GUI and the Database Management System
(DBMS). Often one or more code libraries and code frameworks are used, for example to
bridge the gap between the DBMS and the application.

Having this basic model of software systems in mind, one of the analyst's first goals
is to understand what these components are, how they are organized in tenns of files and
folders, how they are related and share source code, and how they communicate with
each other. In our approach, we use implementation concepts to discover facts related to
such components. The approach uses the directory structure because it often helps in
identifying components of the system .. For example, the directory structure can reveal
how components are organized as files and fo lders.

Submitted to ACM Transactions on Sollware Engineering and Methodology

6

Co

D. Ganesan, M. Llndvall, and M. Ron

Architecture Concepts

lllferJ

Styles andPattem)I
Components

Connectors I
Interfaces'

Implementation
Concepts 'l-------·--. ____ ..

Eatc1ral . [)jrector1es RMnes
Oe,-:ndencies Flies OataStnKtUre.s

Figure I Conceptual dimensions of the /\ IS Method. Concerns are identified using dependencies on external
entities. The software architecture of on existing system is incrementally discovered by the slicing the syslem
using one concern at a time. The listed items on each axis are samples, and not a complete list

Once the components and executables are understood, the next step is often to
understand how they communicate using software connectors (e.g. using sockets, pipes,
or queues), which can be accomplished using external dependencies. For instance, the use
of the header file socket. h suggests that components of the system communicate using
socket channels. Using this external dependency, an analyst can trace .back and locate all
files that are involved in socket communication, review them, and detennine how the
sockets are used. In several cases, we have also discovered layers related to
communication just by tracing dependencies to socket. h. More specifically, by
analyzing the extracted code relations the analyst quickly found that almost all usages of
the functions declared in socke t. h were only using intermediate wrapper functions
that build upon primitive socket functions and offer a higher-level abstraction (i.e. hiding
the details of a specific connector) to the rest of the system. In addition, dependencies to ·
socke t. h were used to discover the components that are involved in the socket
communication, resulting in the discovery of a high-level component-connector view, as
described by [Shaw and Garlan 1996].

Once the component-connector view has been established, the next step is often to
understand other important concerns such as how the software under study handles OS
Variants or how it handles Persistence. To this end, the AIS method proposes to slice the
implementation based on concerns using dependencies to external entities. For example,
if · the system uses both the Crea t eTh read C function for Win.dows and the
corresponding C function pthread _create for UNIX, then these external dependencies
indicate that the implementation manages several OS variants. Using our approach, the
analyst follows these external dependencies and identifies the source files that use these
functions, and by reviewing the code determine how the OS variants are architected in

Submitted to /\CM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
7

the implementation. This might lead the analyst to discover an OS Abstraction Layer
(OSAL) that, for instance, offers an abstract interface and alternative implementations for
different types of OS. .

In our experiences with several commercial systems, we have found that external
dependencies help in producing a valuable list of concerns that are implemented in the
system, which the analyst can use to slice the system. This slicing by concerns allows the
architecture to be discovered in an incremental fashion focusing on one concern at a time.
Due to this concern-based slicing 'of the implementation, in many cases, the amount of
source code the analyst has to review is significantly reduced. Furthennore, the analyst
can now zoom-in to the details where devils usually hide and can reveal quality issues
such as testability and performance risks. Typically, a vast majority of the implemented
system's source code can be covered if we analyze concerns including a) GUI, b)
Persistence, c) Variability of the OS, and d) Error or Exception Handling.

Once a basic understanding of the system has been established, the analyst can
proceed with the second goal, which is to evaluate implementation quality. Typical
evaluation perspectives that we repeatedly follow, because our customers found them
infonnative and useful for decision making are testability, performance, common look
and-feel, code duplication, complexity analysis, and compliance to architectural rules, see
the "Evaluation of Quality" Axis in Figure I. It is worth noting that on the one hand, the
analyst can use the discovered architecture to illustrate potential issues (e.g. Performance
risks due to threading models for events notification). On the other hand, the architecture
discovery activity can be influenced by the actual need to construct a special slice in
order to demonstrate a specific issue. The central idea is to evaluate quality using the
discovered architecture by focusing on one concern at a time.

One evaluation perspective is testability, which is evaluated by focusing on one
concern at a time. For example, testability can be evaluated with respect to the
persistence concern. That is, to answer the question: can the system's core logic be tested
without the database being up and running? On the one hand, the analyst can use the
discovered architecture to show that it is impossible to test the system without the
database. On the other hand, the architecture discovery activity is also influenced by the
need to evaluate testability, meaning that the analyst should slice the system in such a
way that he can show evidence to the members of the project team why the system is not
possible to run and test without the database. Similarly, the analyst can evaluate
testability with respect to other aspects, for example the GUI. That is, to answer the
question: can the system's core logic be tested without the GUI?

Another evaluation perspective is performance, which is also evaluated by focusing
on one concern at a time. For example, the analyst can take the persistence concern and
evaluate the performance of the database due to the style the implemented architecture
uses for database connections. Similarly, the analyst can focus on the GUI concern and
evaluate how the event listeners and dispatchers might impact the GUI performance. In
the AIS method, performance evaluation is conducted at an architectural-level, meaning
that the analyst focuses on high-level principles that influence the whole system. For
example, the threading model used by the implementation in order to read incoming data
from a socket and dispatch data to data processors can be considered architecturally
significant because if the same thread is used to read from the socket and synchronously
dispatched to data processors, then there is a risk that low performing data processors
might affect the rest of the system.

Submitted 10 ACM Transactions on Sonware Engineering and Methodology

f

B D. Ganesan, M. Undvall, and M. Ron

A third evaluation perspective is common look-and-feel. The purpose of the common
look-and-feel is to evaluate how different parts of the system implement the same
concern. For example, the analyst can focus on the persistence concern, which was
located above, and evaluate whether or not all modules use the database in the same way,
unless there is a need for differences. Another example is if the system is based on a
publisher-subscribe architectural style, then the analyst can analyze whether or not all
publishers send messages in the same way and all subscribers receive messages in the
same way, unless there is a need for differences. Good common look-and-feel is an
aesthetic property that helps programmers and new-comers to easily understand different
parts of the system.

The purpose of the code duplication or clone analysis is to understand how the
architecture abstracts commonality and manages variability. To achieve this; the analyst
interprets the collected clone data within a context of a concern using the discovered
architecture. For example, the analyst offers insights on code clones due to the
persistence concern.

The purpose of the complexity analysis is to understand and evaluate how complexity
is managed for each concern. For example, the analyst uses the discovered component
connector view to analyze the complexity of transferring data from one end of the
communication channel to the other.

The purpose of evaluating compliance to architectural rules is to detennine whether
or not the specified architecture is consistent with the actual (i.e. the implementation)
bu ilt architecture. If the existing documentation specifies that the interaction to a
hardware port should be only via the specified software interfaces of the hardware
abstraction layer, the goal of the verification is to check whether there are deviations to
this specification. We observed that by analyzing one concern at a time, verification of
architectural rules becomes focused and detected deviations are clearly explainable to the
development team [Ganesan et al. 2009]. In addition, the analyst was able to discover
undocumented architectural rules, for example, from the discovered architecture showing
how the COTS for logging is used by the implementation the analyst was able to identify
some code elements that by-pass the logging wrapper.

2.2. Choosing the Subspaces of the Four Dimensional Space
Although the AIS method has four conceptual dimensions for architecture discovery and
evaluation of quality, the analyst can choose certain subspaces of interest based on his
goals. For example, if the goal is to evaluate testability then the analyst can work on the
subspaces that include testability. That is, the analyst can focus on discovering
architectural information and create matching diagrams that can help in reasoning about
testability with respect to several concerns (e.g. GUI, Persistence). Similarly, if the goal
is to discover and document how the implementation handles the persistence concern, the
analyst can work within those subspaces that include persistence, and need not traverse
the "Evaluation of Quality" dimension. Basically, it is up to the analyst to decide which
subspace is of interest. The method does not enforce the order in which the analyst should
proceed in choosing the subspaces. Thus, the method offers flexibility to the analyst,
meaning that the analyst can incrementally cover the conceptual space of our method

• based on goals and available effort.
Now, we introduce the knowledge base that facilitates architecture djscovery and

analyses in a repeatable and reusable way.

Submitted to /\CM Transactions on Software Engineering and Methodology

.

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
9

2.3. The Knowledge Base for Architecture Discovery and Analysis
We realized that even though the dependencies to external entities are very useful to
discover software architectures from an implementation, there were additional challenges
that analysts typically faced including a) the obvious need to remember significant
function names and header files of programming language libraries, COTS, and
Frameworks, b) how to actually use the dependencies to external entities in constructing
the architectural story and pin-pointing potential risks in the implementation. In order to
address these challenges, we developed a knowledge base that supports the analysts in
architecture analysis endeavor~ .

. .
E)l·••f ~•--j···§•• ~W .. talll • •••••• ~ •••••••••.•..••••••••••.• •••••••••• .J

Souttc.l• Elhe:liOa

' I • '"'"' • • • • • ••••., • • • •• ••• • • ••., •• • ••• ••••• •• • •• •• •• •••••• • • • •••• •• •••• ••• .,., •• ••.,,. •,. 4

Figure 2 The major Steps of the AIS method, showing the integration of the knowledge-base with reverse
engineering. Arrows denote duta now. Code relations (also called dependency models) are extracted
automatically and stored as binary relations [Chen I 990).

2.3.1. Tagged Knowledge of External Entities
Given the source code, our approach discovers potential architecture concepts and
concerns that are implemented in the system using its external dependencies. To achieve
this, we created a classification and tagged the external entities that were used by the
systems we analyzed. For example, Hibernate is a framework for accessing databases,
and org.hibernate.Query is used for querying databases [Hibernate]. Thus
org. hibernate. Query is tagged as being an indicator of code that queries databases.
When our approach detects that the software under study makes use of (is dependent on)
org. hibernate. Query then it concludes that the software under study has a database
concern. Similarly, other concerns could be listed based on the knowledge of external
entities. For a person new to the system under analysis, this list is a good introduction to
potential concerns and architecture concepts that are implemented. Figure 4 shows a
snippet of the knowledge base drawn automatically by the Perfuse tool using a XML
representation of the knowledge base. We have also stored the tagged knowledge in a
relational model, allowing the analyst to formulate queries such as: "List all files that
depend on the Hibernate framework". We use the RPA language to formulate queries on
extracted code relations [Feijs et al. 1998].

Submitted to ACM Transactions on Sofiware Engineering and Methodology

· -·-····~ ... ----· .. .,. . . - - . - - ·-- ---·· . . ··-----··-

10 . D. Ganesan, M. Undvall, and M. Ron

A1J

S!1n b d l ar;1 1agelh <> N1 • ~ v.,,

J.wa

<DTS

t.11<.k.llwwu -

!,«trlty

lket~ M• 'IOQ<mert

• lllrdwnl,O

O Q -.

,a
Cl>)o<tllJ<i<..
l('f

lu\14J
l.oc;ll:'u

Ruos

0)'50<

X.fa-mJl.kn

g1.11o.•

Hlbo1""8

P\Y'\Kll!r<G

!:>ll'peo

~ , lnQf,M;

»-btlf

Ad,QUltit ComlTU'lcatton Crw1ocm-a'II IACE)

C~ k"""IM t- I ' '-' dstf 1) -...J «<nm <'ik.dll<rl

11j•d• Lowfr1JLitx.sy (fa- .lr,a)
11j,>.J,.L1y ~ 1,1U..-ay(fa- C, C++)

Llb-.les la <nl\llCICn,<«Unc,t. nvr"',)CIM"(. ..0.St<OffHll.rlc llkm

Lb ;rles la Soru • Sct~.t L0ye C~J

lie.-..""'-, ~ b.Akri. <J"d l~o-Qdo rnY'l")emlnt "l'ls

S.W l'lort. l\nllel l'OJ ~ rd RS-l8S re, t APlo

Cb)e<l lloldlkn• MoA*>g 11'-k (J.w4)

Cb)l<t ~ t,\\'Oi'iQ l1'........«1< (C++)

Q.Jlf1 omc'WOU 0o,u ~l.«k.<•

<;i:,rlr,J hnmN•M:fa- M.xllll·Vl•w<.c.rl111IIH llllill'<llr a <IYlo
ru ~ orncwuk for x WlrrJows sy,rom

Figure 3 A snippet of the knowledge ba~e showing some COTS and Frameworics. The knowledge base wns
tagged manually (e.g. Security is a concern if the system uses Phaos or Crysec COTS). Scripts could use the
dependencies to external entities and print high•levcl facts of the system (e.g. The Sys tem uses the ACE
Middlcware ond the Persistence framework for database interactions).

We also refined the high-level knowledge base shown in Figure 3 to the next more
detailed level allowing the analyst to drill down to the functions and features of COTS
and Frameworks that are actually used. On the one hand, this knowledge helps the analyst
to learn relevant portions of new and unfamiliar technologies. On the other hand, it helps
the analyst to obta in concrete architecture insights based on the implementation. For
example, Figure 4 shows the next level decomposition of knowledge related to the ACE
middleware [Schmidt 95). Using the refined knowledge, scripts can detect where the
connection to a remote peer is established (see SOCK_ Connecto r. h in Figure 4).

11-ET....Ada.h .. CE_l~ET ..ld4 (do;:s) -~ lntk~lze IP l\dct,,..

C<lt.,rort.runt,,r k;U,~l:e l'<lrt H rrbr

, , PtS><lcr .h .ACE.J!Mlr:r (Class)
noarv Ol~h ,_ ,;,e<lfled -

P£E ' ~ Cltl"Q-tes ID rf9Slw"-' ..,.,,t h~'odi8$

' • E'I\.TII.J,,rdll!!' h • ~ dl<J'(doss)
h.ncr.jo.Jt Cd!M l'.twl ~ eimts ocur (t.<J., <orr«llcn a dltd)

M'de~ .. 1 Calr...J -.hinw)ol<t l:l •vuedbv OS
rooc cor, ...:ta' h ACE SOCX Co'r1"tlD'(cl.lst) CaY~t Act!'ttly corr,0<t lo• s;,e<r

Figure 4 A snippet of the tagged knowledge base for the ACE middleware COTS. Scripts could use
this knowledge and identify, for example, code e lements that are involved in connecting to a
remote peer by using the c onnec t method of the ACE_ SOCK_ Connector class.

Figure 5 shows excerpts of the tagged knowledge base of the C language library on
UNIX, respectively. It is c lear that architecturally relevant concepts, such as
Communication, Concurrency, Dynamic Linking, and Error Handling are already
supported by the language libraries. Hence, we can take advantage of them for
architecture discovery. Similarly, a knowledge base is a lso constructed for d ifferent OS
types, such as Windows, Rtems, and Vxworks. Based on this knowledge, scripts can
determine the various os· platforms that are supported by the system-under-analysis.
Furthermore, the analyst can slice the system in order to analyze how the system handles
OS variants.

