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This paper revisits the Bode integral theorem, first described in 1945 for feedback 
amplifier design, in the context of modern satellite Attitude Control System (ACS) design 
tasks. Use of Bode's Integral clarifies in an elegant way the connection between open-loop 
stability margins and closed-loop bandwidth. More importantly it shows that there is a very 
strong tradeoff between disturbance rejection below the satellite controller design 
bandwidth, and disturbance amplification in the 'penalty region' just above the design 
bandwidth. This information has been successfully used to re-tune the control designs for 
several NASA science-mission satellites. The Appendix of this paper contains a complete 
summary of the relevant integral conservation theorems for stable, unstable, and non­
minimum-phase plants. 

= transfer function of the controller 
load disturbance 

= error signal to the controller 
transfer function of the plant 

= gain margin (dB) 
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= imaginary number ../-1 
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= open-loop transfer function 
= denotes the natural logarithm 
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llpz = pole-zero excess 

1111p = number of RHP poles 

l111z = number of RHP zeroes 

Pi = the ith unstable pole 

p1* = complex conjugate of p; 
RHP = Right Half Plane 
r = command or reference signal 
S(s) = sensitivity function 
s Laplace variable 

Sm stability margin 
T(s) = complementary sensitivity function 
u controller output signal 
X = process or system output 

Zk = the kth unstable zero 

Zk* = complex conjugate of Zk 

T time delay in the loop 
Tp = time constant of pole (sec) 
Tz = time constant of zero (sec) 

;m = phase margin (deg) 
Cl) = frequency (rad/sec) 

O>JdB = closed-loop bandwidth (rad/sec) 

Wms = frequency at which maximum sensitivity occurs (rad/sec) 

I. Introduction 

HENDRIK Wade Bode, the American engineer, researcher and inventor, has long been recognized and respected 
as a pioneer of feedback control theory. He is probably best known to today's generation of controls engineering 
students for his development of the transfer function gain and phase plots that bear his name, the Bode Plot. 
However, one of his particularly insightful and important contributions to the field of controls engineering are the 
integrals of the sensitivity and the complementary sensitivity functions. These are commonly known as the Bode 
Integrals. In the opinion of the authors these are often overlooked/under emphasized in today's engineering 
classrooms and are not commonly applied in practice anymore. The Bode integral techniques can provide insights 
for a control system designer when developing controllers for plants that are inherently difficult to stabilize and 
control. The greatest limitations on stability and disturbance rejection are related to the presence of poles and zeroes 
in the Right Half Plane (RHP) and time delays. Control loop performance, in terms of stability and disturbance 
rejection, is commonly analyzed in the frequency domain. Loop compensation design can be viewed as tuning both 
the sensitivity and complementary sensitivity transfer functions to achieve stability and disturbance rejection goals. 
Stability is related to the peaks of these transfer functions as will be shown. The sensitivity transfer function is also 
known as the disturbance rejection transfer function. Likewise the complementary sensitivity transfer function is 
commonly known as the closed-loop transfer function. The roll-off characteristics of the sensitivity transfer function 
determine low-frequency disturbance rejection behavior. The complementary sensitivity transfer function 
determines the 3-dB controller bandwidth which both dictates closed-loop system performance and high frequency 
disturbance/noise attenuation. The frequency domain integrals of these transfer functions therefore determine the 
limitations of loop shaping. 

The Bode [ntegral is a conservation theorem formula that quantifies some of the limitations of feedback control 
systems. The Bode Integral has two forms: one that applies to stable plants and the second to unstable plants. Simply 
put the integrals state that the log magnitude of the sensitivity function of a Single Input-Single Output (SISO) 
feedback system, integrated over frequency, is constant. The log magnitude integrals of the complementary 
sensitivity function, divided by frequency squared, is also equal to a constant. Per t~e conservation principle the 
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actual constant integrated value varies for stable, unstable, and non-minimum-phase plants. The implications of both 
these assertions will be examined in this paper. 

Bode tells us these constants are zero for stable plants with all poles and zeros of the open-loop transfer function 
in the Left Half Plane (LHP). For unstable plants with poles in the RHP the constant associated with the Bode 
Sensitivity Integral is a positive value largely determined by the sum of the RHP poles. For the case of a Non­
Minimum Phase (NMP) plant with zeros in the RHP the Bode Complementary Sensitivity Integral is a constant 
determined by the sum of the reciprocals of the NMP zeros and the'time delay in the loop. The mathematical 
treatment of these ideas is addressed in detail in the Appendix of this paper as is the more complicated case where 
there are both poles and zeroes in the RHP. 

Control researcher Gunter Stein, in his 1989 Bode Lecture, reminded the community that the Bode Integrals 
fundamentally capture and quantify, in the frequency domain, the challenge of designing stable controllers, 
especially for unstable plants (see References I and 2). This fonnula was often used in the 19 50s and 1960s by 
earlier generations of controls engineers to synthesize single input-single output closed-loop control system transfer 
functions. In his lecture Stein goes on to comment "every control theoretician and every control engineer should 
know these integrals and understand their meaning. Unfortunately, we have not always taught them well. "This 
paper, inspired by Stein's Bode Lecture, documents some recent applications of the Bode Integrals to modem 
control system design. One motivation for the NASA Engineering and Safety Center (NESC) sponsorship of this 
work was to capture and disseminate these classical design principles in a tutorial manner for the Guidance, 
Navigation & Control (GN&C) Community of Practice on line teaming site. 

Use of Bode Integrals as a control system design tool clarifies in an elegant way the connection between open-loop 
stability margins, closed-loop bandwidth, and disturbance rejection. Its application to a satellite disturbance rejection 
design provides clear (but to some extent, unexpected!) insights for trading off spacecraft attitude pointing 
perfonnance against control bandwidth. The result sometimes opposes the 'conventional wisdom' for maximizing 
closed-loop performance by maximizing the bandwidth subject to a constraint of preserving reasonable open-loop 
classical gain and phase stability margins. More importantly it shows that there is a strong tradeoff between 
disturbance rejection below the controller design bandwidth, and disturbance amplification in the 'penalty region' 
just above the design bandwidth. For many classes of satellite disturbance signals -- for example, star-tracker noise, 
uncompensated magnetic torquer inputs, etc. -- this tradeoff may dictate, counter-intuitively, that the best pointing 
performance is realized at a bandwidth appreciably below the maximum value obtained under standard gain-and­
phase margin constraints. The primary objective of this paper is to provide real world design examples including 
NASA'~ NuSTAR and SORCE spacecraft, to realistically illustrate the Bode Integral theorem and its application to 
spacecraft Attitude Control System (ACS) tuning. A secondary objective is to bring the relevance of the Bode 
Integral to light for the current generation of controls engineers. 

