

Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

FY17 Annual Review

Robert Sakahara Project Manager (Acting)

Davis Hackenberg Deputy Project Manager (Acting)

William Johnson Chief Engineer

24 October 2017

UAS INTEGRATION IN THE NAS

8:30– 8:45	Welcome, Opening Remarks, Integrated Aviation Systems Program (IASP) Overview	Dr. Edgar Waggoner
8:45 – 9:45	UAS-NAS Overview	Davis Hackenberg
9:45 – 10:15	Technical Challenge Performance	Davis Hackenberg
10:15 – 10:30	Break	
10:30 – 11:30	Technical Challenge Performance (continued) Systems Integration and Operationalization (SIO) Status	Davis Hackenberg
11:30 – 12:30	Project Level Performance & Fiscal Year (FY) 18 Look Ahead Review Summary Short Video of Future Flight Central at Ames	Davis Hackenberg
12:30	Lunch	
1:00 - 3:00	Caucus	IRP and PRP separately
3:00 - 4:00	Initial Feedback	IRP and PRP
4:00	Adjourn	

- Purpose Conduct an assessment of the Project's quality and performance
- Approach The Project will provide a programmatic review addressing the following:
 - Project's Goal and Technical Challenges (TC) and their alignment to NASA and Aeronautics Research Mission Directorate (ARMD) Strategy
 - Project background and alignment with community efforts
 - Key highlights and accomplishments for the Project's technical challenges
 - Project performance of the past year through examination of:
 - Cost/Resource, Schedule, and Technical Management
 - Progress in establishing partnerships/collaborations and their current status
 - Key activities, milestones, and "storm clouds" for FY18
 - Specific Topics:
 - Summarize final Command and Control (C2) work package scope
 - Describe current status of the Systems Integration and Operationalization work package

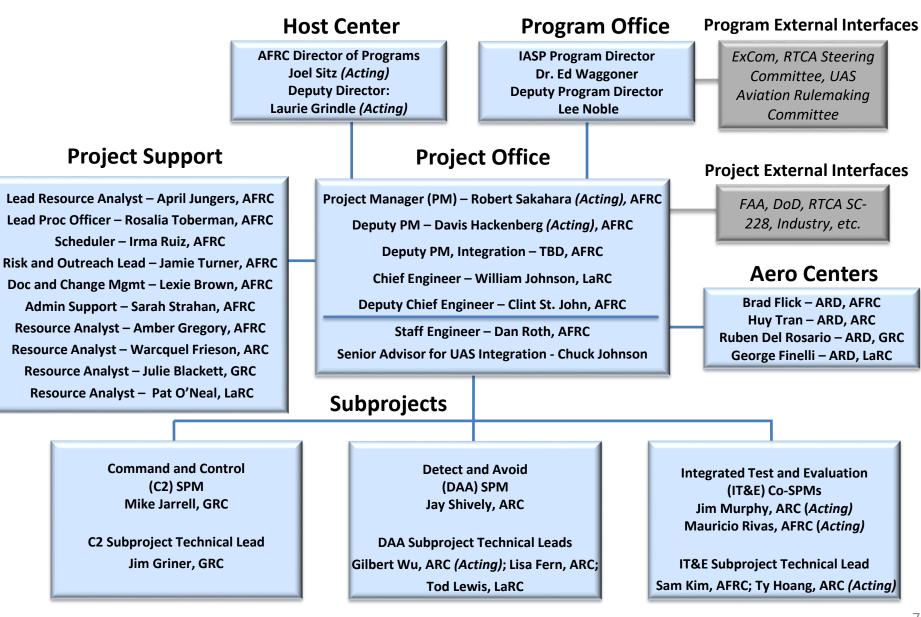
- UAS Integration in the NAS (UAS-NAS) Overview
 - FY17 Summary
 - UAS-NAS Project Background
- Technical Challenge Performance
- SIO Status
- Project Level Performance & FY18 Look Ahead
- Review Summary

- Established Project Phase 2 Detect and Avoid (DAA) and Command and Control Community Technical Challenges ARMD approved
- Established Project Phase 2 Baseline ARMD approved
- Successful on-time completion of multiple Project Research Activities
- Defined executable framework for Systems Integration and Operationalization Demonstration
- Provided significant contributions to the UAS Community
- Continued effective Project and Subproject management