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
11

tlwn.h

mm.nh -
OS Uax •,

CWllVflllll.Y

~ead.h

M<tn.p u eJ,

O\.Nmlc Lrtr,o dfmh ..

mno.11

Error Ha"dl-0

mq_Clpffl

mqJK

mq_.~

mq_dcM

!hm1lt

uirnc,:t

kt,n

r1•cvfom

Str'dl>
!lml_cp,n

mlo<.J,

muioci.

mm.ip

"'l)r()(«t

pltfe<ld_~el

pttre<ld_cr•~~
1emj11t

~
ds-,m

~

EN:TOOWN

l"l'MTlC)UT

~ESET

(>pffl ~ ~ COIYl<'<l!On

P ~t!Vt WU iom !ht q.Jtut

5ml c~1t,1 to IIY qJfl.lt
~ tt,e q.,,ue ca,-.., t)on

Attx'h tilt oh.nd m~morv

~r.«.h:.haed memOl)'_:.tq,m'llt

Get sh., l!d mt<nOIY !.tQ!l>l'l'lt

c..om.-ct a sod.et
USlffl lcr $0d.tt com« t>ons

P~ •~tom ~ <('J(IJ,t

s«'ld a mnUQt en d coctet
c~ a ll>nd m,mory ob)"ct

Loe.I. or~ ot~ oc~ actt.ss sp,,c•
l.l"lo<I, ~r,T9e of p,or.~s <td:ie-.s sp.xe

Ma,ppq.io f memoov to a lie a: rued mmc,yd>;ect

Ptmove a lhl<d mtmory obJect
c nfl etffiJIXr'I or a th e.ld
c.reaie a new llTe.xl
~ .u-.:o d st111,1;h:,oe

Dyn.,m,c.!I, ()S'l dCCtSS to .TI e>K~ cb)'(t le
1'.Jbt.rl 1te ao:t~s of~ syml>ol tom ., obj,d ne

(!Meaob)'ctll!'

MflNOrl, t. oo-.n
(.o'Tlf'C11on ~med CU

Con-..ctJa, cbll ttcJ bv netvx.,I·.

J.r m (-atosa.iirm~d

,~ Aooe a s,q\ll

Figure 5 A snippet of the knowledge base for the standard C libraries (under UNIX).
Scripts could, for example, highlight that the system under analysis may have a dynamic
reconfiguration capability ifit uses dlopen, dlsym, and dlclose fu nctions.

2.3.2. Architecture Analysis Guide
The architecture analysis guide is another building block of the knowledge base. For each
concern, we prepared a list of questions that the analyst may want to follow in order to
discover architectural insights effi ciently. In addition, it contains step-by-step advice for
getting answers to them. For example, without reviewing say a few hundred files, how
can the analyst conclude that these files are equivalent or of the same category? The
analysis guide offers advice on what types of evidences the analyst has to collect in order
to claim that all these files are equivalent. For example, the evidence the analyst has to
collect in order to conclude that all files are equivalent database interaction fil es are that
a) all tiles depend on the external libraries related to SQL for preparing and embedding
SQL queries, b) all files depend on the external SQL exception files, c) all files depend
on the data beans (i.e. classes with getter and setters methods of data attributes) either for
inserting data to the database or to store the results of SQL queries into beans, and d) all
fil es are stateless, that is, classes do not contain member variables or attributes. We
codified such strategies for each concern and stored them in the knowledge base so that
analysts can share knowledge with other analysts and reuse them for analysis of other
systems.

2.3.3. Architecture Gallery
Because we want to store architecture knowledge and experience gained in analyses of
implemented systems in a systematic way, we include an architectural gallery in our

Submitted to ACM Transactions on Software Engineering and Methodology

12 D. Ganesan, M. Undvall, and M. Ron

knowledge base. An arch itectural gallery contains architectures of systems that were ·
analyzed in the past. In many cases, code snippets were also stored to provide a precise
description of the discovered architecture. For example, the gallery contains descriptions
of how one project designed a software bus for inter-subsystem communication. This
architectural gallery is a source of knowledge of best ·and failed practices, which the
analyst can use during discussions with customers for recommending alternafr:e ·
architectural solutions.

2.3.4. Updating the Knowledge base
The knowledge base of external entities is updated if the system under analysis uses new
COTS, frameworks, and programming language libraries or parts thereof that were not
stored in the knowledge base. Our scripts compare the existing entries of the knowledge
base with external entities used by the system under analysis, and reports missing entities
that need to be added to the knowledge base. The analyst reviews the missing entities
before adding them to the knowledge base. It is crucial to update the knowledge base in
order to facilitate the analysis of future systems. In addition, the knowledge base is also
updated if the analyst d~tects that the system under analysis follows a different strategy
for the implementation of a specific concern. In this way, knowledge is incremc:ntally
added to the reverse engineering environment, and the knowledge base becomes a novel
collection of best and failed practices of commercial systems, thus acting as an
experience factory [Basili et al. 92).

2.4. Tools used.in the AIS method
In order to efficiently perfonn architectural analysis of commercial systems using
knowledge bases, analysts require several tools. In order to deploy the AIS method,
analysts use several tools including the tools (or scripts) listed in Table I.
Table 1 Tools used in the AIS method

Tool Purposes

The Understand tool This commercial tool helps in extracting code-level dependency models
from the source code. It also identifies dead code elements.

The RPA tool This tool supports in efficiently querying the extracted dependency models.
It offers several relational algebraic operators enabling the analyst to easily
query and filter the necessary information from the large dependency
models [Peijs et al. 1998, Krikhaar 1999].

The SA VE tool This tool supports in visualizing the extracted dependency models
[Lindvall et al. 2010]. It provides user interfaces to import dependency
data collected from external parsers (sec http://www.fc-md.umd.edu/savc/).

The Pref use tool This tool supports a variety of visualization, layout, and animation
features. It helps in visualizing the directed and undirected graphs, tree
views, and tree maps (see http://prefusc.org/)

Text Similarity tool This tool finds a list of tiles similar (in terms of text) to the given file. Used
here for detecting code clones or duplications.

3. The AIS method fn Action

Submitted to ACM Transactions on Sofiwarc Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems
13 .

In this section, the applicability of the method is demonstrated using examples from
NASA's Space Network Access System (SNAS) system, developed by Honeywell. The
SNAS is intended to be a customer interface to the Tracking and Data Relay Satellite
System (TDRSS) and ·is used for planning, scheduling and real-time service monitoring
and control of the Space Network (SN). The SNAS is implemented in Java and in SQL.
Excluding the test code present in the test folder, the SNAS has 650KLOC Java code and
30KLOC SQL code, including blank lines and comments. All code is handwritten and
thus there is no generated code.

3.1. The reasons why the SNAS was chosen for validation of the method
We have applied the AIS method onto several commercial systems, implemented in
several languages including Ada, FORTRAN, CIC++, and Java. In many cases, there
were limited or no possibility to validate the findings of the method because the people
(often contractors) who built the system were not accessible. In the SNAS case,
fortunately we have access to several members of the team who are familiar with
different parts of the system. It should be noted that we-never had a meeting or technical
discussion during our analysis of the SNAS source code. All the findings explained here
were performed completely independent of the SNAS team. Once the analysis was
completed, the analysis results were presented and feedback was collected from the
SNAS team. Thus there were no influences whatsoever from the SNAS team on the
results described here, unless explicitly stated.

In this section, we will describe how the analyst applied the proposed method to the
SNAS system. We will first describe the directory or package dependency diagram
before demonstrating how the external dependencies can offer novel help in architecture
analysis.

3.1.1. Directory or Package Dependency Diagrams
The source code d~pendencies between subsystems, i.e., the top folders on the disk, of
the SNAS are shown in Figure 6. While this figure offers a useful overview of how the
source code is organized on the disk, and which folder uses other folders, there are some
limitations if one analyzes architectures only from this dependency diagram alone. For
example, we also need to get answers to the following questions: a) Do the subsystems
communicate at run-time using intermediate connectors? b) Do the subsystems run in the
same machine or is the system distributed? c) If there is a database, what is the
interaction style or pattern used by different subsystems? These questions are not
straightforward to answer by looking at the dependency diagram alone.

Figure 6 Dependencies of the SNAS, boxes represent fol<lcrs and arrows arc code relations (e.g. import, inherit.
and call). The common and framework folders arc used by all folders. sve to sam dependency is due to dead
code. dsdm to sdif dependency is due to the sharing of a string utility class.

Submitted to ACM Tr~nsactions on Software Engineering and Methodology

14 D. Ganesan, M. Undvall, and M. Ron

We will now show how an analyst can answer such questions by using external
dependencies and information stored in the knowledge base.

3.1.2. Some Facts about the SNAS using its External Dependencies
The analyst starts by producing a high-level summary using a collection of scripts that
use the extracted source code relations of the SNAS and the knowledge base as inputs,
see Figure 7. One of the advantages of this generated summary is that it shows the list of
concerns (e.g. GUI, Database, Configuration, Security, and Logging) built inside the
SNAS. It also shows some potential architecfural connectors (e.g. Sockets) implemented
in the SNAS.

ASnippetofswnmuyproducedusingtheknowledgt ofE1tema1Dependenciu
<<SNAS>has

OUibecause it usu java. avt and javax . :nring packages
Database because it uses the j ava. sql package
Secured Socketl.ayu (SSL)becau.u it uses the COTS ccysec . ssl package
UDP sockets because it uses the j ava. net. Datagx:oSocket class
TCP sockets because it uses thej ava. net. Sex:vex:Socket and j ava. net.Socket classes
Non-bkx:killg Socket channels because it uses j ava. nio. Sex:vex:SoclcetChannel
Configuration files becau.u it usesjava. util. Px:opex:ites (load, getPx:opex:ty) methods
OS interaction because it uses java. lang.Runtae (exec) method
Logging because it uses the ox:g. apache. log4j package

Figure 7 An Excerpt of the high-level summary produced using the knowledge of external dependencies used
by thcSNAS.

3.2. Discovering Architectural Styles and Communication Patterns using External
Dependencies of SNAS
The analyst understands from the high-level summary that the SNAS uses sockets.
Therefore, it is reasonable to assume that the subsystems of the SNAS might be
communicating using sockets as runtime connectors. Thus, the analyst's natural next step
is to identify server-side and client-side sockets.

Table 2 Analysis Questions for Discovering Server-side sockets, Client-side sockets, and
Connection oorts.

• Discovering Server-side sockets: Which subsystems create instances of
java .net.ServerSocket, java.nio . ServerSocketChannel; and
crysec.ssl.SSLServerSocket?

• Discovering Client-side sockets: Which subsystems create instances of
java . net.Socket, crysec . ssl .SSLSocket,
DatagramChannel. socket(), and SocketChannel. connect(...)?

Discovering Socket Wrappers: Also check whether there are wrapper classes to
external socket libraries, because socket instances could be indirectly created by
creating instances of wrappers.

Discovering Ports: Use dependencies to the java . util. Properties class and
locate configuration files. Experience tells us that IP addresses and port numbers
are often specified in configuration files.

3.2.1. Discovering Server Subsystems using External Dependencies

Submitted to ACM Transactions on Software Engineering and Methodology

External Dependencies-driven Architecture Discovery and Analysis of Implement.ad Systems
15