The paper is organized into several additional sections. Section II provides a brief refresher on SISO transfer 
functions and stability margins. Section Ill summarizes the use of the Bode Sensitivity Integral with an illustration 
of disturbance rejection for a simple satellite reaction wheel attitude control system. Section IV builds on these 
results, using a more complex example from the NuSTAR satellite science-mode control system. Section V provides 
a very brief summary of results from tuning the attitude control loop of the SORCE satellite using the Bode 
Sensitivity Integral. Section VI treats the effect of pronounced open-loop plant instability in a comparative way 
using a set of three different aerodynamic vehicle plant dynamics. Section VII provides an example of re-tuning 
both the sensitivity and complementary sensitivity functions of the lNSAT satellite's Non-Minimum-Phase roll/yaw 
attitude controller. Section VIII provides a summary and lessons learned from the design examples. Finally, the 
Appendix of this paper provides a detailed mathematical description of the Bode and Poisson (for the case when 
both poles and zeros exist in the RHP) integrals. It also provides a comprehensive and more general development of 
frequency-domain integral constraints for stable, unstable and Non-Minimum-Phase plants. The Appendix is 
organized as a self-contained section for ease of reference. 

II. Transfer Functions and Stability Margins 
Consider the basic Single-Input Single-Output (SISO) feedback control system shown in the block diagram in 

Figure I. The transfer function of the controller is C(s) and that of the plant is G(s). The inputs to the system are the 
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command or reference signal r, the load disturbance d, and the measurement noise 11 . The process output is x, the 
error signal to the controller is e, and the controller output command is u. 

+ . .I' 

Figure 1. Single-Input Single-Output (SISO) feedback control system. 

Define the open-loop transfer L(s), the sensitivity function S(s), and the complementary sensitivity function T(s) 
as follows: 

The open-loop transfer L(s) can be written as: 

L(s) = G(s) C(s) 

1 
S(s) = 1+ L(s) 

T(s)= L(s) 
l + L(s) 

L(s) = L (s) e -n 
0 

where -r is the time delay in the loop and L0 (s) is a proper rational transfer function. The open-loop transfer function 
describes how the system output x would respond to an input r if the feedback loop were not closed. Bode or 
Nyquist plots of the open-loop transfer function are commonly used to determine the stability margins of the closed 
loop system. 

As mentioned above the complementary sensitivity function T(s) is the closed-loop transfer function. It describes 
how the system output x will respond to an input r when the feedback loop is closed. The desired form of closed­
loop transfer function is with unity gain and zero phase shift at low frequencies so that the reference input r is 
tracked perfectly. The desired amplitude of the closed-loop transfer function rolls off at frequencies that are higher 
than the system bandwidth in order to tilter out sensor noise. The Bode and Poisson integrals are used to study the 
constraints on selecting the closed-loop system bandwidth. 

The sensitivity function S Ow) is simply the ratio of the output of the closed-loop system to that of the open-loop 
system. The sensitivity function tells how the variations in the output are influenced by feedback. At low frequency, 
a large magnitude of the open-loop transfer function causes the sensitivity to be small. This provides good load 
disturbance rejection and reference tracking. At high frequency, a small loop gain is used to avoid amplifying 
measurement noise. 

The conservation theorems expressed with the Bode and Poisson integrals are useful for investigating the 
limitations on achievable closed-loop performance and stability. As detailed in the Appendix the integrals quantify 
the 'waterbed effect', i.e., improving the disturbance attenuation of controllers at some frequencies results in 
disturbance amplification at other frequencies. This 'waterbed effect' is notionally illustrated in Figure 2, taken from 
Stein's Bode Lecture. The Bode and Poisson integrals are conservation laws (Ref. I). "The integrated value of the 
log of the magnitude of the sensitivity function is conserved under the action of feedback. The total amount of this 
quantity is always the same. It is equal to zero for stable plant/compensator pairs, and it is equal to some fixed 
positive amount for unstable ones." Similar comments apply to the complementary sensitivity function. The 
combination of RHP poles with non-minimum phase (NMP) zeroes, or time delays, increases the value of the 
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integrals. These integral constraints impose fundamental limitations on what can be achieved with feedback control 
(Ref. 5). 

Ln! S(jw) I 

0 

w 
Figure 2: Notional Depiction of the 'Waterbed Effect' (from Ref. 1) 

III. Summary of Bode Integral and Simple Application to Satellite Reaction Wheel Attitude Control 

Bode's integral theorem, originally developed for feedback amplifier design in the l 930's, may be stated per 
below: 

Jo00 

log(S(jw) dw= Jo00 

log(l/ (l + L(jw)) dw= 1t I Re(pc) Eqn(l) 

where S is the sensitivity transfer function I / ( I +L); and the summation is over the range of unstable poles of L(s). 
See Appendix A for more details. Note that for a stable plant-plus-compensator L(s), the integral evaluates to 0. 
The original statement of the integral theorem, published in 1945, assumed a stable plant-plus-compensator and the 
right-hand side was identically zero. Reference l, the Bode Lecture by Gunter Stein, includes a discussion of 
additional contraints for unstable plants and this topic is extended in the Appendix of the current paper. 

As stated, this integral defines a conservation law. We define the open-loop transfer function ( "L" above) as the 
product C(s)•G(s), where the transfer function of the controller is C(s) and that of the plant is G(s). The integral 
places constraints on our ability to modify the control system loop-shape by simply retuning the parameters in the 
controller transfer function or even by changing its basic fonn. 

The conservation effect is best illustrated by example. In this section, a typical reaction-wheel control system is 
used to show the effects of the conservation constraints on controller performance. Note that this example (and the 
NuSTAR satellite one which follows) are stable plants for which Bode's integral ofS(s) evaluates to zero. An 
example of an unstable plant (aerodynamic vehicle) is also provided for reference in Section V while the subsequent 
INSA T satellite controller of Section VI - which is strongly non-minimum phase - illustrates extensions to the 
conservation theorems needed for right-half-plane zeros. Figure 3shows a schematic of a generic control system for 
a reaction wheel. This controller is conceptually similar to speed-control loops used by both SORCE and NuSTAR. 
Here the basic torque command from the wheel is integrated to produce a scaled speed command; the speed 
command itself is realized and controlled via a simple proportional-plus-integral controller. 
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Figure 3: Schematic of Full Wheel-Speed Control Loop (Including Noise and Torque Disturbances and 
Generation of Speed Command from Torque Command) 

Note that the integral of Equation 1 is a scalar function, where SGw) or S(s) defines an input from a specific 
disturbance to a specific controlled variable. For this example - as well as the more complex example for NuSTAR 
in the following section - the focus will be on a fundamental torque disturbance input and a primary outer-loop 
output. In order to illustrate the integral it is useful first to graphically isolate the primary inputs and outputs, with a 
goal of defining a scalar loop gain which in turn can be de-composed into a plant (including actuation, measurement, 
Jags etc) and the control law which provides the design degrees of freedom. 