Successfully transitioned from Formulation to Implementation

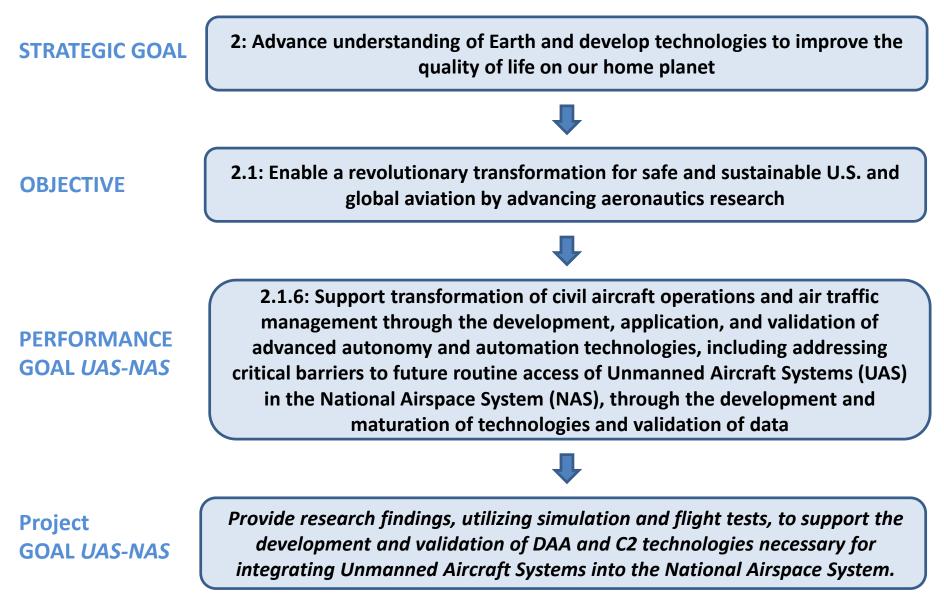
Δ

UAS-NAS Project Lifecycle Timeframe for impact: 2025

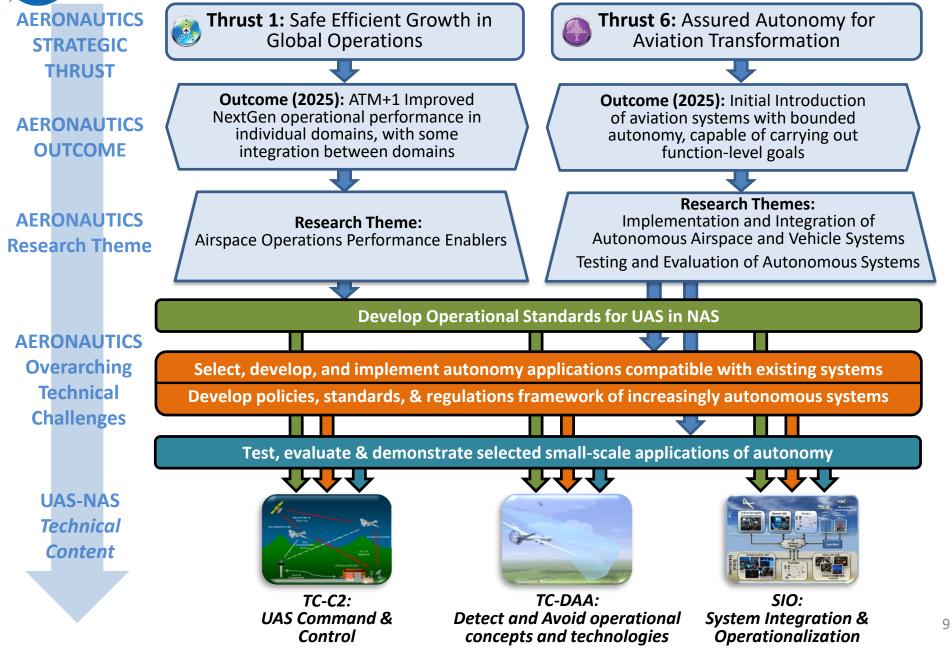

Prior	Prior Phase 1 [FY11 - FY1		[FY17]	Pha [FY18]	ase 2 [FY19]	[FY20]		
Formulation Review	Project Start, May 2011 KDP KDP-A			KDP-C				
Early investment Activities		Flight Validated Research Findings to Inform Federal Aviation Administration (FAA) Decision Making						
External Input	System Analysis: Concept of Operations (ConOps), Community Progress, etc.		P1 MOPS			A P2 MOPS		
	Technology Development to Address Technical Challenges							
	Integrated Modeling, Simulation & Flight Testing		Mature research capabilities thru Integrated Simulation & Flight Testing			SIO <u>Demo</u> Close-out		
	Ĵ	Ĵ	Ĵ			<u>}</u>		

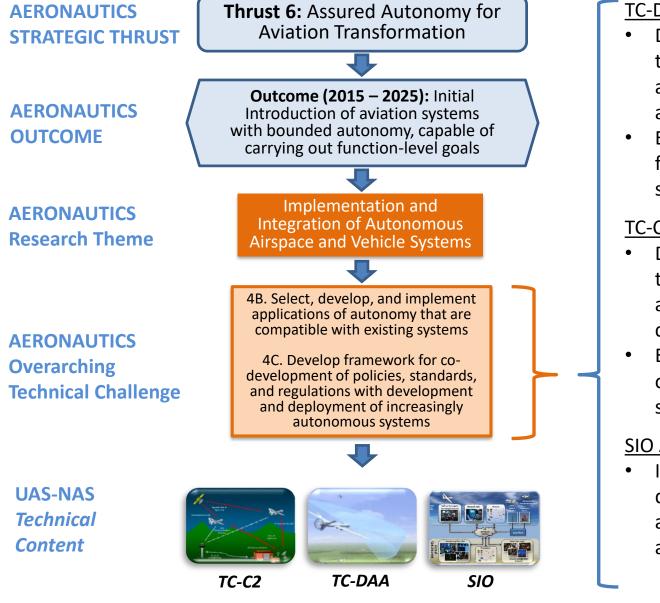
Technical input from Project technical elements, NASA Research Announcements, Industry, Academia, Other Government Agencies, Project Annual Reviews, ARMD UAS Cohesive Strategy

Key Decision Points 🛆 SC-228 Deliverables, i.e. Minimum Operational Performance Standards (MOPS) Complete



UAS Integration in the NAS Organizational Structure


ARD: Aeronautics Research Director, PM: Project Manager, SPM: Subproject Manger

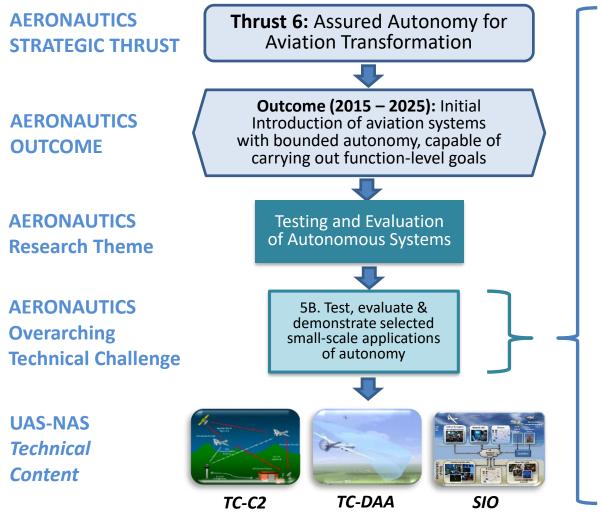


ARMD Strategic Plan Flow Down to UAS-NAS Project

UAS-NAS Technical Challenge Autonomy Contributions

TC-DAA Alignment:

- Development of requirements
 that can be leveraged for
 autonomous DAA guidance
 algorithm and alerting display
- Examples: removing the operator from the system and meeting the same requirements


TC-C2 Alignment:

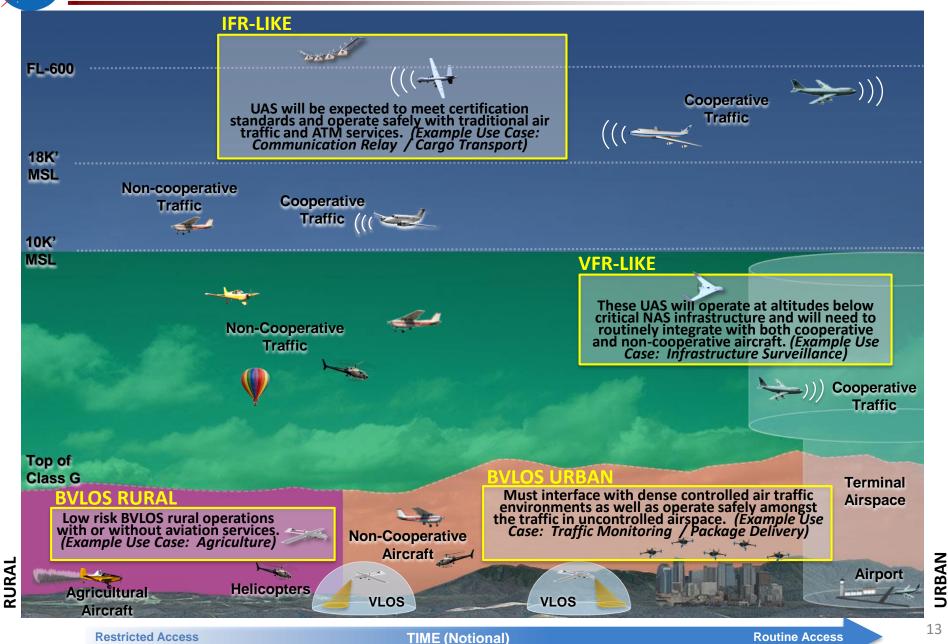
- Development of requirements that support automatic and/or autonomous unmanned aircraft communication systems
- Examples: system wide removal of communication delays in time sensitive situations