Based on the strategies stored in the knowledge base (see Table 2), the analyst queried
the extracted code relations of the SNAS .in order to identify all subsystems that create
instances of the java. net. ServerSocket class. The results showed that the dsdm and
sdif subsystems create one instance of the se rver socket class, see Figure 8 (a) and
(b). Since the SNAS also uses Java's non-blocking Input/Output class
j ava. nio . ServerSocketChannel, the analyst also queried the code relations for
dependencies on this class. The query detected that the ServerSocketAcceptor within
the framework folder create a socket instance using
j ava . nio. ServerSocketChannel. After a quick glance at the
ServerSocketAcceptor class it became clear to the analyst that this is a wrapper class
for creating server side socket instances. Thus, the analyst queried the code relations in
order to find all subsystems that create instances of this wrapper class. The analyst found
that snif creates two instances of this server socket wrapper class and that sam creates
four instances; see the unfilled circles of Figure 8 (c), (d). However, the mocclient has
a different· strategy to create server socket instances. The analyst found that the
mocclient has a base class that uses the wrapper class of the framework to create a
server socket instance. In addition, there are six children of the base class that indirectly
create their server-side socket ports using calls to the super method of their parent
class, see Figure 8 (e).
,-.G:L, ,-.G:L, 0-Gl, G) G) G) G) @ @
~~~I sam ! .._ ________ __, 

(a) (b} (C) (d) (e) 

Figure 8 Discovered Server-side sockets using the architecture discovery guide of the knowledge base. Filled 
circles denote instances of crysec. ssl. SSLServerSocket. Unfilled circles arc the instances of . 
j ava. net. ServerSocket. All the server socket instances are created in different files of each subsystem. 

Since there were also dependencies from the SNAS to the 
crysec. ssl . SSLServerSocket, which is a COTS component, the analyst a lso 
queried the dependency model in order to find all subsystems that create instances of this 
class. It turned out that the sam subsystem is the only subsystem that creates and uses two 
secured server side instances of the SSLServersocket, see the filled circles of Figure 
8 (d). 

3.2.2. Discovering Client Subsystems using External Dependencies 
The analyst repeated the above process and discovered the client side socket instances, 
using external dependencies to Java's client-side socket class java. net. Socket and 
Crysec's SSLSocket class. 

~E0000~E 000000~~~ ~- snif __ sve -~~ 

(11) (b) (C) {d) (e) 

Figure 9 Discovered Client-Side sockets. Filled circles denote instances of crysec. ssl. SSLSocket. 
Unfilled circles nre the instances of java. net. Socket. All the client socket instances are created in 
difTercnt files of each subsystem. 

3.2.3. Connecting Server and Client Side Ports using External Dependencies 

Submitted to ACM Transactions on Software Engineering and Methodology 



16 D. Ganesan, M. Lindvall, and M. Ron 

In order to connect client-side and server-side ports, the analyst used Java's Properties 
file used for configuring each subsystem. The analyst located the right set of property 
files using dependencies to the java . util. Properties class. These property or 
configuration files contain the IP address of each subsystem together with the actual port 
values. From this information, the analyst was able to map the server side ports to the 
client side ports. The names of the files involved in socket communication contain a good 
prefix (e.g. ·sam2sveConnector.java), offering additional valuable data to connect the 
ports. The external dependencies to Java's Datagram socket class, which contains 
methods for implementing the UDP protocol, showed the analyst that the UDP protocol is 
used between the sve and snif subsystems (see Figure 10). 

@ Cllent•sldeSocketport 

G) ·server·sldeSocketport 

@ Secured port 

___ Socketchannel 

SVC 

Figure 10 Discovered Run-time Architecture (131 uc boxes are back-end systems that interact with the SNAS). 
Objects are sent between subsystems using the Transfer Object Design Pattern [Alur 2003). 

3.2.4. Discovery of Transfer Object Design Pattern for Transporting Data over 
Sockets using External Dependencies 
The extracted code relations showed that the files that are involved in socket 
communication use the java.io.ObjectStream.writeObject and 
java. io. ObjectStream. readObject methods. The analyst reviewed those files and 
found that the subsystems of the SNAS use the wri teObj ect and the readObj ect 
method for sending and receiving serialized objects over the socket, as required by the 
Transfer Object Design Pattern [Alur 2003]. The central idea of this pattern is to transfer 
objects across communication channels, inst~ad of making remote procedure calls to 

Submitted to ACM Transactions on Sonware Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
17 

overcome the inherent network perfonnance overhead of RPC [Waldo et al. 1994]. In 
addition, the extracted code relations had shown the analyst that all those serialized 
objects that are sent over sockets are located in the c ommon folder explaining why all 
subsystems depend on the common folder. Had the analyst excluded the external 
dependencies to Java's writeObject and readObject methods, it would not have been 
straightforward to discover this design pattern hidden in the implementation. 

The analyst noticed that there are 384 files (or classes) inside the c ommon folder. 
Without reviewing all those files the analyst concluded that all of them are equivalent 
bean classes (i.e. data containers) because a) all the classes of the common directly or 
indirectly (i.e. using inheritance) implement the Serializable interface, a · vital 
condition for transferring objects on sockets, b) all methods of all common classes are 
simple setters and getters, i.e. they have the prefix get, set, and toString {in some 
cases), c) in addition, the collected code metrics showed that almost all methods of the 
common classes are one-line getters or setters, d) and there were no logging which 
matches the fact that in general, bean classes do not typically log their activities. A few . 
classes do use logging, but the majority of them do not use logging, and e) there were no 
outgoing dependencies from common to other subsystems, except that some the classes of 
common use utilities of the f r amewo rk. Using these gathered evidences, the analyst 
inferred that all classes of the common folder are equivalent bean classes, which are used 
for just transferring data among distributed subsystems. This capability to generalize a 
collection of classes and summarize their role in one sentence is so crucial in architecture 
discovery because now the analyst knows that these 384 files are beans that are used for 
transmitting data across communication channels between subsystems. 

For this paper, it was not possible to analyze the back-end systems (colored boxes in 
Figure I 0) without discussing with the SNAS team because the analyst did not have 
access to the source code. The SNAS team told the analyst after the analysis was 
completed that the reason for having 6 client-side socket ports at the snif subsystem is 
due to its counterpart back-end: the NCCDS system, which was developed many years 
before the SNAS was developed. Similarly, a new requirement drove them to introduce 6 
server-side socket ports at the mocclient subsystem, in order to allow the EPS system 
to communicate with the NCCDS system. 

Finally, the SSL is used for the connection between mocclient, oamclient and the 
sam because both clients are deployed in an open network and the connection must be 
secure. These are the kinds of design rationale we will not be able to discover from the 
source code alone, and definitely need to talk to the people (if available). There is a limit 
for Reverse Engineering. 

3.3. Analyzing the Discovered Run-time Architecture 
The analyst then discovered the run-time software architecture of the SNAS using the 
following questions: I) What are the perfonnance influencing architectural decisions 
from the communication perspective? 2) How complex is the implementation from the 
communication perspective? 3) Is there a common look-and-feel from the communication 
perspective? 4) Are the files involved in interactions with communication channels 
cloned from each other? and 5) Can the subsystems of the system be tested 
independently? 

3.3.1. Performance and Communication: The analyst has just concluded that the 
distributed subsystems of the SNAS communicate using · the Transfer Object Design 

Submitted to /\CM Transactions on Software Engineering and Methodology 



18 D. Ganesan, M. lindvall, and M. Ron 

pattern by sending and receiving serialized objects over the sockets. SUN's book 
mentions that Remote Procedure Calls (RPC) using the Java's · Remote Method 
Invocation (RMI) can be slow due to communication overhead [Alur et al. 2003], despite 
the fact that RMI is simple and fairly easy to understand and program. [Alur et a l. 2003] 
also argue that by using the Transfer Object Design pattern, perfonnance can be 
improved. However, according to the SNAS t~m the introduction of Transfer Object 
Design pattern did not solve all perfonnance problems, because if objects are sent over 
sockets; then there is an issue of managing the waiting time in the sockets before the 
receiver picks-up the objects for processing. To avoid potential delays and degraded 
perfonnance, the SNAS team introduced additional ports to different subsystems and 
transferred different types of objects through different ports. For example, the four socket 
connections between the sam and sve are used for exchanging four different types of 
objects, see Figure I 0. By doing so, the SNAS team attempted to reduce the waiting time 
of objects on sockets. 

Traditionally, socket programming uses one thread per client connection. However, 
frequently creating and destroying threads due to short-lived sessions would incur 
perfonnance overhead. Also, valu·able CPU time can be wasted just because of context 
switching due to threads. In order to overcome these perfonnance issues, Java 1.4 
introduced a new architecture concept called non-blocking socket communication 
channels for client-server communication. The analyst found that the files that are 
involved in socket communication use the j ava. nio . channels . SelectionKey and 
the java.nio.channels.Selector classes. These two classes are the core for 
implementing the reactor design pattern in Java (see [Schmidt 1995) and [Naccarato 
2002] for details). In this pattern, the event demultiplexer waits for events that indicate 
when a socket is ready for a read or write operation. The demultiplexer passes this event 
to the appropriate handler, which is responsible for perfonning the actual read or write. 
Based on these collected evidences, the analyst hypothesized that the SNAS inter
subsystem communication architecture is inspired by perfonnance goals. 

3.3.2. Complexity and Communication: In order to reason about complexity from the 
communication perspective, the analyst reviewed the files involved in socket 
communication. Because the Transfer Object Design pattern is used for transferring data, 
some of the files that read objects from the socket channels contain a lengthy sequence of 
if/then/else statements for deciding the data type of the incoming objects in order to 
delegate them to methods responsible fo r processing each particular object type. Thus, 
some of the complexity can be attributed to the Transfer Object Design pattern. 

3.3.3. Common look-and-feel and Communication: The analyst detected some 
common look-and-feel issues due to the by-pass of the socket wrapper defined in the 
shared framework folder. In particular, both the dsdm and sdif subsystems create 
instances of server sockets by directly using the java. net. ServerSo~ket class. 
Similarly, the mocclient; oamclient, and sdif subystems create instances of client 
sockets by directly using the java. net. Socket class instead of using the wrapper. 
Thus, the · 1ook-and-feel from a communication point of v'iew is different among the 
subsystems. The reasons for differences in look-and-feel will be discussed together with 
other architectural violations at the end of this paper. 

3.3.4. Code Cloning and Communication: The analyst used the similarity tool to 
compare all files of the SNAS and produced a similarity tab[~ that contains pairs of 

Submitted lo /\CM Transactions on Sofiwarc Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
19 

I 

potential file clones. Since the list of files involved in socket communication was located 
during the discovery of the SNAS runtime architecture, the similarity table was sliced 
with respect to those files only. This gave the analyst remarkable insights into code 
cloning from a very specific perspective, i.e., the communication perspective. 

Uc0Rtoonf19Aoot pt•, J""• 
04> . . . q#~ 

ll<eAoqSl01• "ouptor 1.-., O ?7 11•• T...Sto•«A•••P••• l• 

I ~ <>-~1 . ti~ 

1

'. 

09; Qt : 049 : ~~t89 

NooPmO,taAcctpt•• Itta 

(a) 

NocSohR eqConneoto, J, it, HooSchStilu~Conntoto, J1v.a 

-~ 
~ 0 

() HccR• configCon~t cto,.f.....-.1 
o.ta'l ' • . . 

... 
oq 
0 

,· . • q?Jl 
NooAoqSl01tCoontclor,l>v1 . • '),'b , 

q~ <:> tlooPmD.at.aConneotor '"' 

Noc:T~o1tCon1uoto1.J•"• 

(b) 

Figure It (a). Similarity among the 6 files of the mocclient involved in the server-side socket 
communication . . (b). Similarity among the 6 files of snif involved in the client-side socket communication. 
Similarity value toward I means high code duplication between the file pairs. 

The analyst' concluded that all six files (see Figure 11 (a)) which accept client 
connections and act as server-side socket ports of the mocclient are very similar to 
each other. It is interesting to note that even though there is a base class for each of those 
six classes in mocclient, there is a lot of code duplication between these six files. In 
addition, the six files that act as client-side socket ports of the sni f are very similar 
despite the fact that they have the same base class. This means that shared behavior is not 
properly abstracted yet, see Figure 11 (b). The two server side socket files of the sam 
subsystem are also cloned. Similarly, the files that are involved in the client-side socket 
communication of the oamclient and mocclient are very similar. There are many 
methods in these two files which are exact copies of each and could be moved to the 
shareclient, which is a shared infrastructure for both client types. 

3.3.5. Testing and Communication: Because of the distributed client-server 
architectural style, clients can be tested with fake servers, and vice-versa without 
changing any source code. However, some changes (e.g. IP address and ports) are needed 
in the configuration file. In fact, the SNAS team has also developed simulators for back
end systems so that the SNAS can be tested without the real back-end systems being up 
and running. These simulators can send data over the socket to subsystems of the SNAS. 
Classes involved in the socket communication will read the incoming object types as in 
the real scenario. More details on testability issues due to Databases and GUI are 
discussed below. 

3.4. Discovery of the Database Interaction Architecture using External 
Dependencies 
Our approach for analysis of database concerns is based on the following observations of 
several commercial systems: Many systems implement their need for persistence by 
using a RDBMS that is based on the SQL language, which is typically external to the 
software under study. Thus the software under study needs to connect to and disconnect 
from the database, communicate with and transfer data to and from the database, as well 
as manage errors during interaction with the database. It is also desirable if the software 

Submitted to ACM Transactions on Sofiwnre Engineering and Methodology 



20 D. Ganesan, M. Lindvall, and M. Ron 

under study is not directly dependent on the database so that the software under study can 
be tested without the database and so that the database can be replaced if necessary. 
Many systems implement DAOs (Data Access Objects) layer which contains classes that 
are responsible for interacting with databases for storing and retrieving data from the 
database. On the one hand, DA Os collect the results of database queries and convert them 