Figure 4 below shows the overall wheel control system simplified to represent just the torque rejection portion of 
the task, for a given reference speed command. At a constant reference speed command (or zero spacecraft wheel 
torque command) the remaining control task here is to miminize variations in the total wheel torque - sum of wheel 
motor torque and friction torque - which will be reacted to the spacecraft. For example a constant friction torque 
needs to be countered on a long time scale by an equal and opposite motor torque to null the net reaction torque to 
the spacecraft. Thus the relevant disturbance rejection transfer function here is from input I (the wheel friction 
torque) to output I {the total wheel torque, which will be reacted to the spacecraft). We would expect that at low 
frequencies this transfer function would have very small gain, and at high frequencies the transfer would approach 
unit. This is a standard characteristic of a sensitivity transfer function. 
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figure 4: Reaction Wheel Controller Specialized to Torque-Disturbance Portion of Design 
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Figure 5: Reaction Wheel Disturbance Rejection Schematic, in Standard Form (Sensitivity Transfer 
Function S(s) Defined by Input 1 to Output I ) 

· Figure 5 above clarifies this problem setup further, showing that the needed loop gain to evaluate Bode's integral 
can be read off now as the product of all the transfer functions in series for the single loop system. By inspection the 
disturbance rejection sensitivity transfer function S(s) is simply 1/(1 +L(s)) where L(s) is the total loop gain. Here, 
L(s) consists of the plant transfer function elements (wheel dynamics, integrations, measurement dynamics and 
processing lags) as well as the controller transfer function labeled G_c and the tachometer filter. The degrees of 
freedom available here are the controller transfer function and the tach. filter. In the rest of this section the effect of 
the controller transfer function will be assessed and related to the Bode Integral. (Note that with this same problem 
setup, the external input-I and output-I is commonly defined also as the reference command-input to physical-error­
signal output, a llowing the sensitivity transfer function to describe command-tracking performance rather than 
environmental disturbance rejection.) 

Figure 6 compares the stability properties of several different control-bandwidth designs. Note that the higher­
bandwidth designs ( 100%, 125%) still preserve reasonable gain and phase margins. Intuitively we might expect that 
the higher- bandwidth design has the best perfo nnance, but the sensitivity transfer function of Figure 7 clearly 
shows that the higher bandwidth controller has better performance - defined as disturbance rejection -- only in the 
low-frequency range. (Note that the tabulated margin bounds in Figure 6 , columns 3 and 5, are actually drawn 
from the peak ' Ms' and the formulae in Appendix A, for the sensitivity transfer functions whic~ are plotted in 
Figure 7.) 
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5.7 23.7 34.8 
4.0 17.5 26.0 

Figure 6: Reaction-Wheel Controller Margins as Function of Gain (Bounds from S(s) Peak, per Appendix A) 
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Figure 7 shows the low-frequency performance improvement for higher bandwidth (about 5-10 db more disturbance 
attenuation. This suggests as expected that the extra bandwidth is more effective in nulling the effect of low­
frequency or constant-offset wheel friction torques. The more important result is in the "penalty region" of the 
Figure. This shows that the high-bandwidth design will have appreciably worse disturbance rejection in that region 
between 1-2 rad/sec. Further bandwidth increases would make the peaking of the penalty region even worse. 
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Figure 7: Comparison of Reaction Wheel Disturbance Rejection vs Control Bandwidth (Sensitivity Transfer 
Function and Disturbance Output for 50%, 100%, and 150% Design Bandwidth) 

In many practical control systems the spectrum of disturbances may be appreciable in the 'penalty region' where 
S(s) is greater than unity, clearly indicating a point of diminishing or negative returns on performance even if 
classical margins are still acceptable. This rapidly-increasing peaking of S(s) - a closed-loop quantity -- is not 
evident from the more commonly-used margin-based tools (like Nichols charts) which focus on open-loop 
compensated response. In Figure 7, the time responses for the three different-gain controllers are computed from 
input I to output I as shown in Figure 5. The time-domain disturbance is a fairly notional one which still captures 
features common in satellite or reaction-wheel control - in this case, a three-component disturbance comprising DC 
or 'near-orbit-rate' disturbance at 5 mNm; 'high-frequency' disturbance near the 1.5 rad/sec penalty region at 2.5 
mNm; and 'mid-frequency' disturbance at 0.15 rad/sec also at 2.5 mNm rms. 

Note that ali three of the controllers have successfully rejected most of the low-frequency and mid-frequency 
components. The higher-gain control, however, strongly amplifies the high-frequency disturbance. Note also ·that 
this amplification is present even for a moderate-gain design possessing 'reasonable' classical margins; here, near 
8dB and 45 deg for the 100% bandwidth design. The best-performing controller here (in the sense of lowest­
transmission feedthrough of external wheel torques) is actually the lowest-gain one - which also has the highest 
classical margins. 

The clear message here is that the sensitivity transfer function may be used very profitably when directly coupled 
with information on the spectrum of disturbances. For example if the input was dominated by low-frequency and 
mid-frequency torques, the 100% bandwidth {rather than 50% bandwidth) controller might be more appropriate. 
When a range of controllers has acceptable margins, the most-suitable one for disturbance rejection will not depend 
solely on maximizing bandwidth, but in addition will depend on an assessment of the characteristics of the S(s) 
penalty region along with the disturbance spectrum. Use of the closed-loop characteristics for a range of designs 
makes these tradeoffs completely transparent. These results suggest that the common industry tuning practice of 
focusing mainly on open-loop classical margins and maximum bandwidth, may usefully be expanded to include the 
closed-loop sensitivity transfer function and the disturbance spectrum. 

Finally, for reference Figure 8 shows the conservation of the sensitivity transfer function , and provides some 
mathematical justification for the shift in the disturbance rejection trend across frequency. Improvements in low­
frequency performance will always be accompanied by worse performance near the design bandwidth. This is a 
fundamental limitation of control design. If the low-frequency performance of a lower-bandwidth design is already 
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acceptable, it may actually a better overall design than a higher-gain controller - even if both preserve reasonable 
classical stability margins. · 
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Figure 8: Confirmation of Conserved Value for. Bode Integral, for Range of Control-Gain Designs 

i IV. Closed-Loop Transfer Function Tradeoffs for the NuSTAR Science-Mode Control System 

The Nuclear Spectroscopic Telescope Array (NuSTAR) scientific observatory will use high-energy X-rays to detect 
black holes and other energetic phenomena in the universe. Scheduled for a February 2012 launch int<? Low Earth 
Orbit (LEO), the NuSTAR satellite (see artist's depiction shown in Figure 9) is being built by Orbital Sciences under 
a contract from the California Institute of Technology and the Jet Propulsion Laboratory. NuSTAR has a highly­
directional inertia tensor, with the slender axis along the its deployable mast exhibiting a moment-of-inertia two 
orders of magnitude lower than the other principal axes. Such systems are often designed with a higher­
bandwidth for the lower-inertia axis, in order to reject coupling torques from commands to the other axes. Initial 
ACS design work fo r NuSTAR proceeded in this direction, which of maximizing the· bandwidth subject to 
maintaining minimum gain and phase stability margins in the range of 6-8 dB and 30-45 degrees. 