SIO Alignment:

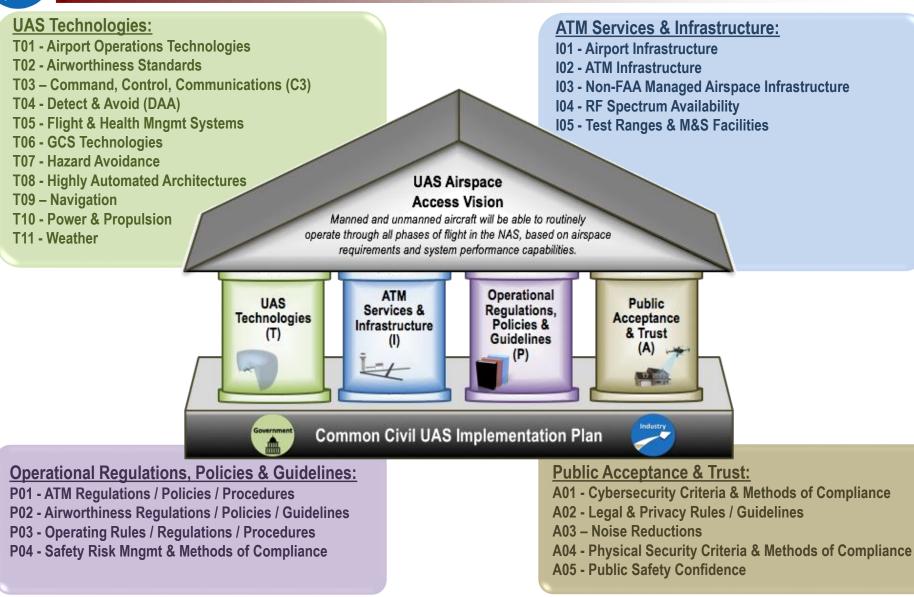
 Implement, test, evaluate and demonstrate selected applications of increasingly autonomous systems

UAS-NAS Portfolio:

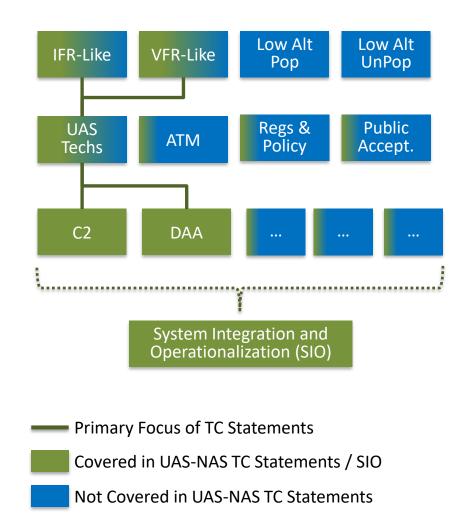
- Development of unmanned aircraft flight test methods and operational procedures relevant to small-scale applications of autonomy
 - Flight test of automatic and/or autonomous systems such as Airborne Collision Avoidance System (ACAS Xu)
 - Flight test of Detect and Avoid systems
 - Flight test of command and control radios
- Leverage NASA airworthiness safety processes to provide operational assessments for automatic and autonomous systems



Manned and unmanned aircraft will be able to routinely operate through all phases of flight in the NAS, based on airspace requirements and system performance capabilities



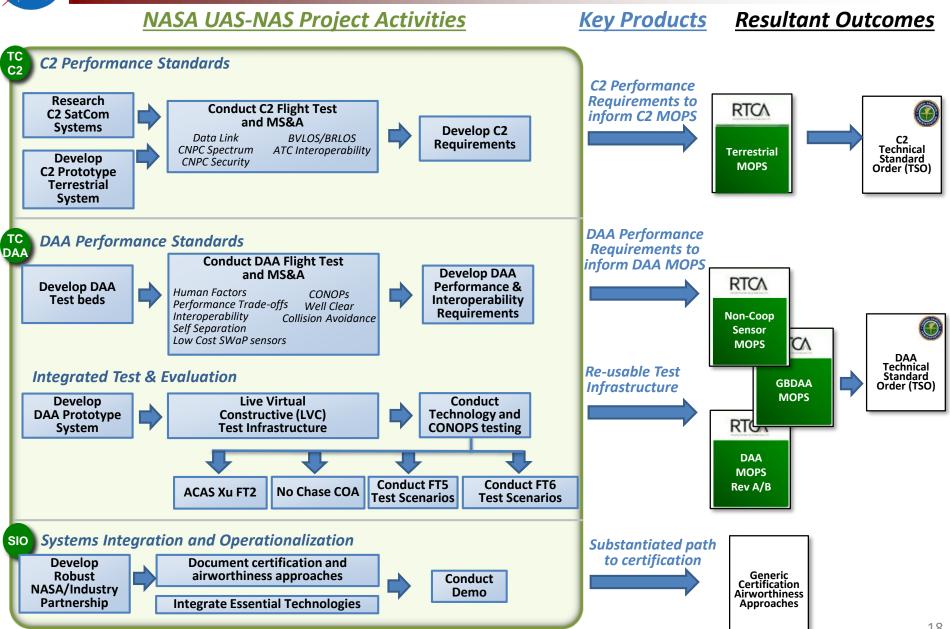
Emerging Commercial UAS Operating Environments (OE)


UAS Airspace Integration Pillars and Enablers

The UAS Airspace Integration Pillars enable achievement of the Vision

- Each Operating Environment (OE) has unique considerations with respect to each Pillar
- Program and Project core competencies focus on Integrated Vehicle technologies
- I"IFR-Like" and "VFR-Like" OEs became the project focus due to considerations such as core competencies, Technology Readiness Level (TRL), other ARMD portfolio work, and community benefit
- Project Phase 2 TCs, i.e. detect and avoid (DAA) and command and control (C2), do not cover the broad needs for all Operating Environments or UAS Vehicle Technologies
- Systems Integration and Operationalization (SIO) Demonstration effort developed around integration of DAA and C2 while including efforts towards closing UAS Vehicle technology gaps for project relevant OEs
- Project currently does not support other Program/Project TCs

- NASA and FAA have determined DAA and C2 are highly significant barriers to UAS integration
- Project wrote TC statements that address the full barrier for DAA and C2 in the "VFR-Like" and "IFR-Like" Operating Environments
- Project identified the work required to complete the TCs and which aspects NASA should lead
- Project assessed and prioritized research to provide the greatest benefit to address the community barriers within resource allocations