into data beans which are basically data containers with getters and setters. On the other 
hand, if we want to store a bean into a database table, the bean object is passed as an 
argument to the methods of the responsible DAO (Alur et al. 2003]. 

Based on this model, we derive the following questions: I) ls there a DAO (Data 
Access Object) layer that abstracts the physical database? 2) What is the general strategy 
for managing database connections? 3) Can the system be tested without the database 
being up and running? 4) Are database errors abstracted and propagated upwards in such 
a way that higher-level layers are not aware of databases? 5) Is there a common look-and
feel in the way database tables are accessed by different subsystems? and 6) What are the 
different DBMSs the system supports? 

In order to answer these questions, the analyst started by slicing the system with 
respect to dependencies on database tables. The analyst used a parser that identifies files 
that use the database tables based on regular expressions involving key SQL statements, 
for example, "select", "insert" , "update", and "delete". The extracted dependency relation 
from the SNAS source code files to database tables is shown in Figure 12. Once the 
analyst had detennined that such dependencies existed, the conclusion was that the 
system must be using a database in a direct way, instead of using indirect database 
dependencies that can be created using java.persistence. Such indirect database 
dependencies can make use of a database without using any of the SQL keywords listed 
above, which the analyst confinned was not the case for the SNAS. The analyst then 
made the observation that there is a good common look-and-feel in the way the files that 
are using database tables are organized on the disk because there is a db folder per 
subsystem, each containing the classes that interact with database tables using SQL 
statements. The analyst ' s other observation was that snif, dsdm, sve, and s dif depend 
on a database and thus interact with it in some way, but oamclient, mocclient, and 
s a m do not depend on a database. 

Figure 12 Sliced View of the SNAS showing dependencies on database tables. Arrows denote SQL queries 
from Java files of the db folders. 

Here, the answers to above questions are presented using the knowledge of external 
dependencies. 

Submitted to ACM Transactions on Software Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
21 

3.4.1. Discovering the Database Interaction Architecture of the snit subsystem 
using External Dependencies 
The analyst selected the snif subsystem, which is one of the four subsystems that 
depend on a database, and proceeded to analyze the snif subsystem's database 
interaction style. The knowledge base knows that the methods of the 
java . sql. PreparedStatement class can be used to prepare and execute database 
queries in Java. Using that knowledge, the analyst queried the extracted code relations 
and found that all classes of the sni f that prepares database queries are organized in one 
folder/package: snif. db, see Figure 13 (a). In addition, the analyst observed that all 
Java files that use SQL statements such as select, insert, update, and delete are 
only present in the snif. db folder, thus confirming that all direct database interactions 
are limited to the db folder. 

The analyst then proceeded to analyze how the execution of SQL queries is managed. 
The analyst used the knowledge that in order to execute SQL queries from Java, a 
j ava. sql. Connection object is needed. The analyst then found, by analyzing the 
extracted code relations for dependencies to java. sql. Connection, that each class in 
snif. db contains a method called setDbConn which takes the Connection object as a 
parameter, see Figure 13 (b). 

The analyst then concluded that all classes of the snif. db folder can be safely 
categorized as DA Os because of the following evidences: a) all classes in snif. db 
depend on the java . sql package, b) all classes in snif. db use classes of common, 
which contains data beans as shown earlier, and these data beans are either used to 
convert SQL results into objects or to insert data into database tables as explained above, 
c) there are no out-going dependencies from snif. db to other folders of snif, and d) 
each class in snif. db gets a database connection object from outside through the 
setDbConn method. Based on these collected evidences and without reviewing all 
classes in snif. db, the analyst inferred that the snif subsystem has clear separation of 
database table concepts from other concepts. 

a-1.d ..... an..~(tl 
..... .... Nt,.U.4.te.c,, 

Ill 

••t• UtllililC•nft(C_M"CJ._ c-a 
lal.-ial• ... , •• .,, 

(bl 

Figure 13 (a) Classes interacting with the java. sql. PreparedStatement class used for preparing SQL 
queries. (b): The DAO layer conta ining all classes that are using the database tables via SQL queries. 
OBResul tSet (the return type) has an array of objects where each object corresponds to one row of the 
queried table. 

3.4.2. Clones due to the Java Language and Exception Handling in the DAO 
Layer of the snit Subsystem 
The analyst now knows that there is a dedicated DAO layer consisting of the classes in 
snif .db, which interact with database tables, see Figure 13. The analyst also knows, 
thanks to the extracted dependency relations, that the classes of the DAO layer are 
independent of each other. 

The analyst proceeded to run t~e similarity tool on the files in the DAO layer, which 
reported occurrences of clones. The analyst analyzed some of the reported clones to gain 

Submitted to ACM Transactions on Software Engineering and Methodology 



22 D. Ganesan, M. Lindvall, and M. Ron 

insights into the underlying reason behind cloning. The analysis showed that the catch 
and finally blocks in each file of the DAO layer are identical. In the catch block, the 
error code stored in the SQLException is processed and converted into a SQL 
independent error code. The catch block contains code that is used to roll back database 
transactions that did not complete properly. In the finally block, all classes call the 
close method of the j ava. sql. PreparedSta tement object and commits successful 
database transactions. 

In our opinion, the developers are not to blame for these clones in the DAO layer. 
Rather, this is an inherent limitation of the Java language and its way of supporting 
database programming because it leads to_the creation of boiler-plate code that is 
identical across all DAO classes except for only a few parameters that differ. The boiler
plate code the catch block includes, for example, code to a) manage the database 
connection, b) create an instance of Preparedstatement, c) handle SQL exceptions, 

. and rollback of transactions, and d) close the PreparedStatement object. It is not 
straightforward to abstract the catch block into a modular unit. Modem frameworks 
(e.g. Hibernate and javax.persistence) were invented exactly to solve these code 
redundancy problems in database interactions, making a solid business case with ample 
evidence to migrate to modem frameworks in the future. 

3.4.3. Is the snit Subsystem testable without a running database? . 
In order to evaluate testability from the database point of view, the analyst first had to 
understand how the DA Os (i.e. classes in the snif. db package shown in Figure 13)' are 
used within the s nif subsystem. More specifically, the analyst must understand whether 
or not it is possible to avoid interactions with the database. To this end, the analyst 
checked whether or not the DAOs that interact with the database are instantiated by other 
classes of the snif in a hard-wire~ way. To achieve this, the analyst extracted all 
incoming dependencies to the DAO layer and found that no other class is using the DAO 
layer except the SnifDatabaseManager class, which creates instances of all classes of 
the DAO layer, see Figure 14 (b). The analyst also found that the 
SnifDatabaseManager is instantiated only by the serviceManager class, which gets 
all necessary database parameters such as login, password, and url, from the 
configuration file. Based on these findings, the analyst concluded that the 
SnifDatabaseManager class is the gateway for interaction with the DAO layer, see 
Figure 14 (a). By studying the extracted dependency relations, the analyst also noted that 
the SnifDatabaseManager class uses the DBConnectionPool class in the 
framework . This discovery is fully explained in the next section. The analyst reviewed 
the snifDatabaseManager class and found that it creates a pool of database 
connections with the capacity of eight connections, see Figure 14 (c). The review a lso 
showed that the SnifDatabaseManager distributes the e ight database connections 
among the several classes of the DAO layer, based on the knowledge of frequency of 
access to different database tables, through calling the setDbConn method DAOs, see · 
Figure 14 (d). These find ings led the analyst to conclude that the sni f subsystem's 
database interaction architecture is driven by performan·ce goals because it creates several 
database connections and distributes them among the classes of the DAO layer. This 
example also shows the power of slicing the extracted code relations using concerns; 
otherwise we cannot easily see the beauty of hidden lasagnas in spaghetti of complex 
dependency relations or graphs. 

Submilted to ACM Transactions on Sofiware Engineering and Methodology 

---- ..... · -· 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
23 

.. s~ ...... 
pw.li.c a.1~ ... «r'l ... riftriD« 6Ur1. 

an1a,1.._, 
9'rlafp...,H4 -.i.. itl)-a,_.w .. ,' 

, c1.,. .. ,.._ , .. l C.aclcy • 11 

, rt••• ••U. CH...nlOeU I 
prlw'.-. ••H 1c'-9Dac-llt.l-'••lU1 
,,, .... ,,.,, , ... ,.....a.c-~a.-u, 

,_.u .. 1111....idc ,-1«1(11 
p\AllllUI 1al...idc. ,-..lbtcC J 1 
"*l&..llft..-...a.t.1• ,. • .t..u... c, , 

,., 

fl Cr..ce ,-. M-Nn - j~ • 
,r.t•&e .. 14 cn..at.O•U I 
thh, tC• IAO • n•wm.t4.nll 1 
du• alcO.lO • • • • DNbUI 
tlU•. a.l."dlil.O • ,-.w D11.U--.C, I 

"' 
II Cr~ • ea:w1.•cO• ,..1 

/ Dut.rDNit.e• •.c..),•• c-~lau ..... DUN 
rt•._. ,,.w .,..,.. • • zac~1- o t 
II u .. • ~a.ltLS!Jll'lict!!!l f• r a.rf:u,""a&ly u.s .. "'•1 .. 
C•no• ct••t.u,_ ... . thl• ·•..,..1.««.C~ioal)I 
Uli.tl.d.d,,,lO,~..Ctl• t-.le N tllt l 
Q.1•. al•n.040. 11C.laC-C•taalc._N1111»1 

II UM • tMKISt S:-K'UtA h i' D •~at.J.y "--.. 11:.a.l.H 
c ..... u ea -.••-" ... . t.h.h.~-,..1. , .. c .. ..n.1..c,, 
a.t... W11:CIA0.1~cca~c_., 

,r1••• ... 1, ..c\lllDS:..•AimJ .. ,o , ---------------' 
U.11, ......,_l • • • • Dat-.ecim,MJC 

(Cl 

.-.1c.-.m., .. 1al.,. 
l t w;iA,. .......... , 

14 

Figure 14 (a): All accesses to DAOs (i.e. snif.db.• ) are only using the database manager class, indicating that 
database concepts are separated from other concepts. Database connections are shared among DAOs. For 
example, Tdrs has its own database connection (the red dotted arrow), Alert and Sic tables share a database 
connection (the green arrows). Note that the set of public methods (e.g. getTdrs, gclJ\lert, gctSic) are the union 
of public methods offered by all classes of the DAO layer (shown earlier in Figure 13(b)). (b). The database 
manager is creating instances of all classes of the DAO layer. (c). A connection pool with a capacity of 8 
connections is created using the DBConnectionroot class, and (d). Database connections are distributed among 
DA Os based on the frequency of access to different tables. 

During the review of the SnifDatabaseManager class, the analyst also found that its 
constructor has a boolean flag called isDbEnabled. If the flag is false, then the public 
methods of the SnifDatabaseManager call the "dummy" methods of the classes of the 
DAO layer. The analyst randomly picked one of the dummy methods of one of the DA Os 
and found that it populates dummy data for testing purposes. The extracted code relations 
also showed that each class of the DAO layer contains methods with the name "dummy" 
in it, which confinned the analyst's hypothesis that this construct existed to facilitate 
testing. For example, if the higher-level layers call the getSicList method of the 
SnifDatabaseManager then either the real getsicList defined in DbSic or the 
dummy getDurnmySicList method will be called, see Figure 15 (b). Note that the users 
of the snif database manager do not have to change the source code for unit testing 
because it is enough the change the configuration fil e (snif_cfg.txt) and set the 
isDbEnabled parameter to false. 

Although the snif subystem has the capability for testing without running the 
database, the analyst concluded that there is a mix of testing concerns with the real 
behavior: the i sDbEnabled flag is used as a control to switch been real and dummy 
DAO methods at run-time. Our recommendation is to separate the testing concern using 
dependency injection concepts proposed in [Spring] or Google's [Guice] frameworks as 
follows. The core idea is to let each class within the DAO layer implement an interface 
of the services it offers. In addition, corresponding to each real DAO class, there is a 
separate dummy DAO class with the same interface but with an implementation that 
populates fake or dummy data. Instead of creating instances of DAO classes in a hard 
way, as is currently the case, the database manager will create instances of DAO 
interfaces. These interface can be bound either to real DAO instances or to dummy 

Submitted to ACM Transactions on Sonware Engineering and Methodology . 



24 D. Ganesan, M. Lindvall, and M. Ron 

instances for testing. This can be done with the help of configuration concepts used in the 
Spring or the Guice frameworks. Thus, using this design one could separate testing 
concerns from the real code, which would increase testability and readability 
significantly. 

p•lte aum.c.•••Xc,...r(Std.111 60r1, 
Strlot lo'1A, 
tt.ria.t'••ff'Ol'"4 
boolAm h ttbbllhhtll I 

ptaUc DII.-.J.t.lc pt. t•• 0 I 
pv.lJUc an......it.rc pt..U.ri.(), 
lv.lJlic ma......i.c.s-. 9KSkLin U I 

,.lr,cl>DbT<h 

. \alllic Clla--...lC.SK ,-.IJ.cU..c. I) l 
CIIIM\Uc.SC. rewl~ • zm.UJ 

u 1~ . .uc~-1"41 I 
t'ffUh. • lli.dLl 0.9ttlld,.hit.() 1 

) • .Lu I 
II uc:ura ,-in..y ._. 
n-.a..h. • a.1•0. 9at.D\allySlcU.11C:1[) 

(b) 

DRlo-..h.S• ~ pOHra OJ 
DU.tl.&J.C.S.t: .~,...,.,,c1uo, 

1)8 .. -...J.C.S.~ f.C..U.H~ () I 
on.wtc.r~ ,~~l•rt.o, 

lo) 

Figure 15 Testability is built into the design. (a): iflhe database manager is instantiated with isDbEnabled as 
false, then dummy methods of the DAOs will be called-similar to the method shown in (b). 

3.4.4. Discovery of the Database Connection Pool Design Pattern using External 
Dependencies 
As mentioned above, the analyst noted that the SnifDatabaseManager class uses the 
DBConnectionPool class in the framew'ork . The analyst's next step was to 
understand the details of how the connection to the database was managed and 
discovered that the DBConnectionPool class within the framework uses the 
DriverManager class, see Figure 16 (a). 

,a11c .... .ct.1WH1U,DC. ... ac:1~,, 
n.r-1.q •,,11, 
Str'ln. ,....I', 
SUlnl' PM•Hr4) I 

~Uc •-14 u•--.t .. laCWll'l,Mtob n (tnl:. e .,._d.&y 
~b .. U Y9 lh:at.t ... , 

J, 
I 

~Uc •ddcr .. £,ehehC:-.KC.ie91.C.in& C',..d\>y t 
ChN9'9 h c•l• ( 

c.ry C 
torUne i • o, t c c..,.uc.y, i++> t 

I 

Co11n•d•~ • :DriY• rflanaqer.pec.nM'C.1*d ., • c- , .. L ... (cobDI I 

h cto c:«in"'-i"'9cC-..cci cnCS1td.n9 u.z..1_ I ~' -------------~ 
•ntnf u- r- ftd.n• .-•u••t2t.•Oll'• IOU.n.,t.t..a.;I (bJ 

Ill 

(<l 

Figure 16 (a): Discovered slice of database connections, (b): code snippet for creating a connection pool (sec the 
for-loop), and (c) The call graph showing how a database connection is created. The initialize method is 
shown in Figure 17. 

The analyst then reviewed the Crea t ePooledConnection method because it calls 
the Dr iverManage r ' s getconnection method, which drew the analyst's attention 
because the knowledge base says that the getconnection method of the 
java . sql. DriverManager is used to create connections to the database. The review 
showed that a pool of database connections is created in a for-loop of the 
createPooledConnection method, see Figure 16 (b). The for-loop calls the 
java. sql. Ori verManage r. getConnection method, which returns a database 
connection object that will be stored in the connection pool. This discovered patte·rn is 
called the Database Connection Pool design pattern: The core idea is that a set of 