Figure 9: NuSTAR Satellite 
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Figure 10 depicts the typical disturbance spectrum ranges for NuSTAR (which are typical for science-mode LEO 
satellites) as well as sensitivity transfer functions for a range of controllers. These controllers span the practical 
range of useful bandwidth, above which the classical margins would be too low. This figure parallels the sensitivity 
transfer function sets described for the reaction wheel-controller of Figure 7, but it shou Id be noted that the analysis 
model here is high-order, including modes and a 16-state torque filter. More importantly, the notional disturbance 
spectrum ranges are also included here, and the value of plotting S(s) along with the input spectrum is clear. In the 
area of typical low-frequency torques, all of the controller designs exhibit good roll-off - 20-40 db or more of 
attenuation. In the S(s) "penalty region" near 0.1 Hz, there are appreciable unmeasured disturbances; this 
immediately suggests that lower-gain controllers may be most-appropriate. 
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Figure 10: Sensitivity Transfer Function and Disturbance Spectrum Range for Nu ST AR 

Figure 11 below illustrates how the increased gain in the penalty region affects the output spectrum. In Figure 11, 
two detailed contro l tunings are checked, which cover the general range from the '50%' to ' 100%' tuning of Figure 
IO. For NuSTAR there is appreciable and broadband disturbance energy from near orbit-rate up to about 0.05 Hz, 
and then very strong tonal disturbance energy near 0.1 Hz. From this information, along with the knowledge of the 
peaking in the S(s), we would expect the higher-gain controller to have somewhat better low-frequency response but 
much worse response near 0.1 Hz. The right-hand plot of Figure 11, containing the output disturbance response, 
confirms this. The higher-gain control has pronounced narrowband response near 0.1 Hz, which is an unavoidable 
consequence of the combination of peaking in S(s), and finite input energy near this frequency. In fact, further 
bandwidth increases would worsen this tonal response near 0.1 Hz. These results show that the higher-gain tuning is 
already at the point of diminishing returns with respect to disturbance rejection. In addition, the response at 0.1 Hz 
in a sense is worse than a tonal response of similar magnitude in the range of 0.01 to 0.05 Hz, because the 
corresponding jitter or rate response increases with the first-power of frequency. Hence it was decided to adopt the 
lower-gain controller, which had better linear margins as well as much-reduced high-frequency disturbance 
response. Again the use of the sensitivity transfer function makes this tradeoff c lear. Finally, it shou ld be noted that 
the tuning does not use the Bode Integral itself, but rather focuses on the sensitivity transfer function and the input 
and output spectra. The Bode Integral is 'lurking in the background,' though, because this integral places a hard 
constraint on the allowable ~ of S(s). For this application, the integral dictates that the improvement in 
disturbance rejection at lower frequencies comes at a strong cost in undesired tonal response near 0.1 Hz. 
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Figure 11: Sensitivity Transfer Function and Spectrum of Pointing Error 
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V. Designing to Minimize Closed-Loop Disturbance Amplification for the SORCE Satellite 

Figure 12: SORCE Spacecraft 

The SORCE (SOiar Radiation and Climate Experiment) 
spacecraft was launched in 2003 and is currently operating 3 
years past its design lifetime. SORCE is a NASA-sponsored 
mission that is operated by the Laboratory for Atmospheric 
and Space Physics CLASP) at the University of Colorado CCU) 
in Boulder, Colorado. Orbital Sciences developed the vehicle 
bus (artist's depiction shown in Figure 12) for this mission, 

· and the science-mode ACS design proceeded in several 
phases. The performance changes improvements resulting 
from several ACS re-turnings are illustrated in Figure 13. 

Initial work consisted of adjusting the PIO gains from a 
preliminary baseline value to maximize margins; the 
performance benefit is appreciable here, and is shown by the 
difference in the pointing error between the first subplot and 
the second subplot. The goal of this re-tuning was a fairly 
typical one: maximize the control bandwidth while preserving 
generous stability margins of 8 db and 45 deg. The horizontal 
boundaries of each subplot define the notional pointing error 
requirement, which was met but not with much margin. 

Examination of the results from Figure 13, which were developed using a high-fidelity flight simulation, reveals 
that the pointing errors for the middle sub-plot were actually being driven by external noise. SORCE employs a 
gyro- less science mode control system using data from two star trackers, and the attitude rate reference is formed 
from an averaged, divided-difference of tracker measurements. The spectrum of star tracker noise lies in the 
penalty region for the sensitivity transfer func tion (the region of S(s) >I), and increases in the control gain to 
increase bandwidth and move the penalty region well-above this spectrum were not feasible due to stability 
constraints. This suggested that further performance improvement might be possible by a significant decrease in 
control bandwidth. The third subplot shows this effect, revealing that a substantial bandwidth reduction of 50% 
provided much better pointing performance. SORCE has been flying with a reduced bandwidth (relative to original 
tuning) for the last 7 years and is meeting all its science requirements. 
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Figure 13: SORCE Pointing Error Improvement for Successive Retuning (Bandwidth decreased by SO% 
between Second and Third Tuning) 

VI. Effect of Unstable Aerodynamic Vehicle Plant Dynamics 

As noted earlier, increasing plant instability makes the control design task fundamentally more difficult; this point is 
discussed at length in the Bode Lecture (Ref. 1) as well. Loosely speaking, a controller for a plant with a high 
degree of open-loop instability will tend to have poorer disturbance rejection and poorer stability margins than a 
stable plant at similar bandwidth. The constraint implied by the Bode Sensitivity Integral for unstable plants will 
dictate that the ' penalty region' where the sensitivity exceeds unity is greater than it is for a stable system with the 
same bandwidth. 

Plants which are highly unstable will tend to exhaust all the design degrees of freedom just in the effort to stabilize 
the plant dynamics, with no leverage left over for other useful goals such as improving disturbance rejection. This 
effect can be seen in Figure 12. Compensated open-loop Bode magnitude and phase responses for L(s) are provided 
Figure 14 for a plant-plus-compensator set representative of booster or missile dynamics. Low-order airframe 
modeling is discussed in detail in Reference I 0. Three different vehicle dynamics cases - ranging from stable to 
very unstable - are illustrated in the Bode plots. 

A linear model for the vehicle dynamics typically includes a lightly damped complex pole pair (for the stable 
airframe) or a pair of real-axis poles of similar magnitude, one of which is in the RHP (for the unstable airframe). 
For a severe enough degree of instability the plant may not be stabilized in the sense of preserving classical margins. 
The different degrees of instability spanned by these three airframe cases show the progression of increasing design 
difficulty. At similar control bandwidth the margins decrease progressively going from Case! to Case 3 (see Figure 
14) as the degree of instability increases. The gain margins for Plant 3 (at near 4 db at both high and low frequency) 
are already constraining the design and cannot be improved much -- and there is no real freedom left to address 
tracking or disturbance rejection. The corresponding sensitivity transfer functions (see Figure 15) provide a similar 
message and show the integrated constraint imposed by instability. The 'penalty region' and area of worsened 
margin is broader and higher for the most-unstable plant; simultaneously the low-frequency disturbance rejection is 
also the worst. In other words, the increased area of the penalty region is not available to improve low-frequency 
tracking or disturbance rejection in the unstable case. 
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Table J: Plant Dynamics & Cont roller Dynamics (Three Cases of Differe nt Degrees of Airframe Instability) 

Case 

1) Stable 

2) Unstable but 
Acceptable 

3) Unstable and 
Unacceptable 

Dynamics 

150(.\'T0.936) 

(.\'
2 + ,o; + 60) 

150 (.\'+ 1.06-') 

h + M.262) (.,·- 7.262) 

l ~O (s+ 1.12k) 

( .\'+ I l..1 7,C., -111..17) 

Controller 

0. 11263 (.\' + 6) 

,o; 

0.15222(.-;+6) 

.'i 

0.1720 1 (s+6) 

.,· 

The transfer functions for the plant dynamics and the controllers for the three cases are provided in Table 1. The two 
elements of the control system that are common to all three cases include an actuator for which the transfer function 
is: 

15790 

(s2 + 150.Ss+ 1.579x 104
) 

as well as the lumped system lag transfer given by: 

(s2 -300s+3x I04 ) 

(s2 +300~·+3x 104) 

Eqn (2) 

Eqn (3) 

The lag transfer function in Eqn.(3) is essentially a simple model for a number of system elements lumped together: 
the gyro dynamics, the gyro internal filtering, messaging on the vehicle's data bus to receive and unpack the gyro 
data and a continuous model of the zero-order hold. For a typical of a medium-performance system these individual 
lag effects can be rolled up into a single lag model of approximately 20 mi Iii-seconds. A higher-order control design 
and analysis process would include individual transfer function models for gyro dynamics, filtering, computational 
delays, sampler models, etc. 