- Key Decision Point (KDP)-A, Authorization to Proceed (ATP) with Formulation
 - Approved to proceed with the TC-C2 partnerships, ACAS Xu Flight Test 2 Partnership
 - Primary actions were to assess and add clarity to Technical Challenges, including descriptions of the portion of the industry that would benefit, and demand for the research in the next 5 years
- KDP-C, ATP for Implementation
 - Approved baseline of DAA and terrestrial C2 content, with considerations to broader aviation markets
 - Primary actions included re-assessing SatCom portfolio, including SIO in the project portfolio, and providing clarity on several miscellaneous items
- Post KDP-C
 - Responded to all ARMD actions
 - Baselined all technical content that was approved at KDP-C
 - Began study of UAS demand and economic benefit

Project Phase 2 formulation process leveraged to maximize NASA's contributions to the UAS community

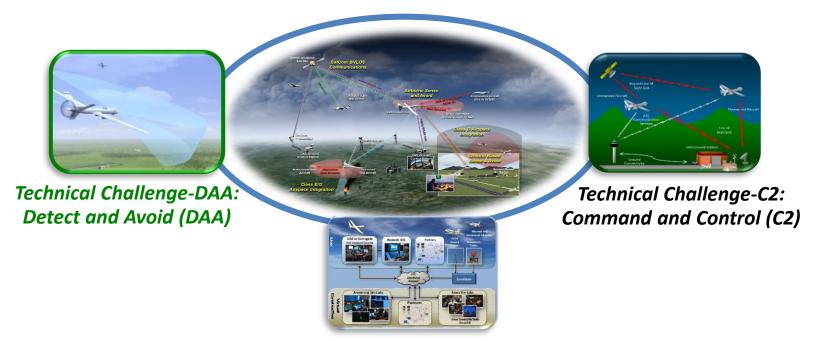
UAS-NAS Project Value Proposition


Phase 2 Flight and Simulation Overview

Flight / Sims	FY2017	FY20	18	FY2019	FY2020		
Series	10 11 12 1 2 3 4 5 6 7	8 9 10 11 12 1 2 3	4 5 6 7 8 9 10 11 12	2 1 2 3 4 5 6 7 8 9	10 11 12 1 2 3 4 5 6 7 8		
Project Comments to MOPS	C2 White Pa	A White Paper	C2 SatC 1/2	om MOPS DAA MOPS 9/3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
[TC-C2]	Ku-Band Propagation Flights	and Interference Analysis					
Ku-Band SatCom	Terrestrial-Based Version 6 Flight Testing						
Terrestrial C2							
[TC-DAA] Alternative Surveillance		Foundation	al Fast-Time Sim	ited Fast-Time Sim	Inmitigated/Mitigated Fast-Time Sim		
Well Clear/Alerting		Foundationa	I Terminal Ops HITL 1 Fast-Time Simulation	3			
Requirements		Foundationa	Terminal Ops Fast-Time Simi ation 2 HITL Sir				
ACAS Xu Interoperability	Mini HITL Sim		HITL Sim 1				
DAA Flight Tests	FT 2 8/1		FT 5				
Subprojects DAA / IT&E			12/		FT 6		
		NCC Demonstration			12/24		
SIO Demo and		GBDAA Task			SIO Demo 💋		
FAA Test Site Tasks		Vehi	cle Task		Level 1 Level 2		

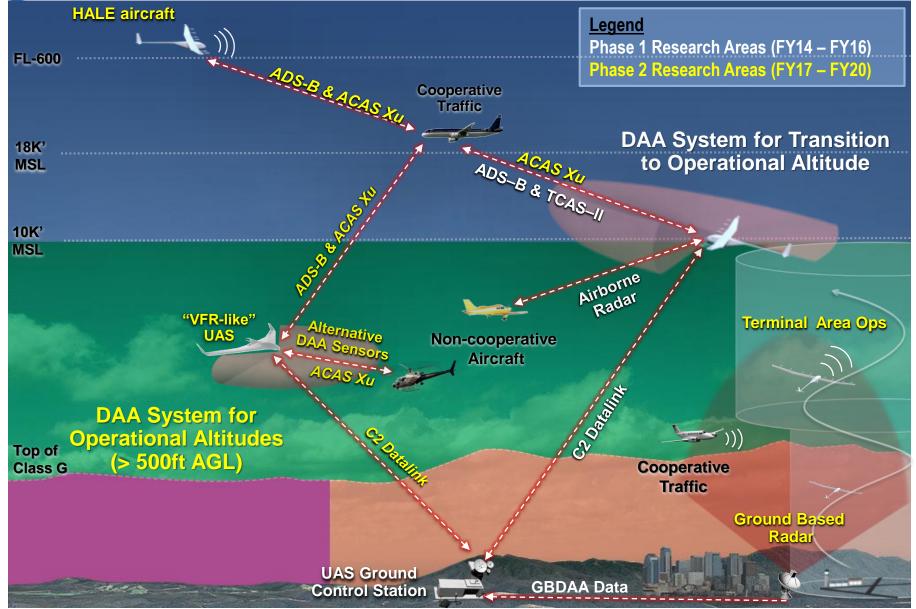
Red Status Line Date 9/30/17

- Technical Challenge (TC) progress is tracked by means of Progress Indicators
 - TC completion represented by both UAS-NAS Progress and Community Outcome sections
- UAS-NAS Progress
 - Represents the execution/data collection of milestones for Project Schedule Packages (SP)
- Assessed maturity of Project research portfolio related to the technical challenge
 - High = 2, i.e. L1 Milestones and Flight Tests
 - Moderate = 1, i.e. Human in the Loop (HITLs),
 System Development Complete, and
 Demonstrations
 - Low = 0, Foundational activities, i.e. the rest
- Research portfolio maturity normalized on a 10 point scale represents Project progress towards TC completion
- Tech Transfer
 - Represents the data analysis and reporting milestones for Project SP
- Progress is tracked against all SP tasks and UAS Community Outcomes using a color indicator