Submitted to ACM Transactions on Sofiware Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
2.5 

connection objects are created up-front, as demonstrated here, and when a component 
needs to access a database table they can take one already created connection object from 
the pool, and return it to the pool after using it. Thus saving the time it takes to create and 
destroy they connection [Apache DBCP]. This discovered slice of the SNAS indicates 
that the database interaction architecture is driven by perfonnance goals because 
experience reminds us that frequently creating and destroying connections to a database 
can affect perfonnance of the system. This concrete example highlights the value of the 
knowledge base of external entities helping us in easily finding the file and the methods 
that implement the design pattern for database connections. 

3.4.5. An Error Handling Issue in the Connection Pool Design Pattern 
Implementation 
During the process of analyzing the database connection management strategy, the 
analyst also noted that the java . sql. Ori verManager . getConnection method 
throws a SQLException, · see Figure 16 (a). In order to learn more about the error 
management strategy utilized by the SNAS in the context of database connections, the 
analyst proceeded by analyzing how this exception is handled. The analyst noticed that 
the crea tePooledConnection method, which calls the getConnecti on method, 
catches the exception, see Figure 16 (b & c), and throws it to the caller method, namely 
the initialize method, see Figure 17. The initialize method logs the exception 
but fails to propagate problems (e.g. database connection failures) to higher-level layers. 
The analyst also noted that the return type is void, which prevents the method from 
communicating any result to the caller. The analyst concluded that the developers applied 
an elegant connection pool design pattern to achieve high performance for database 
connection that were provided as a reusable asset for all subsystems to use, but did not 
pay sufficient attention to error handling strategy. 

public void initialize ( int capacity) { 

} 

try { 
cr•at•PooledConnectian(capacity); 

} . 
catch (Jrxceptian e) { 

LogService . loglxception( ... ); 

Figure 17 The initialize method does not throw the exception upward, instead it just logs the exception. 
Thus, higher-level layers have no idea in case something goes wrong during the creation of a database 
connection. 

3.5. Discovering the Database Interaction Architecture of the sdi f Subsystem 
using External Dependencies 
Similar to the analysis of the snif subsystem database interaction architecture, the 
analyst used the dependencies to the java . sql.Preparedstatement class and 
discovered that the only class that prepares SQL statements is sdif . db. Dbinteractor. 
The extracted call graph of this class showed that almost all of its methods use methods 
of PreparedStatement in order to prepare and execute SQL queries. In addition, the 
analyst found that the only outgoing dependency from the Dbinteractor class is to the 
common folder, which contains data beans as explained earlier. The only exception is 
dependencies to logging methods. Based on these evidences the analyst concluded that 

Submitted to ACM Transactions on Sollwnre Engineering and Methodology 

: 



26 D. Ganesan, M. Undvall, and M. Ron 

the Db i nte ractor is the only class of its DAO layer and that it is responsible for 
interacting with several database tables, in contrast to a collection of several DAO classes 
in other subsystems. 

The analyst also noticed that there were no dependencies from the Dbinteractor 
class to the database connection creation method getConnect ion of the 
j ava . s ql. Ori ve rManage r class. This led the analyst to investigate further how the 
sdif subsystem creates database connections. The extracted dependency relations 
showed that the only class that depends on the DriverMa nager class is the 
s dif. db. ObConnectionManager class. The analyst reviewed this class and found 
that 'it uses the Singleton design pattern [Gamma et al. 1995] and creates only one 
instance of the database connection, see Figure 18 (b), as opposed to dividing the 
database traffic among several database connections using a Database Connection Pool as 
was the case for snif . In addition, the analyst queried the extracted code relations and 
found that the database connection manager class gets all parameters (e.g. database url, 
login) from a configuration file, see Figure 18 (a). 

I :t:!:;!'."..:.· L s4Ullfhl• • 

D)9Hn1KOMaJ lied .~le a1,.ti o .,.1, &&1.DO ( 
Cll(:.-io.«~s,.«:JJ.at"lCIG,U19Clutas.c.f 

••u_c19.c.s 6'.&.rl. 6 l otl.n,. puw4J J 
) 

J, 
•«U . A .~~ionll..., ..... 

stei.c ~ -~, ...... ,. t c.tiAt.lc• niec:WtsMft( 
.... ~ • 1otin,, ,... .. 4J , 

Canalt(.'t.1• .. t.C._..ct:J.oaO UIHYe IQ.t.hc11,t:t .... , 

J, 
2••. -.L D•.lwu:Jl-..fllC 

~ ,. ~. ,.c .. ~1-.ta•&a• w1~ 
SIUJAf \1-"1' , 
ltdA• • •inrer~ 

t.b.l'ff• SQU11~a, , .. 

II Cn,at,e th• aJ.n,:1-.0A cro111uc.e l • •2IIC'I. 
f \.a.lto c.m..ct.t• a t .tlC~t• C> thrw. lOLl:ll~c.1• c 

U Cthl• . caa.c:U.n •• -.U II 
th.l•. n11necU•. h c:1 ... C )) I ..... ( 

) 

I 

tbJ.a.COIIID6CU• • D1lv.rs ... "". ,.t.e.._.ctl_._,, 
) cc • CSOl.be• U •n • .i• t ( 

,tv . .. •.i•, 
I 
r•o.&.nl lbl.a , confte«.i• 

(bl 

Figure 18 Discovered Singleton Design Pattern for database connections in the sdif subsystem. 

The extracted call graph of the methods of the Dbin teractor class showed that a ll its 
public methods use the methods of the DbConnectionManage r class in order to get an 
instance of a database connection. The analyst reviewed some of the methods of 
Db interactor and concluded that they all follow a general pattern: 
First, in order to get an instance of the DbConnectionMa nager, all methods of the 
Db i nte ractor call the static getSingletonJDBCinstanc e method. Second, using 
that instance of the database manager, all methods of the Dbinte!'.'ac t o r call the 
getcon nection method of the database connection manager. Third, a ll methods of the 
Dbint eractor run SQL queries and return results to their callers. These three steps are 
summarized in Figure 19 (b). Note that there is an architectural mismatch due to the way 
the DAOs of the sdif and s nif subsystems create a database connection: the DAOs of 
sdif are responsible for getting an instance of the database connection, whereas the 
DA Os of snif are assigned an instance by the data manager. Thus, these two subsystems 
have different common look-and-feel with respect to the database connection concern. 

Submitted to ACM Tr.insactions on Software Engineering and Methodology 

\ 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
27 

.•... 
,,,.1.,.-. .. 111'•·• 1---.. ....... ._, n.•l• ~~•• , .. .&11,1c-.tmc~ J 
,.i, . ..... , pc;Sut..1~ I QU-,U-. ...... l-. pc:C-..,.i-1 > d•- ICLS.•1•1 

~ P. . l'I 

, .. 
Figure 19 The Dbinteractor class offers public methods that queries database tables and return the results 
to the callers. (b): First. all public methods of the Dbinteractor call the static 
getSingletonJDBCinstance method in order lo get an instance of the database connection manager. 
Second, they call the getConnection method to get a database connection. Third, they run SQL queries by 
calling the executeQue ry method. 

3.5.1. Database Error Abstraction Issues in the sdif Subsystem 
The analyst has concluded that all accesses of database tables are only using the methods 
of the sdif .db. Dbinteractor class, see Figure 19(a). The analyst also noted that all 
the public methods ·of Dbinteractor throw SQLException, see the methods 
declarations in Figure I 9(a). As a consequence, the knowledge of the database concepts 
had leaked into the higher-level layer because it has to handle SQLExceptions being 
thrown by the methods of Dbinteractor. Thus, in contrast to the other subsystems, the 
DAO layer in sdif (i.e. the Dbinteractor class) fails to abstract the SQLException 
into an error object type that is free of database concepts. This example shows that the 
developers implemented the DAO layer but did not give sufficient attention in abstracting 
the error raised by the lower-level layer. 

3.5.2. Testability Issues in the sdif Subsystem 
The analyst then proceeded to analyze whether it is possible to test the sdif subsystem 
without the database. Having known that the sdif. db . Dbinteractor is the only class 
that interacts with the database, the analyst queried the extracted call relation and found 
that all instances of the Dbinteractor class is created within constructors, e.g. see 
Figure 20 (a), of higher-level layers. 

sdit .Aceiv•Schedul e 

public Ac:eiveSchect..lle( ) { 
this.dbineeraceor • nw Ilbrnter.\Ctor(); 

(a) 

sdit.ActiveSchedule 

public: int proc:essUpd( ) 

int upd • this.dblnter~or.99tUpdO; 

(bl 

Figure 20 Occause constructors cannot be overriden, the methods of the Acti veSchedule class ore not 
testable without a database due lo the hard-wired dependency to the Db In teractor class, which queries 
database tables (also sec Figure 19 (a)). 

The analyst recalled the fact that constructors cannot be overridden. As a 
consequence, none of the public methods of those classes that use methods of the 
Dbinteractor can be tested unless the database is running. Figure 20 (b) shows an 
example method that cannot be tested without the database because it uses an instance of 
the Dbinteractor in a hard-wired way for calling the getUpd method, which accesses 
database tables, also see Figure 19 (a). The analyst found that there is no way to stop the 
c_ontrol flow from reaching the physical database and the analyst found that there are 20 

Submiucd to ACM Transactions on Software Engineering and Methodology 



28 D. Ganesan, M. Lindvall, and M. Ron 

classes which . unfortunately create instances of the Dbinteractor within their 
constructors similar to the pattern shown in Figure 20. Hence, the sdi f subsystem, in 
contrast to the other subsystems, is not testable without a running database. The code 
could be refactored to allow for testing without database [Flower 1999]. However, 
experience reminds us that managers are generally nervous about investing in refactoring 
because it does not add value to the product from the end-user's point of view. However, 
in our opfnion, managers are open to refactorings if the proposed solution will make 
testing easier, as offered in this concrete case. Thus, this analysis helped to make a 
business case for refactoring to improve the testing capability. [Jacobson 1992] says, "To 
make the design minimally affected by the DBMS, as few parts of our system as possible 
should know about the DBMS's interface." Yes, this analysis has shown that the 
subsystems of the SNAS satisfy this quote in general. There are a few cases where the 
database exception knowledge is mixed with business logic as shown above. 

The other subsystems (sve and dsdm) have a similar database interaction architecutre. 
Thus, we will not discuss them here. The analyst has not yet reviewed the stored 
procedures and Entity-Relationship models. Hence, the analyst cannot answer how the 
SNAS handles ·variants in DBMS (e.g. Oracle or MySQL). This example shows that the 
AIS method offers flexibility because the analyst can decide whether or not to address 
each question mentioned in the analysis guide, based on the available effort and the 
needs. 

Now, the analyst proceeds to the analysis of GUI architecture using external 
dependencies of the SNAS. 

3.6. Discovery of the GUI Architecture using External Dependencies 
The model we base the analysis of the GUI concern on is based on the following 
observations of several commercial systems: In the interaction with users, the GUI: 
prompts the user to enter data, validates and accepts user data. The data is processed and 
stored locally and/or sent elsewhere for processing and/or storing: If the data is processed 
elsewhere, then the processed data most likely needs to be communicated back to the 
GUI. Often data from other data sources are communicated to the GUI. The GUI displays 
such data as well as error messages to the user. To achieve this, the GUI often has a 
supporting data model that holds both user data and processed data. If the GUI is part ofa 
client that communicates with a server, then there needs to be a strategy for how to 
communicate the data between the client and the server (or between peers). Of course, 
there are other important GUI-related concerns such as the layout of GUI panels, fields, 
buttons, undo/redo support, etc. In this analysis, we do not address such concerns because 
this analysis focuses on how the GUI is architected. 

Based on this model, we derive the following questions for discovering and analyzing 
the architecture of SNAS GU ls, which is based on the previous discoveries of clients and 
servers etc: I) How is data that was entered using GUI panels communicated to servers? 
2) How is data communicated from servers to GUI panels? 3) How do GUI panels 
manage their data model? 4) What is the general threading model for GUI panels? 5) 
How does the user interact with the GUI? 6) How do GUI panels validate user input data? 
7) Can the system be tested without the GUI being up and running? 8) Are there clones 
among the GUI related files? 9) Where and how is data processed? 

We believe the above questions are architecturally significant because they are related 
to global principles that are of interest to all GUI panels. SNAS has 273 panels, thus it 
would be a time con~uming task for the analyst to discover the architecture and answer 

Submitted to /\CM Tr~nsactions on Solhvw-e Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
29 

the above questions. Fortunately, the analyst can use the knowledge of external entities to 
detect the basic set of files that spans the GUI architectural subspace of the whole 
architectural space. The analyst first ran the summary generator, which reported that the 
SNAS implements GU I concepts because it uses classes in the j avax. swing and 
j ava. awt packages. We built a knowledge base for the Swing and A WT packages in 
order to support the discovery of GUI architectures of implemented systems, and answer 
the above questions. 

· Evert Lls!P.ner · 

E"lrt M.nogemrt 

Ir-cu ValidalJon 

WI °' , McrlJ a,,, . , 
• . . Possword 

f'logess e.,· 

·, ToskHYdlng 

}WA 1111 EwnCt,jPrt 

• java.owt.ewrt AcHa Ustener 
java 4Wt.ewr.t.Whlowl.lsterler 

java.<:,wr,a.event.Evenll.lsta"lffllst 

}w3.d"NtBolnlQ.we 

Jav••.swlrQ.lrl)..(Verlller • 
)3vax.,;wlng.Mn.f!.Y . 

Jl'/a.<,SWlnQ . .PDZWOr<Flcld 

Jl>'•• .swlng.J'ro,;resi;&J' 
jav0'<.SW1nQSw1rq.Jtilllles 

javax.swrgSWlngWa k«-
• jav'>JC.swt,g..Fn1nie 

jwauwlng • .Priel · .. 

All ev9"t ~e oojP('t,; stv,11 t,,. rl«M'd from l!'J-. cl"'5 

The I~ w.erface ror r!!Celvlng actkn evg1t; 

The 115ll!re" lm,(face ra nac('lv~-.g wtl"d>w e.<rts 

A CklSi lh,:,t holds 3 hst of Ev.nil.ls~ 

E>.tract evU'n from q _eJa rd d~ ba,;ed on e....-t l)pe-; 

Usoad lov'lllddtl! ~µJt d,ta 

U-..ed for cteJllng a meru b.r .!I'd add mB"Ul 

n "'ides ,pe,:tallzod fields r<lf password nry 
Used fa~ lhe p-ogess or some wcrl< 
Usold for l\n 'llng t.osl< en 1he fw,t Ot~ 1h e4d 

Used fer lln,.l!,v 0.Jl-htw«tng t.d.s h " dedlcdled 1h edd 
A Fro,nc Is o Mldow wUh ll Utle •n:f o bord.io 

A or,e,lc llgltw.!g-.1 calbl4! 1EI' ol 0.JI cbjetts 

Figure 21 A snippet of the knowledge base for Java GUI libraries 

By analyzing the dependencies, the analyst then discovered that that the.mocclient and 
the oamclient subsystems depend on Java's Swing and A WT package, Figure 22 (a). 
The analyst also noted that the JPanel, which is a lightweight container of GUI objects 
that is used to hold other GUI objects (e.g. Button, Text Fields), is used in both 
subsystems within the GU I package, Figure 22 (b). The analyst has already determined 
that these two subsystems can be executed separately, which implies the SNAS has two 
GUI interfaces. The analyst also discovers that both subsystems have a menu bar each, 
see Figure 22 (c). 

W M ~ 

Figure 22 Discovered view showing that mocclicnt and oamclicnt are the subsystems that have dependencies to 
swing and awl and therefore the analyst concluded that they arc the only ones that deal with GUI concepts. (b). 
There is a sub-package called GUI in both subsystems that depends on JPanel. (c). the main classes that 
construct the menu bar of the SNAS. 

This paper will only discuss the analysis of the GUI architecture of the mocclient 