This result provides strong mathematical justification for the long-established design dilemma for flight control of 
unstable vehicles: often the plant instability and lags are so constraining that it is all the control designer can do just 
to stabilize the airframe. Once the airframe is stabilized there may be little design degrees of freedom left for other 
goals such as load relief or increasing response speed. If better tracking or disturbance rejection is required, we 
should not expect any further 'magic' from control design by itself. The only recourse for the designer to truly 
improve closed-loop response may often be to improve the plant itself, by use of higher sample rates, higher­
bandwidth actuators, tighter management of the center-of-gravity envelope, etc. The process of 'impro,.,ing or 
managing the plant dynamics' is really a process of requirements management. This is a Systems Engineering 
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function which is important to establish very early in a vehicle development program. Plotting of the sensitivity 
transfer functions and associated integral constraints, for a range of vehicle dynamics options, is a tool which the 
GN&C engineer can profitably use to develop and communicate subsystem requirements to the rest of a 
multidisciplinary design team. 
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Figure 14: Open-Loop Compensated Gain-Phase, Margins, for Different Degrees of Airframe Instability 
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Figure IS: Sensitivity Transfer Function for Different Degrees of Airframe Instability 

VII. Illustration oflntegral Constraints for Non-Minimum-Phase Spacecraft System: INSAT 
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The lnsat-1 satellite system provided TV broadcast, telecommunications, and meteorological services to India 
from Geosynchronous orbit starting in the early 1980s. Star trackers and long life gyros were not available for 
commercial satellite attitude control systems during that time period. Horizon sensors were used to provide pitch and 
roll attitude sensing during normal on-orbit operation. The example considered in this section is concerned only 
with the normal·mode roll/yaw control system; it is an unconventional design because it includes a non-minimum-
~~ uro. . 

Insat-lA was launched into geosynchronous orbit (GEO) by a Delta expendable launch vehicle in April 1982. 
The on-orbit attitude control system consisted of a small variable speed wheel aligned with the yaw axis, two larger 
variable speed momentum wheels canted off slightly from the pitch axis in the pitch-yaw plane, redundant horizon 
sensors to measure pitch and roll errors, and an assembly of hydrazine thrusters to provide momentum desaturation 
torques and stationkeeping thrust. Varying the pitch momentum wheel speed ±5% about a nominal bias value 
controlled the pitch attitude. Roll attitude was actively controlled and roll/yaw nutation was damped by varying the 
angular momentum along the yaw axis. The pitch momentum bias of the wheels provided yaw restraint and, together 
with the orbital kinematics, transferred yaw errors into roll for correction by the yaw momentum control system. 
Excessive accumulation of angular momentum on the wheels due to secular environmental torques was prevented by 
firing a short pulse from a hydrazine thruster. The pitch axis momentum bias and the roll/yaw desaturation deadband 
were determined by pointing accuracy requirements and the disturbance torques acting on the spacecraft. 

Figure 16: Artist•s View ofINSAT-lA Satellite 

The non-minimum-phase control law was originally proposed for LEO spacecraft in 1967 (Ref. 8). The controller 
transfer function from the measured roll attitude to the commanded yaw axis wheel momentum is: 

C(s) = K(l-s-rr) 
· s (l + s-rP) 

Eqn (4) 

This control system design has been implemented on many geosynchronous communications satell ites, including 
INSAT, ARABSAT, and GOES spacecraft. Representative spacecraft and control system parameters are taken from 
Reference 9, Chapter 9.2, entitled "Attitude Control Design for a Bias-Momentum Stabilized Spacecraft''. For this 
example the moments of inertia are {/.u = 3026, fyy = 440, I :: = 3164} kg·m2

• The pitch axis bias momentum is Ho= 
91.4 N·m·s which gives a nutation frequency of 2.954 E-02 rad/sec. The orbit rate roll/yaw coupling frequency is 
7.292 E-05 rad/sec. Ignoring the high frequency flexible body dynamics, the numerical plant transfer function from 
yaw axis wheel momentum to roll attitude is: 

9.5267(s· 7.2
9li) (s + 7.2

9li) 
105 105 

G~-~~~~~~~~~~~-

io6(s · -29_48 __ i )(s+-29_48 __ i )(s· -'.2_68 __ i )(s+-1.2_6_8_i ) 
101 101 105 105 

Eqn (5) 
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The values for the controller parameters used in Reference 9 are K=0.236 N·m/rad, -r: = 193.45 sec, and lj, = 48.36 
sec. The root loci using these baseline parameters are shown in the following Figure 17. 

Ina 
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Figure 17: Root Loci for the Non-Minimum-Phase Zero Control System. 

The small-scale figure on the left hand side shows that the roll motion is well controlled with a damping ratio of 
approximately 0.7 and that the higher frequency nutation dynamics have approximately the same settling time but 
with a damping ratio of about 0. 17. The non-minimum-phase zero causes the roll dynamics locus to cross into the 
right half plane as the gain increases; this would ultimately cause the roll root to become unstable. 

The large-scale locus on the right shows an expanded region around orbit frequency. Even though the imaginary 
pole is smaller than the imaginary zero, the locus departs into the right half plane and never comes back into the left 
half plane. This occurs because the loop gain is negative. The closed loop unstable orbit rate roots are located at 6.69 
E-09 +/- 7.29 E-05 j which corresponds to a time constant of 4 % years. Although the real part is very small, the 
orbit rate root must be stabilized with an outer loop to provide momentum desaturation. INSAT I A flew with a mass 
expulsion desaturation system but the mission was abandoned after a year and a half when its attitude control 
propellant was exhausted. An alternate magnetic system using an environmental torque estimator was subsequently 
proposed to provide momentum desaturation (Ref. 7). 

The sensitivity and complementary sensitivity transfer functions for the controller using these baseline parameters 
are shown with dashed lines in the Figure 18. The sensitivity function displays good low-frequency disturbance 
rejection except at orbit rate where there is no attenuation of disturbances. This agrees with the root locus result that 
showed a small positive root at orbit rate. The performance of the closed-loop system is worse than that of the open­
loop system in the decade from 0.0026 to 0.0262 rad/sec. Disturbances in this frequency range would be amplified 
because the sensitivity is greater than unity. The maximum value of the sensitivity is Ms = 2.36. Using the 
relationships between the maximum sensitivity and the lower bounds of the gain and phase margins given in the 
appendix: 

and ;, ~ 2ArcSin [ - • - ] = 24.5 deg 
m 2Ms 

Eqn (6) 
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Figure 18: Baseline Sensitivity and Complementary Sensitivity Functions 

The actual margin, gm = 4.86.dB, is only slightly larger than the lower bound estimate of 4.79 dB. However the 
actual phase margin, ¢m = 5 I .7 deg, is more than twice as large as the lower bound estimate of 24.5 deg. The 
stability of the control loop could be improved to have a gain margin closer to 6 dB if the sensitivity function were 
retuned to decrease its peak value. 