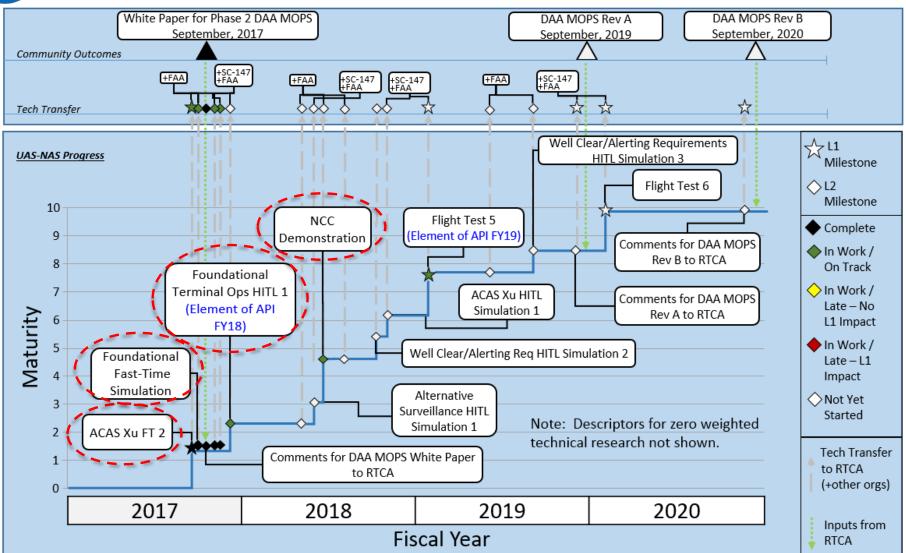

- UAS-NAS Overview
- Technical Challenge Performance
 - TC-DAA
 - TC-C2
- SIO Status
- Project Level Performance & FY18 Look Ahead
- Review Summary

NASA L

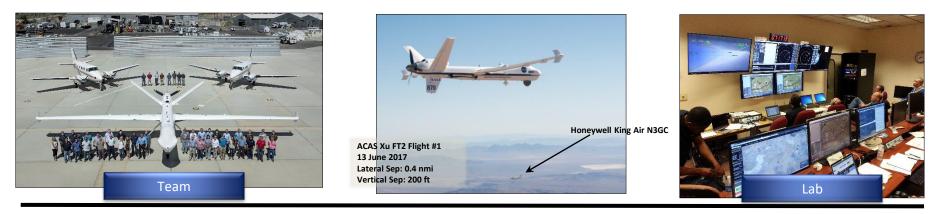
TC-DAA: UAS Detect and Avoid Operational Concepts and Technologies


Develop Detect and Avoid (DAA) operational concepts and technologies in support of standards to enable a broad range of UAS that have Communication, Navigation, and Surveillance (CNS) capabilities consistent with IFR operations and are required to detect and avoid manned and unmanned air traffic

System Integration and Operationalization (SIO)

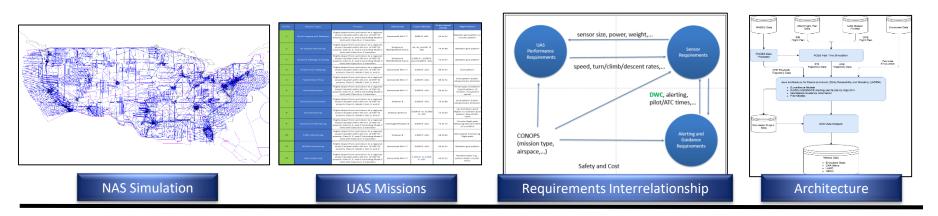

UAS Detect and Avoid (DAA) Operating Environments (OE)

TC-DAA: Progress Indicator


As of 9/30/17

TC-DAA: Develop Detect and Avoid (DAA) operational concepts and technologies in support of standards to enable a broad range of UAS that have Communication, Navigation, and Surveillance (CNS) capabilities consistent with IFR operations and are required to detect and avoid manned and unmanned air traffic

- **Research Objectives:**
 - Continue collaboration with the FAA TCAS Program Office-led partnership to mature the ACAS Xu software in support of ACAS Xu MOPS development (draft FY18, final FY20)
 - Demonstrate system behavior integrated on prototype avionics and UAS
 - Collect flight test data for performance evaluations and future Research and Development (R&D)
 - Validate modeling and simulations

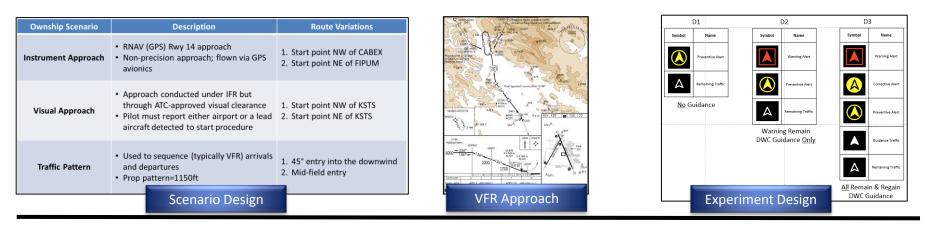


- Status:
 - Flight test completed August 2017
 - 12 flight tests / 56 flight hours
 - 6.5 weeks (13 June 1 Aug) duration
 - 241 flight cards / test points flown
 - All priority 1 test points (114 flight cards) completed
 - Flight test data made available to FAA and contractor team following each flight
 - Flight test report (internal distribution only) completed September 2017
- Next Steps:
 - Public release of Flight test report to be completed October 2017

Alternative Surveillance: Foundational Fast-time Simulation (FY17)

- **Research Objective:**
 - Estimate the target performance of alternative surveillance within Phase 2 MOPS UAS operations in order to provide acceptable DAA alerting and guidance

• Status:


- Experiment review completed July 2017
- Data collection completed August 2017
- Next Steps:
 - Data analysis to be completed October 2017
 - Report to be completed December 2017

Well Clear/Alerting Requirements: Foundational Terminal Operations HITL Simulation 1

Research Objective:

Explore pilot performance and operational suitability issues associated with Class D terminal area operations

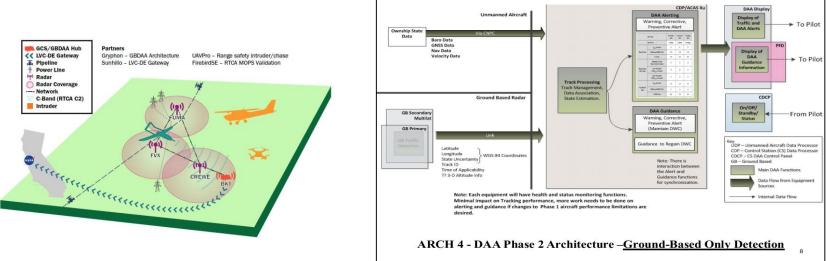
• Status:

- Experimental design, including Stakeholder/Partner Workshop, completed July 2017
- Traffic scenarios completed August 2017
- Shakedown completed September 2017
- Next Steps:
 - Data collection to be completed October 2017
 - Reports to be completed December 2017

No Chase Certificate of Waiver or Authorization Flight Demonstration

Research Objective:

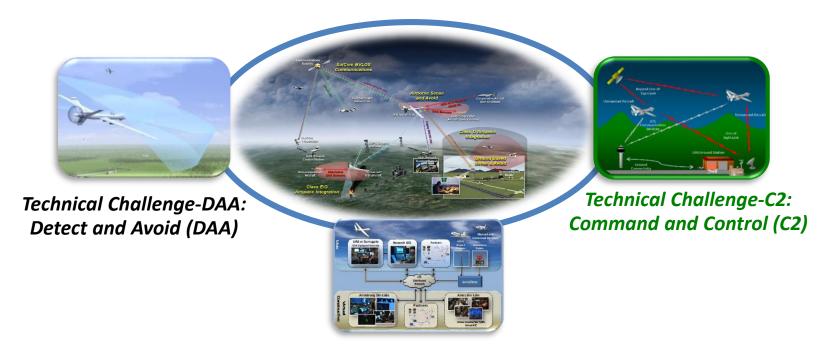
- Conduct unmanned aircraft flight demonstration as described in an FAA approved No Chase Certificate of Waiver or Authorization (COA)
- Transfer of technology proving the feasibility of integrating a UAS with and alternate means of compliance with FAA FAR Part 91.113 (see and avoid).