subsystem because the oamclient is similar to the mocclient. 

,ul 11 model 11 event 11 10,ic I gui 11 model 11 event ! I 10,ic j 

Figure 23 Package c-0nlainmcnt view for mocclient and oamclient showing that they both have four sub 
packages. 

3.6.1. Locating the Main Menu using External Dependencies 

Submitted to ACM Transactions on Sofiwarc Engineering and Methodology 

I . 



30 0. Ganesan. M. Undvall, and M. Ron 

. Because the SNAS uses the Swing's JMenuBar class, the analyst decided to locate the 
class that implements the menu bar. By qu·erying the extracted dependency relations the 
main panel class gui. MainControlPanel was discovered, see Figure 22 (c). The 
analyst reviewed this file and found that this is the main GUI panel for the mocclient. 
The analyst discovered that the gui. MainControlPanel creates several menus and 
delegates all menu events to the class model. MainControlModel. The dependency 
relation also showed that the MainControlModel class depends on almost all model 
classes in the model directory and all gui panel classes in the gui directory. This triggered 
the analyst to review the model. MainControlModel class after which the analyst 
concluded that this class is indeed the main controller of almost all gui panels and models 
as the name suggests. That is, all public methods of the main model class create and start 
instances of models and panels upon being invoked by the main panel class, see Figure 
24 (a). The analyst reviewed the extracted code relations and concluded that almost all 
panels implement the ActionListener interface of the Java A WT. In addition, almost 
all panels take a model class as the argument to their constructors, see Figure 24 (b), such 
general patterns are good for architecture discovery because they indicate there is an 
underlying architectural skeleton where all panels and models could be plugged-in. 

gu.i. !1&1nContro1.P•iel 

p\ll>lk Uanol(.lao<ld aodall; 

public void acci<nl'ertomed(J.ctianl'venc • ) 

to) 

Figure 24 (a). The high level structure of GUI, (b). J\11 panels implement the java. awt. ActionList.ener 
interface. 

3.6.2. How is data communicated from servers to GUI panels? 
The analyst discovered above that the mocclient connects to the sam server using an 
instance of SSLSocket, see Figure 10. The analyst queried the extracted dependency 
relations and located the gateway class DataManager, which is the only way for data to 
come in and go out of the mocclient subsystem, see Figure 25 (a). 

t•I 

( 1o,1c . .lJrocn.03 ( 1o,1.c.BProOHso3 _ 

.J, .J, - .J, 

at~ic: nid. •~oc•••o.r C,lprOC"euor aJcoc); 
•t.~i.C' Yo.id. e..aProcHsor Clproc: .. • or J>hoc~; 

•~ic YO.id ••clel,j ect:.(CbjKC C-oS•'140; 
•~ic YO.ict proc:•Hbc eiv..Obj• CC( - t1 

(I,) 

t<l 

Figure 2S (a). The remote server connection is established by the ServerConn class. OataManager creates 
on instance of the ServerConn. J\11 data comes in and goes out of the mocclient only via the 
OataManager - it is the gateway, (b). The DataManager rn1s a static method (sendObject) for sending 
data objects to the remote server. J\11 processors call the corresponding set method to initialize their instance for 
cnll-backs from OataManager, when it reads response from the socket, it delegates to processors based on the 
response object type as shown in (c). 

Submitted to ,1.CM Transactions on Soflworc Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
31 

The analyst reviewed the DataManager and found that when responses come in from the 
sam server, the data manager delegates to appropriate data processors based on the 
incoming response data type. The analyst reviewed the extracted dependency model and 
found that there are many data processor classes that depend on the data manager and 
vice-versa. The analyst also found that all data processors call the set methods of the 
data manager in order to pass their object ids, which will be used by the data manager to 
call-back methods of the data processors, see Figure 25 (b) and (c). 

The analyst queried the dependency model in order to locate the classes that create 
instances of the data processors and the data manager. The query revealed that the class 
model. DataBroker creates instances of all data processors and the data manager. The 
MainControlModel create an instance of the data broker, see Figure 26 (a). The analyst 
detennined that the MainControlModel gets references to the data processors in order 
to send data to the sam server and this is done using the DataBroker instance. 

a odal.lfainC<1>~rolllod'"1 

ovct;.II01;itlc&i<1>IV 

(•J 
e v tn.t . ..t..lve 

(b) 

Figure 26 (a). An Arrow denotes a call to a constructor (i.e. an object creation). DataBroker creates an instance 
of DataManager 11nd also several processors. MainControlModel creates an instance of the DataBroker. Using 
the DataBroker instance, the MainControlMo del can get referenc.es to processors in order to send data to the 
remote server. (b). Arrows denote the inheritance relation. The event driven architecture is followed to notify 
events to GUI panels based on the response from the remote server. 

Because the mocclient uses · the java. util. EventObj ect class, the analyst 
hypothesized that the GUI architecture is infl uenced by an event driven architecture. The 
extracted inheritance structure further supported that claim because one of the base 
classes of the SNAS inherits from the EventObject, see Figure 26 (b). The analyst 
queried the extracted dependency model to locate the classes that use the 
NotificationEvent class. The query showed that the DataManager class calls the 
constructors of children of the NotificationEvent class. The analyst also detennined 
that if the Data Manager receives, for example, a PasswordExpired object from the 
s am server, then it creates a PasswordExpiredEvent instance and fires this event. All 
panels that are registered for this PasswordExpi redEvent will then get notified. 
Simi larly, panels and processors can also create events, and other registered panels and 
data processors will get notified. 

Above we discussed how the analyst discovered answers to the analysis questions 
such as a) how panels are controlled, b) how panels get data from the server, c) how 
panels get notified when data comes from the server. Based on these answers, the analyst 
concluded that he discovered the architectural skeleton where all 750 files of clients 
could be plugged-in. We often do not need to understand and review all 750 files of 
clients, however, we do need to locate and understand the file that controls all panels, the 
file tha~ sends and receives data from remote servers, and the file that handles event 

Submitted to ACM Transactions on Software engineering and Methodology 



32 D. Ganesan, M. Lindvall, and M. Aon 

processing. This analysis showed that knowledge of external dependencies can help in 
locating those files that spans or controls the GUI sub-space. 

Some design decisions invite bugs - the SNAS Maintainer's view: The 
oataBroker is one place where objects are being reused and data is getting mixed up. 
For example, ReportProcessor has a single instance in DataBroker, which causes 
problems if the user requests a second report before the first one is finished. Other 
processors are used by multiple windows, so the user could be doing what appears to 
him/her to be two entirely separate operations, but because DataBroker only has one 
instance of the processor, the operations sometimes interfere with each other. To allow 
the user to perform multiple operations at once, the whole DataBroker class should 
likely be removed-or, at least, the singleton pattern should replaced by multiple 
instances so a new processor is returned instead of reusing the existing singleton one. 
Also, the fact that almost all of the DataManager' s fields are 'static' can cause issues 
when the user logs out and logs back in very quickly (using Logout/Login on Main 
Menu, instead of Exit and restarting from scratch}-the re-initialization of the values may 
occur before the cleanup of the old values, and this can cause a number of problems. This 
is because, even though a new DataManager instance is created if the user 
Logout/Login, the static variables are retained because they are initialized only once by 
the Java Virtual Machine (JVM), in addition the cleanup process and the login process 
run in different threads. 

3.6.3. GUI Architecture and Performance Analysis using External Dependencies 
This subsection demonstrates how the knowledge of external entities can help in locating 
architectural decisions that have potential performance risks. 

3.6.3.1. Some Performance Problems in Event Notification Architectural Style 
In order to keep the GUI responsive, the threading model and the event dispatchers need 
to be carefui'ly designed and the analyst wanted to analyze how that part was constructed. 
The analyst used the fact that the knowledge base knows that the 
javax.swing.event.EventListenerList class is typically used to store the list of 
event listeners. Using that knowledge, the analyst discovered the method that calls the 
event listeners, see Figure 27. The analyst determined that there is a problem with this 
solution: if any one of the event listeners has a slow eventStarted method, it will 
affect other listeners too because all event listeners eventStarted methods are called in 
the same thread synchronously. If a new event listener is introduced into the system and 
its eventStarted method is slow, then the entire system has the risk of slowing down. 
The analyst noted that Java 5 has a new flexible threading model to exactly solve this 
synchronous event dispatching problem. The class java . util. Executor allows 
listeners to be executed asynchronously, using the concept of thread pools, so that slow 
listeners do not affect other event listeners. The SNAS team revealed that they are facing 
this issue in the current version and therefore the proposed solution, which takes 
advantage of the services of Java S's Exe cu tor, is being considered for the upcoming 
release. · 

Submiucd to ACM Transactions on Sofiwarc Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
33 

// Thia aetho41• uff4 t.o lire Jtot.iU.c&icnl't'• .ot:• c.o all 11.tt.entr·• 

public ft.atic void tJ.rtllCot.Uica.~tntStart•411'ot:itlc&ianlvent • vt) ( 
Oltj• ctl J 1~11n•r• • Sn•1r&ae. flC,Lut.•u.,tf1.l,l"'1·"'d'L1"""-' C); 
t or (im. 1 • O; 1 < llstener a.lanrt,1¥- 1+ •2) ( 

if(l~11uuUJ •• NacUic& l<mlvt n:t.Ll.teaier.olu• ( 
11.ell'ltr • (U. • v•ntSl..,U t..4!tl(9".) , 

(•l 

Snurr .. , 

J..,.1 ....... • wot.-tl.i t..,..UI C•tlllUN ,(J( 
r11wm9'tanws; 

Figure 27 (a) Perfonnance risk if some listeners have a slow implementation of the events tarted method 
they will 111Ted other listeners. (b). This pcrfonnancc issue was detected using dependencies lo the 
javax. swing. event. EventListenerList class. 

3.6.3.2. Some Performance Problems Due to Thread Models and Socket Timeout 
The analyst d iscovered above that the oataManager class is responsible for reading 
responses from the socket connected to the remote server, and delegating these messages 
to appropriate processing classes, see Figure 25 (a). The analyst tried to understand the 
threading strategy used for reading the data from the socket and dispatching it to the 
appropriate processors. To achieve this, the analyst reviewed the run method within the 
DataManager that reads data from the socket. The analyst revealed that the method uses 
the same thread for reading data from the socket and also synchronously dispatching it to 
the data processors. The analyst then concluded that due to this synchronous threading 
model, slow perfonning methods of data processor classes may hurt the entire system 
since data cannot be read from the socket until control returns from the data processors to 
the DataManager. 

We discussed this potential issue with the SNAS team, and they acknowledged this 
problem and even mentioned that the socket timeout happens before processing all data 
in the socket due to synchronous method calls. We are discussing the possibility of either 
introqucing a thread pool design pattern using the java. util. Executor class to 
resolve this perfonnance problem, or to introduce additional queues so that the data from 
the socket can be just transferred to different queues, and thus socket timeout can be 
avoided. The SNAS team is evaluating these solutions for the next release. 

3.6.4. GUI Architecture and Testability Analysis using External Dependencies 
The analyst discovered earlier that every panel class has an associated data model, see 
Figure 24. When the analyst reviewed some of the panel classes he observed that each of 
them has a small main method which populates a dummy data model. The ana lyst 
queried the extracted dependency model and found that nearly all panel classes contain a 
main method. Based on these findings, the analyst concluded that each panel can be 
tested without running the whole system. 

The analyst already determined that the SNAS uses the JPanel class, which allows 
users to input data into various fields, and therefore wonders: Does the SNAS use the 
input verifier capability built-in the Java Swing architecture? The analyst therefore 
queried the extracted · code relations and found that the SNAS uses the 
javax. swing.InputVerifier, and overrides the call-back verify method as 
demanded by the Swing architecture. The analyst concluded, however, that the logic 
behind the verify method is not that trivial, which means it has to tested well, see 
Figure 28 (a). Unfortunately, the verify method is not easily testable without running 
the GUI and filling the input into the fields of panels. The analyst thus concluded that the 
risk is that the verify method is not tested in-depth as required (e.g. using JUnit) 
because it assumes that the data is provided by a GUI panel. Most readers will agree that 

Submitted to ACM Transactions on Software engineering and Methodology 



34 D. Ganesan, M. Lindvall, and M. Ron 

regular expressions can be error-prone, and unit test programs are needed to test them. If 
we refactor the verify method, as in Figure 28 (b), thereby separating the GUI concept 
from the validation of the IP address, then the method isValidipAddress can be 
easily tested using the JUnit test framework, for example, see Figure 28 (c). This 
analysis, with the help of the knowledge base on Java's Swing libraries, also detected 
other panels that verify the user input, such as range constraints, numeric constraints, and 
alpha-numeric constraints. 

.P1,1'1ffc •••""'"'~OCID111,.fltl!ltafflJltntn1) ( Jw\llc•••ll•wl'tty~ca,..,,...,. CMIP•MtJC pu.i1c11• lci11f .. 11Vlllfl,A;4""Clttll'Sfpld...,)( 
//111trlCI tlptia l/otrwl l0"11 s,,..,.,_ • '\\fll.Jl\\\,..!l,ll\\\\<ltt,Jl\\\\41l,JI' Stt1nct•t•t1taft strt,.t..-t•nt.it 
ff{comp1l'l lfltkwtlrleti1flf• tfl..a)( tf(CtfflptnMtfflltlftcwf/T•~.W){ lf~l, .. k ., o,•-1•••»1 

tut • llf•IA.WJ c•n,,,,.i,1t1tCT,,nQ: .. .. • l\11'9"fl ... ) .......... lc.,.mO ,, wmhlu; 
I ) ) 

II c11,c11,.,... , • ...,, ""''"'""'"~'-h tryl 
KI0.., ••• •1 lll• <lo.,~<•Olll lf'lbut •• •1111 ll•• tll .. ~·· on ( ,.,.,.,,,... ,...,.._,.av 

c, m,.-Mt.r"'YM:tF.u[t ctft'I.Plf'IIM f'"1t.iet1Ftcw(l" ) 
rt tW'flflflia; rt hifflflllt; aldl (U•11N--, ..... , )( 

I I re11111t•.; 
) 

Stnnc,c• • '\\4Cl,Jl\\\\dl1,JJ\\\\f!1.Jf\\\\4!:l.ll' r1111mllV .. 14pAM,..·~a1}" rttUWltfWI; 

lf(hnM,td,o•~••ll( ) I 

ut11.111fa, ; M lei 
I 
try( 

'"'""'••.c....«wntO_.t I .. c11 IV•-••..-,.,)( .. 
) "'""'••; 
N-lliilMIM; 

I 

ltl 

Figure 28 (a). A testability issue because the validation logic is mixed with GUI concepts. (b). A better version 
of the verify method we proposed to the SNAS team, that separates the gui from validation logic for 
improved testability. (e). The Validation of a IP address can now be tested without the gui being up and 
mnningl 

To sum up, even if one tries to construct a JUnit test suite, th~ source code has to be 
"open" for testing; in the sense GUI concepts ought to be separated from logic. The 
principle of abstraction and separation of concerns is one of the foundational pillars of 
software engineering [Pamas 1985, Tarr 1999], but perhaps developers (also code 
reviewers) either overlook this fact or there is a lack of concrete examples to really 
understand the concrete meaning behind this principle in order to apply in practice. 
That's why this paper uses code snippets to demonstrate fundamental software 