The closed-loop bandwidth is defi ned as the frequency where the complementary sensitivity function crosses 
through 3-dB from above. The bandwidth of0.0316 rad/sec is sufficiently large to provide nutation damping. At 
higher frequencies the complementary sensitivity rolls off steeply at 60 dB per decade. This provides excellent high 
frequency horizon sensor noise attenuation. However the complementary sensitivity is greater than unity for more 
than a decade at lower frequencies. In fact it has 2 peaks: IT(.0075)1 = 1.40 and IT(.025)1 = 1.59. Retuning the 
complementary sensitivity to reduce these peaks would improve control system performance within 'the bandwidth. 

The Bode integrals impose constraints on reshaping the sensitivity and complementary sensitivity functions to 
improve stability and performance. There are no RHP poles but there is a non-minimum-phase zero located at 11-r:. 
The Bode Integral for Sensitivity is: 

Eqn (7) 

This is simply a restatement of the waterbed effect; reducing the Ms peak value will require broadening the range 
over which sensitivity is greater than unity. The control loop left hand plane pole at 1/-rp determines the low 
frequency end of this range. Increasing i"p will stretch out the region where the function ISOw)I> land thereby reduce 
its peak value due to the waterbed effect. The reduction in Ms will result in an impr~vement in stability. 

The open-loop transfer function has no time delays and has only a single pole at the origin of the complex plane. 
Consequently the Bode Complementary Sensit_ivity Integral is: 

001 I I ;r r -LoTOw) dw= n-r - -
Jo 1 . ' 2k 

W V 

where k = O.OllK 
I' 

Eqn (8) 

Decreasing the integrated area under the curve can reduce the peaks in the complementary sensitivity function. This 
can be accomplished by decreasing the control loop's proportional gain, K, which in turn will reduce the· velocity 
constant, k v. The value of the Bode integral will thus be reduced because the velocity constant appears in the 
denominator of a negative term. · 

For example, the transfer functions can be retuned to achieve better stability and performance by increasing Tr by 
20% and decreasing K by 10%. The sensitivity and complementary sensitivity transfer functions for the controller 
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using these revised parameters (solid lines) are compared to those with the baseline parameters (dashed lines) in the 
following Figure 19. · 
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Figure 19: Comparison of Sensitivity and Complementary Sensitivity Functions for the Baseline and the 
Retuned Designs 

The peak sensitivity has been reduced from 2.36 to Ms= 2.07 primarily due to the increase in 'rp. This caused the 
gain margin to increase by 1.12 dB to gm= 5.98 dB and the phase margin to increase by 3.0 deg to i/>m = 54.7 deg. 
The penalty associated with this improvement in stability is that the low frequency disturbance attenuation has been 
slightly degraded. Decreasing the loop gain reduced the area under the complementary sensitivity and caused the 
curve to be more balanced about unity within the control system's bandwidth. The complementary sensitivity peaks 
were reduced to IT(0.0052)1=1.18 and IT(0.026)1=1.38. The closed-loop bandwidth was slightly reduced to 0.03 12 
rad/sec which has a negligible effect on performance 

VIII. Conclusions 

This paper has addressed frequency-domain constraints for control design, from an applications perspective. 
Significant additional material on the theory for these constraints is provided in the Appendix. The applications 
results suggested the fo llowing trends: 

~ There is a strong payoff for using the closed-loop transfer functions (sensitivity and complementary 
sensitivity) together with the input disturbance spectrum. For several of the satellite examples 
considered, improved performance was obtained by a gain reduction even though the classical margins 
for higher-gain designs were already acceptable. The shape of the sensitivity transfer function in the 
'penalty region' above unity (zero dB) provides clarification of cases where better overall disturbance 
rejection may be achieved with lower gain. In general, these cases may occur when there is significant 
disturbance energy near the penalty region. 

~ As noted also in the Bode Lecture by Stein, unstable plants place appreciably more severe restrictions 
on the shape of the closed-loop transfer functions, than do stable ones. The flight control example 
Section VI showed that for increased degree-of-instability the design degrees of freedom tend to get 
completely exhausted by the stabilization task, with minimal leverage available for other tasks such as 
load relief or improved tracking. 

);a, Extensions to the Bode integral constraints are available (see the Appendix) which address additional 
issues such as Non-minimum-Phase plants with the additional complication of unstable poles. The 
Poisson integral constraints show why neighboring right-half-plane poles and zeros are exceptionally 
constraining, and should be 'designed-out' or avoided. 
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· )> The Bode Integral theorems 'lurk in the background' and control the shape of the achievable open-loop 
and closed-loop transfer functions which the designer may work with more directly. Constraints from 
the integrals place fundamental bounds on the shape of the sensitivity and complementary sensitivity 
functions and these constraints cannot be evaded by high-end mathematical control design strategies. 

)> The integral constraints (for unstable plants in particular) may provide guidance early in the systems 
design process for areas where the plant aynamics may profitably be improved. The constraints will be 
useful early in the Systems Engineering process to levy balanced requirements on areas such as latency, 
bandwidth, and the allowable degree open-loop instability. 
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Appendix A - Bode and Poisson Integrals 

I-A Conservation Laws in the Frequency Domain 

SOME linear systems are inherently difficult to control. The greatest limitations on stability and disturbance 
rejection are related to the presence of poles and zeroes in the right half-plane (RHP) and time delays. Control . 

loop performance, in terms of stability and disturbance rejection, is commonly analyzed in the frequency domain. 
Loop design can be viewed as tuning the sensitivity and complementary sensitivity transfer ~unctions to achieve 
stability and disturbance rejection goals. Stability is related to the peaks of these transfer functions . Rolling off the 
transfer functions in certain frequency ranges detennines disturbance rejection. The Bode and Poisson integrals of 
these transfer functions determine the limitations of loop shaping. 

The integrals quantify the 'waterbed effect', i.e., improving the disturbance attenuation of controllers at some 
frequencies results in disturbance amplification at other frequencies. The Bode and Poisson integrals are 
conservation laws (Ref. 1). "The integrated value of the log of the magnitude of the sensitivity function is conserved 
under the action of feedback. The total amount of this quantity is always the same. It is equal to zero for stable 
plant/compensator pairs, and it is equal to some fixed positive amount for unstable ones." Similar comments apply 
to the complementary sensitivity function. The combination of RHP poles with non-minimum phase (NMP) zeroes, 
or time delays, increases the value of the integrals. These integral constraints impose fundamental limitations on 
what can be achieved with feedback control (Ref. 5). 

II-A Transfer Functions and Stability Margins: 
Consider the basic single-input single-output (SISO) feedback control system shown in the block diagram below. 