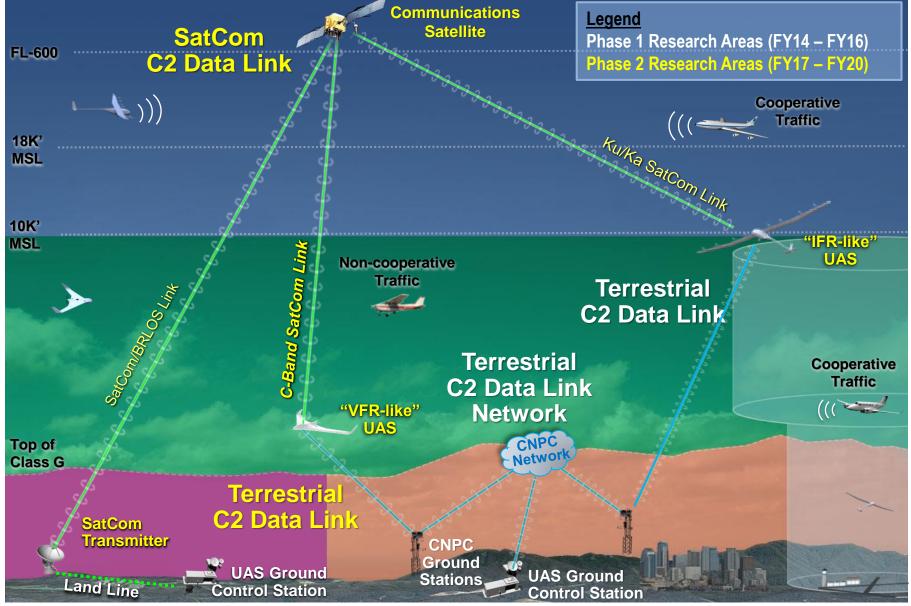
• Status:

- No Chase COA (NCC) Objectives defined May 2017
- Conducted NCC Kick-Off meeting with FAA May 2017
- Next Steps:
 - NCC Demonstration Flights to be completed March 2018
 - NCC report to be completed June 2018

- [Redacted funding] Competed across all six test sites
- The goal of the proposed effort is to implement a GBDAA system that will have long term strategic value to NASA (i.e. TC-DAA), FAA, and industry partners. The proposed system will:
 - Provide a foundation and testbed for validation and iteration of RTCA standards
 - Provide a foundation for FAA Beyond Visual Line of Sight (BVLOS) rulemaking activities
 - Provide an effective means for industry to evaluate technologies and procedures for conducting low level BVLOS use cases
 - Provide a foundation for future commercial waivers seeking operational capability for industry applications
 Class 4 Architectures

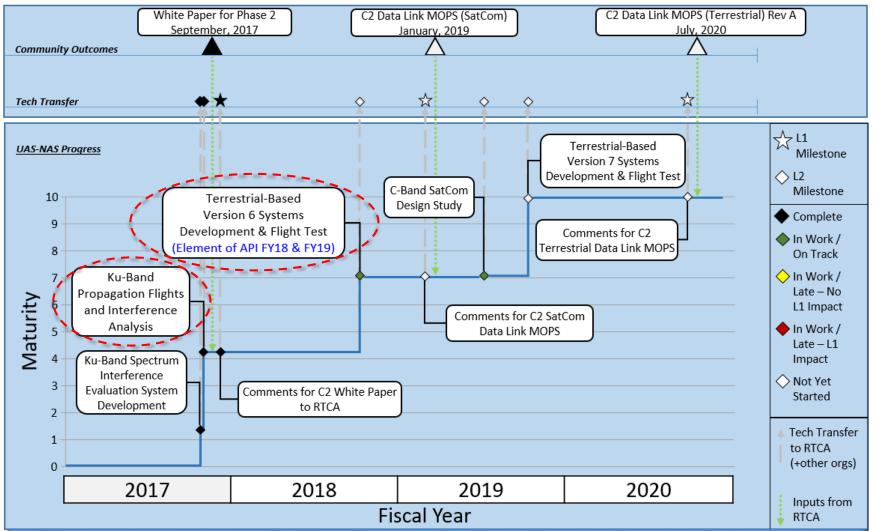

• Data Redacted

TC-C2: UAS Command and Control


Develop Satellite (SatCom) and Terrestrial based Command and Control (C2) operational concepts and technologies in support of standards to enable the broad range of UAS that have Communication, Navigation, and Surveillance (CNS) capabilities consistent with IFR operations and are required to leverage allocated protected spectrum

System Integration and Operationalization (SIO)

UAS Command and Control Operating Environments (OE)

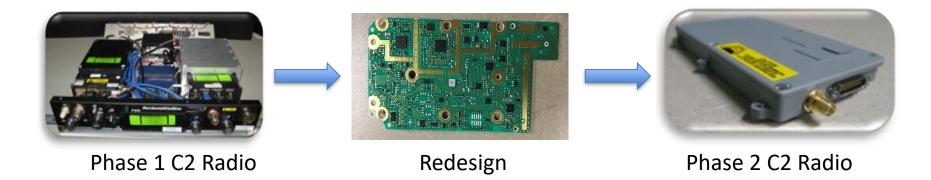


- Terrestrial C-Band
 - Develop and standardize Control and Non-Payload Communications (CNPC) radios with Rockwell Collins
 - Flight Testing over Urban environments
 - Low-Size, Weight and Power (L-SWaP) configuration, Cooperative Agreement modification in work
- SatCom C-Band Study
 - Trade studies
- SatCom Ku-Band
 - FY17 propagation/interference system development and testing
- SatCom Ka-Band
 - No project technical content
- Addressing Urban Air Mobility (UAM) Communications Technology Study
 - New activity that will evaluate C2 UAM ConOps, technical requirements, candidate implementations, etc

TC-C2: Progress Indicator

TC-C2: Develop Satellite (SatCom) and Terrestrial based Command and Control (C2) operational concepts and technologies in support of standards to enable the broad range of UAS that have Communication, Navigation, and Surveillance (CNS) capabilities consistent with IFR operations and are required to leverage allocated protected spectrum