engineering principles. Only because of the knowledge base of Java's GUI classes, it was 
possible for us to easily discover code elements that affect testability. 

3.6.5. GUI Architecture and Clones 
Experience tells us that clones often exist in the GUI portion of the system. Thus, the 
analyst used the similarity tool to automatically analyze all files of the mocclient and 
oamclient subsystem, and discovered that nearly every file that is present in the 

I 
mocclient is also present in the oamclient, with very small differences in content. 

Discussions with the SNAS team revealed that the mocclient and oamclient are 
variants for two different groups of users. The analysis pointed out there is a still a large 
number of GUI related files that could be moved to the shareclient folder in order to 
minimize duplication. The similarity tool also reported clones between GUI panels within 
these subsystems. The problem is that in order to develop a GUI panel, there are basic 
boiler-plate code elements (e.g. defining the GUI panel structure, fields, buttons, etc) that 
every program must implement, which naturally results in code cloning. It is not easy to 

Submitted to ACM Transactions on Software Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
35 

solve this cloning problem. However, other projects that we have analyzed have positive 
experiences with generating Java Sy;ing GUI code using the Jigloo Editor. This was 
recommended to the team so that, at least in the future, new panels can be generated 
using such code generators thereby avoiding copy of bugs due to copy-and-paste of code. 
Now the analyst proceeds to analyzing the OS interaction strategy using the external 
dependencies of the SNAS. 

3.7. An Analysis of the OS Concern using External Dependencies 
The model on which we base the analysis of the OS concern is based on the following 
observations: a) any software system needs an Operating System to run and some need to 
run on more than one operating system, and b) there should be some strategy (good or 
bad) to manage OS variants. From this model, we derive the following questions: I) 
What are the different OS types the system supports? 2) How does the system abstract 
underlying OS and when does binding to a particular OS take place? and 3) How are OS 
concerns separated from other concerns? 

For the Java programming language, the snippet of the knowledge base, shown in 
Figure 29, helps in discovering architectural insights from the OS perspective. 

FIie Sep.>-eta 

, PJth ~<>tcr 

.:· OS Ar<litl!cue 
OScaur1'6 -

" · OS Cornmird • 
OSNJrne 

OSV<!tslm 

}wa.la-lg.Sy.:tem.oclf1rope ty(llle.'1l)ll ~} 

}wa.linJSyr.lx,m.QC!JlropBty(palh S<'PY Jtor) 

}:r,,a.l,ng System geCProperty(os.lJ'Ch) 

p,a.Lr,g.Ru1Nme.exec 

,Java.laro ~)'stl!rn.geUJroperty(os rv.vne) 

.)<wa.lr.o ~ .~or,ertv(os.vErslm) 

Reo.rn; 'I ra Uu, aro \' ra Wlrdows 
Reb.ms ':' lor Ll"llx, <Y'd ';' (er Windows 

Reb.ms lhe a d1tedu·e ol h m'1dnl 

Execw lhJ Qlwn OS cornmo-d 

Thi rum• or lhe Ub 11'\lt rU'IS lhe Java irogam 
PP.O.lns the Wl'Slen of Ire OS 

Figure 29 A Snippet of the Knowledge base for analyses of OS concerns. 

The analyst queried the extracted dependency model of the SNAS and discovered the 
files that use the exec method of the j ava. lang. Runtime class that helps for 
interacting with the OS (see Figure 29). The query showed that all OS commands are 
executed only through the PidService class (see Figure 30 (a)) defined in the 
framework folder. The analyst reviewed this class and found that the OS type and the 
OS command to run must be passed as arguments to the ·methods of PidService (see 
method parameters of Figure 30 (a)). The analyst extracted all dependencies to the 
methods of the PidService. The extracted dependency diagram showed that the higher
level layers ((see Figure 30 (b)) must pass the OS command and the OS type to run the 
methods of the PidService . . This clearly implies that OS concerns penetrated and mixed 
with other concerns, and the architecture did not offer a separate OS abstraction interface 
that hides the actual OS type. 

Submitted to ACM Transactions on Sonware Engineering and Methodology 

f -. .... .. . . ... 



36 D. Ganesan, M. Lindvall, and M. Ron 

rrarnf!W oit.l'ldS ef'<I c.e 

// 1 111:\Una CPU uu9• tor th• ¢von Pl l> 
pul>lic st.a.tic ser1n9 e xer..::ePercontaqeCPIJ(Str1.n 9 p14 , 

St.r in.9 C'Clllaancl, 
St dn9 o• Typo); 

// 11.otun\s threa4 count• tor the 9 iven proceH 14 
pw,lic, st&l:ic: S'tr1n9 elltr..::e'!hru 4Count(S'tr1n9 p i4, 

! 
J1M1.la111.R1.11tlme 

S'tr 1n9 c:o- a.n4, 
St.r Jng o, 1'/P •> ; 

I 
Procen •••c(St.rin.9 co- andJ; I 

(a) 

(b) 

Figure JO (n). All OS commands are executed using the PidService class defined in the framework. (b). 
However, the higher-level layers are also dealing with OS concerns such as the OS type and the OS command 
to run (see the parameters of methods of PidService). This problem can be solved if PidService uses 
Java's A Pis to discover automatically the current OS type and then decide which OS command to run. 

The recommended solution to this OS variation management problem is to Jet the 
PidService use Java's APls (e.g. System. getProperty(os. name)) and 
automatically discover the OS type and then decide what OS commands to run. By doing 
so, the higher-level layers will become agnostic to OS variations. Thus, the complexity 
due to managing OS variants can be controlled in a cleaner and consistent way across all 
subsystems, resulting in a good common look-and-feel. This example reminds us that 
having a system implemented in Java does not necessarily imply the system is ready-to
run in all OS platforms; it has to be architected to manage OS variants. The devil is in the 
details, by slicing the implementation using external dependencies we were able to 
discover novel insights and deep architectural problems, and furthermore offer 
constructive solutions where possible. 

The analyst did not spend effort on identifying the different types of OS supported by 
the SNAS because when he reviewed some of the configuration tiles used for configuring 
IP address, ports, etc, his eyes also saw a configuration variable called osType, with 
commented lines such as "set osType=Unix or set osType=Windows". Thus the analyst 
admitted that it was some luck that pointed him to the OS types used in the SNAS. 
Otherwise, he had a strategy of searching of "f' or "\" used file names, for example, to 
identify OS types. It was commented in the configuration files that for testing purposes 
one can choose the OS type by modifying configuration parameters. 

3.8 Summary 

3.8.1. Summary on Wrapper Violations and Heritage of the SNAS 
During this analysis, the analyst discovered many potential rules such as: All usages of 
the logging COTS (Apache Log4J) should be done using the logging service wrapper 
defined in the framework folder, and: All usages of threads should be done through a 
wrapper class defined in the framework. However, the analyst noticed that the sdi f 
subsystem violated many of the potential rules .. In fact, the sdi f has its own wrapper 
class offering logging service. The analyst also discovered during the analysis of the 
database concern that the sdif has a different style for implementing database 
connections and the DAO layer. Basically, the sdif lives in its own world. Discussions 
with the SNAS team revealed that the sdi f was taken from the predecessor of the SNAS 
called SWSI. The SNAS team has done a lot of refactoring to integrate the sdi f with the 

Submitted to ACM Transactions on Sonware Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
37 

SNAS, but time was not spent on cleaning-up the architectural differences with other 
subsystems. We noted earlier some subsystems by-pass wrappers to sockets, defined in 
the framework folder, and directly use Java socket libraries. Discussions with the SNAS 
team revealed that wrappers were not there in the first-place, and therefore it is not 
practical to expect that all subsystems use the wrappers. These are some "classical" 
examples of individual parts looking good but if we take one step up and see the whole 
system, there are architectural deviations in common look-and-feel, partly because of 
organizational factors and migrating or merging existing systems. 

3.8.2. Can Two Requirements influence the Architecture and Size of the System 
so much? 
This analysis shows that the SNAS contains many perfonnance-oriented architectural 
design decisions. For example, a) it uses the transfer object design pattern to overcome 
communication overhead due to remote procedure calls, b) it uses multiple ports to 
reduce the waiting time of objects in socket channels, c) it uses a reactor design pattern to 
facilitate non-blocking 1/0 of socket channels, and d) it uses a database connection pool 
to reduce the overhead of frequently creating and destroying connections. Naturally, we 
were more than curious and asked the SNAS team what is the real need for this 
elaborated architectural design. They pointed to two requirements (see Figure 31) out of 
the many hundreds. We can notice that both requirements deal with timing aspects. 

J,c.1., The SHU ah.All not ••c••• two ••coDd.a troa t.1:•• cec•l•t ot a .. •••o• t.o t.bti t.r&&a111a...•too o f tbat ........ 
J , C,1 ,7 nw SlfU •ta.&11 Dot ••c••4 tlv• ee-coDda tro• th• i:1co1,, ot • recu,tat to t•t.chve data boa cbe ff.15 41.t.tlb .. • t.o 
tb.e tc&ne1a.la•lOa ot t .h :rea1.11C. , 

figure 31 The two requirements (snippet) behind the elaborated performance driven architecture. · 

The number of transfer objects (or bean) files is 384 out of 1578 Java files . The beans 
contribute 80KLOC (including comments and spaces) out of 650KLOC. We mentioned 
in the GUI analysis that the SNAS uses event-driven architectural style by creating event 
objects for each type of incoming object from the remote server. For example, if the 
incoming object is LoginFailed type then the corresponding LoginFailedEvent 
object is created and notified to registered panels to display the login failure message. 
There are around 60 event files, contributing I OKLOC. We also noted earlier that the 
GUI architecture has data models for each panel. The data models contribute 40KLOC 
out of 650KLOC. Unfortunately, there is not much difference between data models and 
transfer objects, except the latter implements the Serializable interface to transfer 
objects across the network. They both contain data attributes with get and set methods. 
Also note that GUI data are present inside Java's internal model of Swing. In addition, 
database tables contain the same data present in data models and transfer objects. 
Basically, data are redundantly present in different fonnats. This analysis offered insights 
on the influence of the transfer object design, mainly chosen for overcoming the inherent 
limitations of remote procedure call, on the overall size of the system. We are discussing 
with the requirements team in order to understand the rationale behind the timing values 
and how stringent they must be followed. Also, we are discussing whether or not anyone 
measured the running system's response time to satisfy those timing constraints. The 
major lesson from this study is that requirements analysts (also architects) must be 
careful in specifying and analyzing timing constraints; otherwise there is a danger of 
over-engineering with an "elaborated" architecture and a lot of source code to develop, 
test, maintain, and evolve. · 

Submitted to ACM Transactions on Software Engineering ond Methodology 

·-----·--



38 D. Ganesan, M. Lindvall, and M. Ron 

3.8.2. Summary of the Number of Files Reviewed 
The analyst took notes on the number of files he has reviewed during the analysis of the 
SNAS. The analyst mentioned that he has good experience with the RPA query language 
[Feijs et al. 1998, Krikhaar I 999, and Ganesan et al. 2009) used for automatically finding 
files with certain characteristics. For example, using RPA it is straightforward to detect 
all files that directly or indirectly (i.e. through inheritance) implement the 
j ava . awt. event. ActionLis tener interface. If the analyst is not familiar with RPA
like query languages, then he has to use some other source code search tool and may have 
to open many more files. In addition, the analyst agreed that there is a learning effect that 
fortunately reduced the number of files to be reviewed. For example, when the analyst 
opened a file to understand how data from the socket is read and delegated to data 
processors, his eyes also saw other concerns such as the error-handling strategy used for 
automatically reconnecting to the remote server if the connection is lost for some reasons. 
That helped the analyst because he learned more than what he was originally intending to 
do with that file. Table 3 shows the number of files reviewed for each goal. Although 
this is honestly collected data, the analyst agreed he might have forgotten to count some 
files, but the paper has provided abundant evidence that ~he dependencies on external 
entities can be of great value in finding the right entry points into the system. 

T bl S a e3 ummary o ffil 1 es rev,ewe d ti h or eac goa 
Coab # of Filer Muually R.niewea 

Discovery of Seiver-side Socket Ports 10 out of 1578 Java files 
Discovery of Client-side Socket Port, 12 out of 1578 Java files 

Discovery of Port Conr.ectiDN 5 out of 25 configu:ation files 

Discovery of Data Bean,t 5 out of 384 Java bean files 

Discovery of the DAO layer 10 out of 112 Java files dealliig with databue interaction 

Discovery of OUl Architectun 20 out of 723 Java 1iles in the troeclient, oamclient, shanclient foJden 

Discovery of OS Variability 4 out of 1578 JflVa file 

Total n nt el 1571 Jna files (Le. 4~ of Jna files)were rniewei 

3.8.3. Discussion 
Can the analysis be done in ·any order? Yes, we believe that the method of following 
external dependencies into the application can be done in any order and for any purpose. 
For example, the analyst could have applied the AIS method first for discovering the 
architecture of the GUI concern and then for the Persistence concern. However, the 
analyst found it useful to first discover the component-connector view before slicing the 
implementation based on concerns. For example, if the analyst did not know the fact that 
the SNAS follows a distributed architecture using sockets as connectors, then the analyst 
may not have known easily the fact that the GUI parts send and receive data to a remote 
server. 

Are there threats to the validity of the architecture discovered using the AIS 
method? There may be some threats to the classification of roles played by a huge 
collection of files based on collected evidences. As we noted earlier, for example, the 
analyst without reviewing 384 Java files claimed that all of them are data beans because 
the criteria of a class being considered as a bean is based on characteristics collected from 
his experience (e.g. almost all methods are getters and setters, no calls to logging, 
implements Ser i alizable interface, etc). There may be some files within the 384 files 

Submitted to ACM Transactions on Son ware Engineering and Methodology 



External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
39 

which are doing more than what a data bean is suppose to do. A common threat in any 
reverse engineering method is the correctness and completeness of the code relations 
extracted by parsers. 

Is the AIS method flexible? The method is flexible because the analyst can decide, 
based on his goals, which subspace of the four dimensional space is appropriate to work 
(recall Figure I). The analyst can select a concern of his interest; refine it to the necessary 
depth. The method neither enforces the order in which the analyst has to select a concern 
nor the level of depth in refi ning and analyzing the selected concern. The external 
dependencies can still support the analyst even if he wants to go further deep and analyze, 
for example, how all GUI panels implement windows close action, which are also often 
implemented using the A Pis of the underlying external entities. Almost all programming 
language libraries support common concerns and architecture connectors. Therefore, we 
are more than confident to claim that external dependencies play a novel role in reverse 
engineering. 

Is the AIS method repeatable on other systems and/or other languages? 
Although the case study is in Java, the method has evolved from analyses of several 
systems implemented in the CIC++, ADA, and FORTRAN languages [Stratton et al. 