The transfer function of the controller is C(s) and that of the plant is G(s). The inputs to the system are the ~ommand 
or reference signal r, the load disturbance d, and the measurement noise n. The process output is x, the error signal 
to the controller is e, and the controller output signal is u. ,, ,, 

,\' + + 

Figure 1. Single-input single-output (SISO) feedback control system. 

Define the open-loop transfer L(s), the sensitivity function S(s), and the complementary sensitivity function T(s) 
as follows: 

The open-loop transfer L(s) can be written as: 

L(s) = G(s) C(s) 

1 
S(s) = 1+ L(s) 

T(s)= L(s) 
l+L(s) 

L(s)= L (s)e-ff 
0 
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where T is the time delay in the loop and l n(s) is a proper rational transfer function. The open-loop transfer function 
describes how the system output x would respond to an input r if the feedback loop were not closed. Bode or 
Nyquist plots of the open-loop transfer function are commonly used to determine the stability margins of the closed 
loop system. 

The complementary sensitivity function T(s) is the closed-loop transfer function. It describes how the system 
output x will respond to an input r when the feedback loop is closed. The desired form of closed-loop transfer 
function is with unity gain and zero phase shift at low frequencies so that the reference input r is tracked perfectly. 
The desired amplitude of the closed-loop transfer function rolls off at frequencies that are higher than the system 
bandwidth in order to filter out sensor noise. The Bode and Poisson integrals are used to study the constraints on 
selecting the system bandwidth. 

The sensitivity function SOw) is simply the ratio of the output of the closed-loop system to that of the open-loop 
system. The sensitivity function tells how the variations in the output are influenced by feedback. At low frequency, 
a large magnitude of the open-loop transfer function causes the sensitivity to be small. This provides good load 
disturbance rejection and reference tracking. At high frequency, a small loop gain is used to avoid amplifying 
measurement noise. Load disturbances with frequencies such that ISOw)I < 1 are attenuated, but disturbances at 

frequencies where ISOw)I > 1 are amplified by feedback. The maximum sensitivity Ms = !!sow Jll
00 

occurring at the 

frequency Wms, is thus a measure of the largest amplification of the low-frequency load disturbances. 
The conservation theorems expressed with the Bode and Poisson integrals are useful for investigating the 

limitations on achievable closed-loop stability. The maximum magnitude of SOw) is also the minimum ofl l+LOw)I. 
An alternative way to express margins is by a single number, the stability margin s,,,, which is the shortest distance 
from the Nyquist curve (shown below) to the critical point, i.e., jl +LOwJI. Therefore the maximum sensitivity is also 
a measure of robustness since Ms =tis,,,. The sensitivity peak is a more compact indicator of stability than a pair of 
gain and phase margins. 

' ' ' 

, , 

Figure 2. Nyquist plot. 

' .. Jk l (iOJJ 
I 

I 
I 

I 

The relationships between the maximum sensitivity and the lower bounds of the gain and phase margins are 
given by the following inequalities: 

g 111 ~ 20Log10( ,, :.:~ 1 ](db) nnd ¢,11 ~ 2ArcSin[ i!ts ]~ }is (rad) 
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Typical specifications for the peak sensitivity magnitude are in the range of 1.33 to 2 which corresponds 
approximately to gain and phase margins (12 dB and 45°) to (6 dB and 30°). 

The complementary sensitivity function TOw) describes how closely the output x of the closed-loop system 
tracks the reference input r and the measurement i:ioise n. At low frequency, a large magnitude of the open-loop 
transfer function, LQw), causes the complementary sensitivity to be nearly unity, thereby providing good command 
following. At high frequency the loop gain is decreased to roll off the complementary sensitivity so as to avoid 
amplifying high-frequency measurement noise. A requirement on the closed-loop bandwidth is often specified for 
the frequency that divides these two regimes. The closed-loop bandwidth is defined as the highest frequency at 
which ITOw)I crosses 11../2 {approximately -3dB) from above. 

Note that since S + T = I at any frequency, it follows that Sand T differ by no more than I. A large value of Ms 

occurs if and only if Mt = llrow )IL also is large. Classical control requirements often specify an upper bound on 

the magnitude of the closed-loop resonant peak Mt for high frequency noise rejection. A typical requirement of Mt < 
I .5 also implies that g,,.> 4.4db since 

g ~ 20Log [1 +-
1
-](db) "' .. ,lft 

In the sequel, all of the frequency-domain integral constraints are expressed as weighted areas Uf!der a 
logarithmic sensitivity or complementary sensitivity function. The weighting factors for the Bode integrals are unity. 
If both NMP zeroes and RHP poles are involved, then Poisson integrals are employed with weighting factors that are 
functions of the unstable roots and frequency. In all cases, the integral constraints can be visualized as rules 
requiring conservation of area as depicted in a plot of a logarithmic quantity vs. linear frequency. Note that this 
representation is not the same as the conventional Log-Log Bode magnitude plots where Log magnitude is plotted 
against Log frequency. 

III-A Sensitivity Integral Limitations due to Pole-Zero Excess, Time Delay and RHP poles: 
The Bode Sensitivity Integral is defined in terms of the natural logarithm of the sensitivity transfer function. The 

original formulation of the equation for stable systems is due to Bode in 1945 (Ref. 2). The integral constraint is 
called the waterbed effect because it implies that if the sensitivity is pushed down in a certain frequency range, it 
increases by an equal amount at other frequencies. The Bode integral is a conservation principle because the net area 
under the sensitivity function is conserved. If L(s) is proper (i.e., number of poles is greater than the number of 
zeroes), has no unstable roots, and there is no time delay, then the value of the integral is zero. 

where npz is the relative order or pole-zero excess (number of poles minus number of zeroes), nup is the number of 
unstable poles in the RHP, T is the time delay in the loop, and Lo denotes the natural logarithm. This result is 
independent of whether or not there are NMP zeroes. 

However, if there are unstable poles, the value of the integral is no longer automatically equal to zero. Then the 
integral of the Log Magnitude of the sensitivity function LnlSOw)I is greater than zero by ,r times the sum of the 
unstable poles. Note that in the second equation below when the pole-zero excess is unity (the degree of the 

denominator is exactly one greater than the degree of the numerator) the integrated area penalty is decreased by K!!.. 
2 

where K - Um [s L(s)]. The Bode integrals for unstable systems are: 
s-oo 
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n 
00 I L, up n r LnS(iw)rw=n1, P;-K- for T•O & n =1 Jo • 2 p: 

I 

n oo up Jo LnjS(iw)~w=n ~ p1 for T-0 & np: >l 
I 

Observations: 
• 

• 

• 
• 

• 
• 
• 

Decreasing IS Ow)I at some frequencies will increase it at other frequencies. Hence, the area under the Log 
Magnitude curve is conserved. 
The total amount of area under the LnlSOw)I vs. w curve is increased if the open-loop system L(s) is 
unstable. This places a lower bound on the bandwidth. 
The closed-loop bandwidth should be set at least twice as large as the real part of any unstable pole . 
When npz = 1, the total amount of area under the curve is decreased by increasing the high-frequency gain 
{which increases the value of K). However, the peak magnitude of the sensitivity JS(iw)I, which is inversely 
related to robustness, may also be increased. 
L(s) has relative degree n > 1 if both the plant G(s) and the controller C(s) are strictly proper . ,, 
Note that K = 0 if np, > 1. 
There is no bound on the integral.of the logarithm of sensitivity when T = 0 and n p:· - o (i.e., when there is 

' no time delay and the open-loop transfer function is improper). 