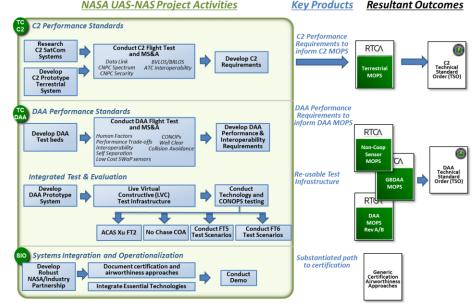
- Research Objective:
 - Collect flight test data to validate earlier analysis of possible interference of Ku Unmanned Aircraft Systems (UAS) Command and Control (C2) SatCom radio systems with Ku fixed point-to-point ground stations in Europe needed for the development and validation of standards and spectrum allocation for a Ku-Band SatCom C2 data link


• Status:

- Ku interference flight test phase completed August 2017
 - Two final data collection flights
- Ku interference data analysis completed September 2017
- Ku interference final report completed September 2017
 - Provided to FAA
- Technical Baseline Element completed September 2017

Ku-Band Spectrum Interference data provided to FAA Spectrum Office

- Research Objective:
 - Develop a Terrestrial C2 data link radio system and transfer technology and research data for the development and validation of standards for Terrestrial C2 data link



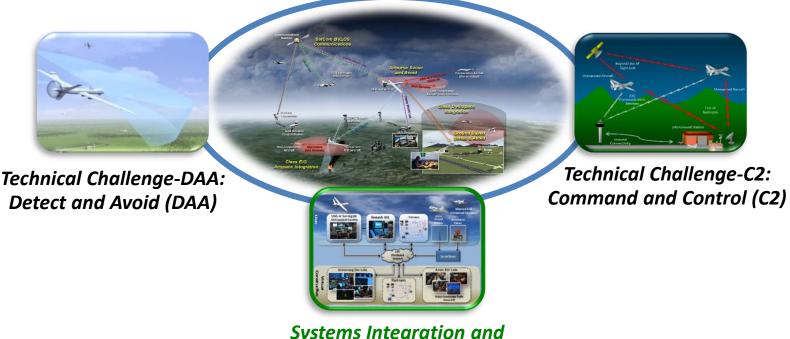
- Status:
 - Established Cooperative Agreement for C2 Terrestrial Extension radio January 2017
 - Version 6 Preliminary Design Review (PDR) completed July 2017
- Next Steps:
 - Version 6 Critical Design Review (CDR) to be completed October 2017
 - Terrestrial-Based Version 6 Flight Test to be completed July 2018
 - Terrestrial-Based Version 7 Flight Test to be completed July 2019
 - Terrestrial-based UAS C2 Final Report to be completed September 2020

- SC-228 Support
 - Provided input into C2 and DAA
 White Papers to further scope the RTCA SC228 Phase 2 efforts
 - Leading/co-leading several topical subgroups
 - Presented DAA experiment plans
 - Presented analyses results to support publication of errata for DO-362

- TC-C2
 - Completed Ku-Band Spectrum
 Interference ground and flight
 systems design, systems installation,
 and flight test
 - Provided FAA Spectrum Office Ku-Band Spectrum Interference data

- TC-DAA
 - Completed ACAS Xu Flight Test 2
 - Developed Alternative Surveillance and Well Clear/Alerting Requirements ConOps
 - Completed experiment designs, infrastructure preparations, and/or data collection for multiple experiments

Preparing and conducting experiments collecting data critical to C2 and DAA MOPS

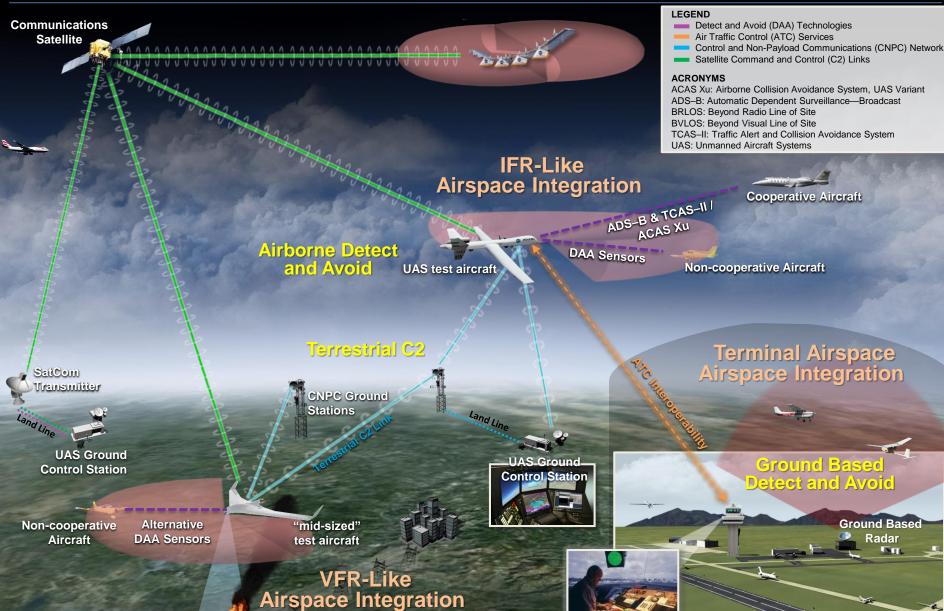

- UAS-NAS Overview
- Technical Challenge Performance
- SIO Status
- Project Level Performance & FY17 Look Ahead
- Review Summary

SIO: Systems Integration and Operationalization

SIO

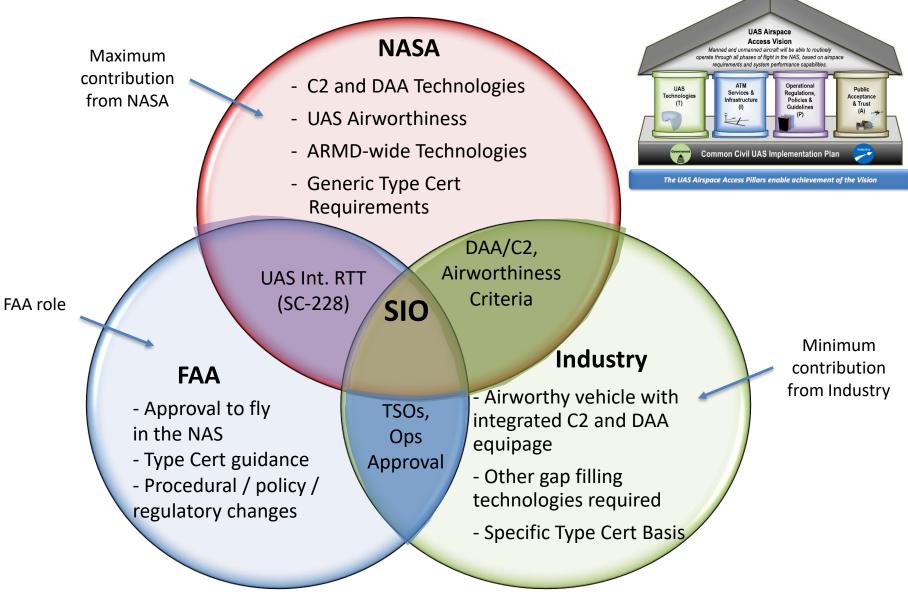
Integrate state of the art DAA and C2 technologies into Unmanned Aircraft Systems (UAS) to ensure sufficient aircraft level functional and operational requirements, and perform demonstrations in the NAS to inform Federal Aviation Administration creation of policies for operating UAS that have Communication, Navigation, and Surveillance (CNS) capabilities consistent with IFR operations