2007, Ganesan et al. 2009, Lindvall et al. 20 I 0). Yes, the analysis questions and the 
reasoning process are certainly repeatable on other systems. Experiences with fonnal 
query languages and basic knowledge of programming language libraries are important in 
order for other analysts to repeat and produce the same results discussed in the case 
study. The knowledge base of external entities can help analysts who are not famil iar 
with the classes and methods of programming language libraries. In general, analysts are 
like a detective, the method is trying to codify, reuse, and share experiences so that they 
can analyze commercial strength systems effi ciently. 

4. Comparison to Existing work 
Here, we will highlight some key differences between our method and the existing work 
related to architecture analysis, knowledge-based reverse engineering, pattern-based 
architecture discovery, clustering, software clones, exception han~ling, and testability. 

Architecture-Analysis in the early phase of the lifecycle: The SAAM method 
uses "what-if' scenarios to evaluate the proposed architecture in a workshop with the 
project team [Kazman 1994, Clements 1995). Their method was designed to be applied in 
the early phases before the implementation starts and thus architectural risks can be 
identified early. We believe our architecture analysis method complements the SAAM 
because it helps in discovering the implemented architecture which could be used in 
conjunction with their method for analyzing evolving systems. [Rozanski and Woods 
2005] use a catalog of concerns to construct and analyze views of the architecture. We 
also use such a catalog but to slice the implementation and discover the architecture for 
each concern. [Martin 2005) discusses architectural principles for bypassing the GUI and 
database for testing. [Binder 1994) discusses design principles for testabil ity. [Wirfs
brock 2006) discusses best practices for managing exceptions, including abstraction of 
exceptions raised by lower-level layers. We use these principles and best practices for 
evaluations of implemented systems. We share the vision of storing best (or problematic) 
practices with Booch's handbook of software architectures [Booch]. 

Knowledge-based Reverse Engineering: The PROUST tool takes as input a text 
description of a program and uses its knowledge base for detecting errors novice 
programmers .make and help them correct their mistakes [Soloway and Johnson 1985) . 

. Submitted lo ACM Transactions on Sofiware Engineering and Methodology 



40 D. Ganesan, M. Lindvall, and M. Ron 

The PAT tool generates a high-level specification (i.e. an algorithm) of a given program 
using its rule-based inference engine [Harandi and Ning 1990]. In contrast to our 
approach, these approaches are small scale as they focus on understanding and generating 
specifications at the sub-routine level, while our approach focuses on understanding large 
systems. 

We share the LaSSIE's high-level goal of solving the "invisibility" problem inherent 
in software systems [Devan bu 1991]. LaSSI E helps in understanding of how and where 
features are implemented using its domain ontology. In our opinion, LaSSIE does not 
focus on discovering testability and perfonnance risks as discussed in our method. We 
are exploring ways to enrich our knowledge base with domain concepts for facilitating a 
domain-oriented architectural reasoning. The MIDAS approach uses a knowledge base 
for automatic reengineering of database programs from the network model to the 
relational model [Chiang 1995]. Our method supports discovering and analyzing the 
database interaction .architecture and its testabi lity. The MORPH process uses a 
knowledge base for migrating text-based user interfaces into GUis [Moore and Rugaber 
1997]. Our method supports discovering and analyzing the GUI architecture of systems 
that already have a GUI. [Michail 2002] uses GUI messages and function names of GUI 
frameworks used by the system under analysis for browsing and searching the source 
code in order to overcome limitations of general text search tools. Microscope is a tool
suite for maintenance activities. Our future work can benefit from its rule-based inference 
engine [Ambras and O'Day 1988]. Microscope can also benefit from our knowledge-
base that helps in discovery of software architectures. . 

Pa ttern-based Architecture Discovery: !Dong et al. 2007] review methods and 
research tools for recognition of design patterns from the source code. We have shown 
where several patterns were implemented simply by using the programming language 
libraries, which are often excluded in many research methods. It would be interesting to 
investigate how pattern discovery methods can benefit from a knowledge base of external 
dependencies. [Harris et al. 1995] constructs a library of arch itecture concepts 
recognizers in the source code. A challenge, in our experience, is that it is difficult to 
codify the way different systems implement the same architecture concepts. In some 
cases, the same architecture concept might have been implemented in different styles by 
different subsystems, as is the case for the database abstraction layer of the SNAS, for 
example. Thus, it is difficult to automatically discover architecture concepts. 

Clustering: [Maqbool and Babri 2007] provided a long discussion on clustering 
methods and how they could shed some light on the software structure. One of the 
challenges is that, especially in GUI parts, function calls occur indirectly using event
driven concepts and implicit invocations, and thus the call graph is often broken into 
disconnected graphs. Also, many systems contain intennediate connectors for 
communication. Another challenge is that the architecture concepts (e.g. Interfaces, 
Connectors, and Components) are invisible in the output of clustering, and is not easy to 
do a detailed analysis, because all concerns are still part of the clustered model. In 
general, clustering methods do not give names to subsystems or summarize in a few 
sentences the role played (e.g. DAO layer, OSAL layer) by them. After all, it is the name 
and the brief summary that helps in understanding the architectural roles played by a 
huge collection of files. It would be fruitful to investigate h·ow the existing clustering 
methods behave if they are combined with a knowledge base of external dependencies. 

Software Clones: IKoschke 2007] discusses several clone detection methods in 
detail. Our focus is on analyzing the detected clones by concentrating on one concern at a 

Submitted to ACM Transactions on Software Engineering and Methodology 



... 

External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
41 

time and interpreting them using the discovered software architecture so that we can offer 
constructive advices where possible. For example, we have discussed clones in GUI 
panels and across files in database abstraction layers. We offered concrete advices on 
how to migrate to new technologies in order to overcome inherent cloning problems due 
to the Java language. , 

Exception Handling: The Jex tool was used for analyzing the flow of exceptions 
[Robillard and Murphy 1999]. We analyzed exceptions using dependencies to external 
entities and selecting a concern of interest. We interpreted the flow of exc~ptions from an 
architecture point of view. For example, we have shown cases where the database is 
abstracted but database errors had leaked into the higher-level layers. Also, using the 
knowledge of dependencies to external entities, we have shown how we can find how the 
system handles specific exception types such as the socket timeout exception or host not 
available exception. Thus, we believe Jex·can also benefit from a knowledge base. [Shah 
et al. 2010] reported that, in their survey, novices make mistakes in exception handling. 
Of course, the truth is in the source code, experts also make mistakes because exception 
handling is often not given much attention during the architecture design. 

Assessment of Testability: We share the spirit of understanding "What is it that 
makes code hard to test" as [Bruntink and Deursen 2004] formulates -this important 
question. In contrast to their testability assessment ·model, our method covers testability 
in the presence of a GUI or a database. [Feathers 2004] offers a piece of "clean" code 
(e.g. good method/variable names, comments) that was not easy to test because of a hard
binding to a remote stock server, which cannot be replaced by a dummy server for testing 
purposes. We collect such anti-testing patterns into our knowledge base and analyze 
implemented systems for the existence. [Ganesan et al. 201 O] provide insights on "What 
types of architectural decisions make unit testing easier/harder" in a product line context. 

Closing Remarks 
Yes, external entities offer novel insights during reverse engineering. This paper has 
offered abundant evidence that by leveraging the semantics of external entities, we can 
efficiently discover the software architecture hidden in the implementation. Most 
architectural problems are hidden deep in the source code. As shown in this paper, 
external entities help us to efficiently locate the details where devils hide. The paper also 
disclosed a knowledge base for reverse engineering. Construction ofa knowledge base is 
an investment. We have shown how one can incrementally build a knowledge base over 
time using external entities used by systems under analysis. If your organization is 
regularly conducting architectural analysis of several implemented systems, you could 
reap the benefits of your investment in a knowledge base. Our future prospects include a) 
improving the usability of the tool-chains so that analysts can easily add their knowledge 
of analyzing commercial systems, and b) building "intelligent" analysis environments to 
further improve the productivity of our analysts. 

REFERENCES 
ALUR, D .• CRUPI, J., AND MAI.KS, D. 2003. Core J2Ec Patterns. Sun Microsystems press. 
AMl3RAS, J. AND O'DA Y, V. 1988. Microscope: A Knowledge-Based Programming environment. IEEE 
Software, 5(3), S0-58. 
Apache DOCP. Open Source Database Connection Pool, http://commons.apache.org/dbep/ 
BASILI, V., CALDIERA, 0 ., McOARRY, F., PAJERSKI, R., PAGE, G., AND WALIGORA, S. 1992. The 
Software Engineering Laboratory: An Operational Software Experience Factory. Proceedings of ICSE, 370· 
381. 

Submitted to ACM Transactions on Software Engineering and Methodology 



42 D. Ganesan, M. lindvall, and M. Ron 

OINDER, R.1994. Design for testability in object-oriented systems. Communication of the ACM, 37(9), 87-
101. 
BRUNTINK, M. AND DEURSEN, A.V. 2004. Predicting Class Testability using Object-Oriented Metrics. 
Proceedings of the Source Code Analysis and Manipulation Conference, 136-145. 
OOOCI I, G. http://www.handbookofsoftwarearch.itecture.com. 
CIIEN, Y.-F., NISIIIMOTO, M. Y., AND RAMAMOORTIIY, C. 1990. The C information abstroction system. 
IEEE Transaction on Sofiware Engineering, 16, 3, 325-334. 
Cl IIANG, H.L.R. 1995. A knowledge-based system for performing reverse engineering of relational databases. 
Decision Support Systems, 13, 295-312. 
CLEMENTS, P., BASS, L., KAZMAN, R., AND ABOWD, G. 1995. Predicting Sofiware Quality by 
Architectural-Level Evaluation. Proceedings of the Conference on Sofiware Quality. 485-497. 
DEVANBU, P., BRACHMAN, R.J., SELFRDIGE, P.O., OALLARD, B.W. 1991. LaSSIE: a Knowledge-based 
Software Information System. Communication of the ACM, 34(5), 34-49. 
DONG, J., ZHAO, Y., AND PENG, T. 2007. Architecture and Design Pattern Discovery Techniques - A 
Review. International Conference on Software Engineering Research and Practice, 621-627. 
FEATHERS, M. 2004. Defore Clarity. IEEE Sofiware, 2 1(6), 86-88. 
FEIJS, L., KRIKHAAR, R., AND OMMERING, R. 1998. A Relational Approach to Support Software 
Architecture Analysis. Software Practice and Experience, 28( 4 ), 371-400. 
FLOWER, M., DECK, M., ORANT, J., OPDYKE, W., AND ROBERTS, D. 1999. Refactoring: Improving the 
Design of Existing Code. Addison-Wesley. 
GAMMA, E., IIELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns-Elements of Reusable 
Object-Oriented Son ware. Professional Computing Series. Addison-Wesley. · 
GANESAN, D., LINDVALL, M., McCOMAS, D., AND OARTIIOLOMEW., M. 2009. Verifying architectural 
design rules of the flight software product line. Proceedings of the Software Product Line Conference, 161-170. 
GANESAN, D., LINDVALL, M., McCOMAS, D., BARTHOLOMEW, M., SLEGEL, S, AND MEDINA, B. 
20 I 0. Architecture-based Unit testing of the fl ight software product line. Proceedings of the Software Product 
Line Conference. 
Google's Guice Framework, http://code.google.com/p/google-guice/ 
IIARANDI, M.H. AND NING,J.Q. 1990. Knowledge-Based Program Analysis. IEEE Software, 7(1), 74-81. 
IIARRJS, D.R., REUOENSTEIN, H.B., AND YEH, A.S. 1995. Reverse Engineering to the Architectural Level, 
Proceedings ortCSE. 186-195. 
Hibernate Framework, http://www.hibcrnatc.org/ , 
JACOBSON, I. 1992. Object Oriented Software Engineering, Addison-Wesley. . 
KAZMAN, R., DASS, L., AOOWD, G., AND WEBB, M. 1994. SAAM: A Method for Analyzing lhe 
Propctties of Software Architectures, Proceedings of ICSE, 81-90. .. 
KOSCI IKE, R. 2007. Survey of Research on Software Clones. Proceedings of Dagstuhl Seminar 0630 I. 
KRIKHAAR, R. 1999. Software Architecture Reconstruction, PhD Thesis, University of Amsterdam. 
KRUCHTEN, P., OBBINK, H., AND STAr:FORD, J. 2006. The Past, Present. and Future of Software 
Architecture. IEEE Software, 23(2), 22-30. 
LINDVALL, M. 2010. Connecting research and practice: an experience report on research infusion with 
software architecture visualization and evaluation. NASA's Journal on Innovations in Systems and Software 
Engineering. 
MAQOOOL, 0. AND OAORI, II. 2007. Hierarchical Clustering for Software Architecture Recovery. IEEE 
Trans. Software Eng., 33(11), 759-778. . 
MARTIN, R.C. 2005. The Test Dus Imperative: Architectures that support automated acceptance testing. IEEE 
Software, 22(4), 65-67. 
MICMAI L, A. 2002. Drowsing and searching source code of applications written using a GUI framework. 
Proceedings oflCSE. 327-337. 
MOORE, M. AND RUGABER, S.1997. Using Knowledge Representation to Understand Interactive Systems. 
Proceedings of the International Workshop on Program Comprehension, 60-67. . 
MURPMY, G.C., NOTKIN, D., AND SULLIVAN, K. 2001. Software Reflexion Models: Oridging the Gap 
between Design and Implementation. IEEE Transactions on Software Engineering, 27(4), 364-380. 
NACCARATO, G. 2002. Introducing Nonblocking Sockets. o·Reily Publications. 
PARNAS, D.L., CLEMENTS, P., AND WEISS, D. 1985. The Modular Structure of Complex Systems. IEEE 
Trans. Sofiwarc Eng., 11(3), 259-266. · 
ROBILLARD, P.M. AND MURPHY, C.G. 1999. Analyzing Exception Flow in Java Programs. Proceedings of 
ESEC/FSE, 322-337. 
ROZANSKI, N. AND WOODS. E. 2005. Sofiware Systems Architecture. Addison-Wesley. 
SCHMIDT, D. 1995. Using Design Patterns to Develop Reusable Object-Oriented Communication Software. 
CACM, 38( 10), 65-74. 

Submitted to ACM Transactions on Software Engineering and Methodology 



• 
External Dependencies-driven Architecture Discovery and Analysis of Implemented Systems 
43 

SHAH, 13. H., GOERG. C .• AND HARROLD, M.J. 2010. Understanding Exception Handling: Viewpoints of 
Novices and Experts. IEEE Transaction on Software Engineering. 36(2), 150-1 61. 
SHAW, M. AND CLEMENTS, P. 2006. The Golden Age of Software Architecture. IEEE Software, 23(2), 31 -
39. 
SHAW, M. AND GARLAN, D. · 1996. Software Architecture: Perspectives on an Emerging Discipline, 
Prentice-I !all . 
SOLOWAY, E. AND JOHNSON, W.L. 1985. PROUST: Knowledge-Based Program Understanding. IEEE 
Transactions on Software Engineering. 11(3), 267-275. 
Spring Framework, hllp://www.springsource.org/ 
STRATTON, W., Sll30L, D., LINDVALL, M .• AND COSTA, P. 2007. The SAVE Tool and Process Applied 
to Ground Software Development at JI IU/ APL: An Experience Report on Technology Infusion. SEW, I 87-I 93. 
TARR, P., OSSHER, H., HARRISON, W., AND SUTTON, S. M. 1999. N degrees of separation: 
Multidimensional separation of concerns. Proceedings oft CSE, I 07-1 19. 
WAUX), J., WYANT, G., WOLLRATH, A., AND KENDALL, S. 1994. A note on Distributed Computing. 
Sun Microsystems, TR-94-29. 
WIRFS-BROCK, R.J. 2006. Toward Exception-Handling Best Practices and Patterns. IEEE Software, 23(5), 
11-13. 

Submitted to ACM Transactions on Software Engineering and Methodology 