The extension of the original Bode integral to open-loop unstable systems is due to Freudenberg in 1985 (Ref. 
4). The presence of unstable poles modifies the waterbed effect. Usually this means that the peak of the sensitivity is 
larger for unstable systems than for stable systems. Note that in any frequency band where the sensitivity ISOw)j>l, 
the closed-loop system performs worse than the open-loop system. 

IV-A Additional Sensitivity Integral Limitations due to NMP Zeroes: 

For open-loop transfer functions with non-minimum phase zeroes the sensitivity function must also satisfy a 
second type of waterbed formulae. These are Poisson integral constraints and they can have a very strong influence 

on the peak sensitivity. The Poisson integrals include the effects of nuz NMP zeroes in addition to the nup unstable 

poles pr···· p of the open-loop transfer function L(s). These integrals must be evaluated individually for each 
nup 

NMP zero. Each integrand is multiplied by a weighting factor that is a function of the real and imaginary parts of the 
NMP zero. The value of the resulting integral can be expressed as a Blaschke product of the NMP zero and all of the 
unstable poles. For every NMP zero, Zk = "/k + }ok (with "/k > 0), the sensitivity must satisfy: 

for k = J, .. .... 11 
u: 

The notation p1* denotes complex conjugate of p1• For a real NMP-zero (r k • zk , ok = 0), this integral above 

simplifies to: 
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II * 
00 2 z up zli + p Io LnjsowJI k ilw =,r Ln TI . ' 

1 1 . I z -p zk+w ,= k 1 

Observations: 

for k = J, ...... 11 u: 

• For stable systems (n = 0), the right-hand side is zero so the areas of sensitivity increase and decrease are 
llp 

evenly balanced in a waterbed effect. 
• The weighting function in the integrand is positive and the product on the right-hand side is greater than or 

equal to one. Consequently, the weighted area integral of the sensitivity function will be positive if there 
are both NMP zeroes and RHP poles. 

• The excess positive area may appear in either a large sensitivity peak (decreased stability margin) or 
sensitivity that is greater than unity over a broader frequency range (decreased closed-loop performance) or 
both. 

• The right-hand side of the equation becomes very large when there is an unstable pole close to the unstable 
zero. This condition makes the system very hard to control. 

• The closed-loop bandwidth should not exceed the ' magnitude of the smallest NMP open-loop zero. 
Otherwise a very large sensitivity peak will occur, leading to fragile loops (no~-robust) and large 
undershoots and overshoots. 

• The maximum sensitivity peak should be limited in order to reduce disturbance amplification and maintain 
a satisfactory stability margin. 

V-A Complementary Sensitivity Integral Limitations due to NMP Zeroes and Time Delays: 
In contrast with the area conservation integrals for the sensitivity function, the Bode and Poisson integral 

constraints for the complementary sensitivity transfer function are influenced by time delay. Recall that the open­
loop transfer L(s) can be written as: 

L(s) = L (s) e -n 
0 

where r is the time delay in the loop and L0 (s) is a proper rational transfer function. The integral constraints for the 
complementary sensitivity transfer function are also influenced by NMP zeroes whether or not there are unstable 

poles. Assume that L(s) has n ,,: ~ 0 non-minimum phase zeroes (counting multiplicity) z
1 

...... z . 
nut 

Then, the sensitivity function TOw) satisfies 

co 1 I I nuz 1 HT J. -Lo TOw) dw =,r I-+-
o WZ i Z; 2 

co 1 I I nuz 1 ,r-r ,r Io -
1 

Ln T(jw) d w=,r ~ -+ - - -
w I Z; 2 2kV 

co 1 I I nuz 1 HT f -Ln TOw) d w=,r I-+-
Jo w 1 i z; 2 

where the velocity constant for the loop is defined as: 
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-1 
( dT(s) \ 

k == -l Um --J = + Um s L(s) 
V s-0 ds s-0 

Observations: 
• Decreasing ITOw)I at some frequencies. "'· will increase it at other frequencies. The area under the 

Lo I T(jw) I/ w2 vs. w curve is conserved. 
• The total amount of area under the curve is increased if the open-loop system L(s) has non-minimum 

phase zeroes or time delays, since the right-hand side of the equations above is increased. 
• Slow unstable zeroes and long time delays limit the upper bound on bandwidth. The closed-loop 

bandwidth should be half the size of the slowest NMP zero. 
• If L(s) does not have free integrators (i.e. T(O)- 1), then a similar relation exists, except that the 

• 

• 

1 T(jw) 
integrand is now -Lo - - . 

w2 T(O) 

If L (s) has at least one pole at the origin of the complex plane, n > 0 , then 1/L(O) = 0 and T(O) == 1. 
po 

If L(s) has only one free integrator, one can decrease the total area under the :
2 

Ln,T(lw)I curve by 

tolerating steady-state error due to a ramp input. 

• If L(s) has at least n ~ 2 free integrators (poles at 0), then the velocity constant is k = oo. This ensures 
po . V 

that the steady-state error is O for a ramp input. 

VI-A Complementary Sensitivity Integral Limita tions due to Unstable Poles in Addition to Time Delay 
and NMP Zeroes: 

The constraints on complementary sensitivity due to both non-minimum-phase zeroes and unstable right-half­
plane poles are expressed as Poisson integrals. This case also includes the effect of a feedback loop having a time 

delay T ~ 0 in addition to the n open-loop RHP poles located at p
1 

...... p where p 1 = a1 + j P1 and the 
~ ~p 

n open-loop zeroes are located at z
1 

•••.•• z 
u: nuz 

For each NMP zero the complementary sensitivity satisfies: 

For a real RHP pole (p 1 = a1, p1 = O) this ~quation simplifies to: 

Observations: 

nuz p + z· 
dw =n Ln TI -'--k +n-ra; 

k= I P1 · Z11 
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up 

American Institute of Aeronautics and Astronautics 



• 

• 

• 

• 

• 

• 

The weighting function in the integrand is positive and the product on the right-hand side is greater than or 
equal to one. Consequently, the weighted area integral of the sensitivity function will be positive if there 
are both NMP zeroes and RHP poles. 
The right-hand side of the equation becomes very large when there is an unstable pole close to the unstable 
zero. This wilt result in poor noise rejection and/or poor reference command tracking. 
A large peak in the complementary sensitivity will result if the closed-loop bandwidth is smaller than the 
magnitude of a RHP pole. 
Time delays place an additional limit on the achievable bandwidth. The effect of time delays is more 
pronounced for fast unstable poles (i.e., large a 1). 

The closed-loop bandwidth should be less than the slowest NMP zero and larger than the fastest RHP pole . 
Skogestad and Postlethwaite give detailed guidelines for complex roots in their book (Ref. 6). 

In the case of real RHP poles p
1 

< p
1 

< ...... < p , real NMP zeroes 1.
1 

< 1.
1 

< .. .... < 1. , and with a 
nup nu: 

time delay r, the 3d8 bandwidth, a, , of the closed-loop system should be: 
1'/J 

z1 
2p < a,3.10 <-n,,,, ..., 2 
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