Systems Integration and Operationalization (SIO)



- The SIO activity and associated FY20 demonstration will be a partnership between NASA and Industry in concert with the FAA to support the vision of UAS Integration in the NAS
- Primary Objectives are to:
 - Demonstrate UAS operations in the NAS by leveraging integrated DAA, C2, and other state of the art UAS technologies on an unmanned aircraft
 - Ensure relevant project research transitions into UAS stakeholder community
 - Accelerate certification basis for UAS new entrants
 - Advance the state of the art for UAS technologies
- Planning Considerations:
 - UAS Integration focused demonstration flight(s) with one or more partner provided UAS
 - Considers all ground and flight needs necessary to implement the proposed UAS mission (e.g. all phases of flight, take-off through landing, etc)
 - All UAS equipped with operationally relevant, DAA and C2 systems that have a pathway to certification (not necessarily SC-228 developed standards)
 - All vehicle technologies assessed to determine the most state of the art solution set that can meet airworthiness expectations for the demonstration
 - Operating Environment is MOPS-like, with primary operating altitude being above 500 feet above ground level (AGL) in controlled airspace
 - All Vehicles will be greater than 55 lbs (25 kg)

Obtain Industry partner(s) who demonstrate integrated DAA and C2 technologies in the NAS, leverage vehicle technologies that enable end-to-end mission performance without operational restrictions, and compile the necessary artifacts and data to support regulatory compliance


Potential SIO Operational View Representation

NASA/FAA/Industry Relationship for SIO

Systems Integration and Operationalization (SIO) Partnership Venn

SIO Notional Demonstration Strategy


SIO Potential Stakeholders	SIO Potential Partners	SIO Engagement Strategy
 RTCA SC-228 FAA and Other Government Agencies Industry ICAO, EUROCAE 	 Industry Aircraft OEMs Industry Sensor Manufacturers Industry Communication Providers FAA UAS Test Sites AFRL, US Army Service Providers 	 Industry Partnership Strategy Develop agreements with substantial industry investments, and leveraging NASA SMEs, to conduct the SIO demonstration Industry to integrate C2 and DAA technologies in concert with essential vehicle technologies Conduct industry centric SIO demonstration FAA Partnership Strategy Work through the UAS Integration RTT to impact policy/procedural/regulatory/approval changes
Initial SIO resources to Centers SIO NASA DAA NASA C2 Test Site	and RFI CONOPs	Partners Selected Technology Development
Task 2017	SIO Vehicle Task Award	V SIO Vehicle Task Demo

44

- [Redacted funding] ; competed across all six test sites
- Demonstration task to assess individual UAS vehicle technology state of the art for a Concept of Operations (ConOps) that is consistent with NASA's UAS Operational Environments
- The proposed effort is expected to inform planning efforts for the SIO FY20 demonstration and establish a foundation for future test platforms that are relevant to NASA ARMD initiatives
- Key Characteristics
 - Griffiss Airport in upstate NY
 - Tremendous airspace enables full missions
 - Several technology demonstrations including DAA, C2, and many others
 - Vehicle Partner: Aurora Flight Sciences – Centaur
 - Collaboration on dissemination of outcomes to community
 - Demonstration in July

- Address SIO Concerns (Storm Clouds)
 - Define acquisition/partnership strategy
 - Identification of an Industry partner willing to provide adequate resources
 - Staffing to support SIO within subprojects, filling open positions, and addressing potential need for certification expertise
 - Increased tasks due to FY20 SIO demonstration (Project resources reduced for closeout in N2 Budget)
- SIO Demonstration Request for Information (RFI) for Industry ConOps, Technology Maturation, and Rough Orders of Magnitude
 - Communicate NASA expectations for the NASA partnership development process at industry day
 - Industry Day Announcement released in FedBizOps on October 4
 - <u>https://www.fbo.gov/index?s=opportunity&mode=form&id=7b629912df70effbb2a7a97c59186</u> <u>23b&tab=core&_cview=1</u>
 - RFI to be released by October 25
 - Industry day to be held on November 30 in San Diego, CA
 - RFI responses due December 15
 - RFI evaluation complete by end of January
- Project plans to release request for proposal to Industry by February 2018

- UAS-NAS Overview
- Technical Challenge Performance
- SIO Status
- Project Level Performance & FY18 Look Ahead
 - Risk Status
 - Resource Allocation and Utilization
 - Schedule Performance
 - Technical Baseline Summary
 - Partnerships and Collaboration
 - FY17 Accomplishments and FY18 Look Ahead
- Review Summary

- Milestone Count
 - Total of 8 Level 1 milestones, 2 completed to date, 6 remain open
 - Total of 56 Level 2 milestones, 15 completed to date, 41 are incomplete
- <u>Causes of Milestone Delays</u>
 - Level 1 Milestone
 - Delay in one Level 1 milestone due to Federal Registry delays
 - Level 2 Milestones
 - Alternative Surveillance Cooperative Agreement delayed longer than expected
 - Technical scope changes implemented to better align with community requirements
- Impacts of Milestone Delays
 - Alternative Surveillance CAN delays has slipped the start of FT 5 to October 2018
 - Acceptable impacts to downstream test and simulation activities

Current Active Collaborations/Partnerships Status

Partner (Project Area)	Agreement In Place	Collaboration/ Partnership Role
Air Force Research Lab <i>(TC-DAA)</i>	Ames Space Act	Coordinate activities on Vigilant Spirit Control Station. On-going collaboration with AFRL supporting use of Visual Spirit Control Station (VSCS) on DAA activities
FAA Office of UAS Integration (Project Office)	RTT	Support by FAA leadership, management, and technical subject matter experts (SME)s to validate work being done by the Project. On-going coordination of Project deliverables. Research Transition Team participation
FAA R&D Integration (Project Office)	RTT	Primary organization on RTT collaborations, on-going coordination of Project deliverables
FAA Air Traffic Organization (Project Office)	RTT / Controlled Airspace ARC	Primary organization managing the Controlled Airspace ARC for which the project will actively participate. Research Transition Team participation
FAA TCAS Program Office (ACAS Xu) <i>(TC-DAA)</i>	Software	Coordinating on collaboration for ACAS-Xu FT2 software and associated flight tests
FAA UAS Test Sites (Project Office)	IDIQ Contract	Awarded Task 4 GBDAA (Gryphon Sensors LLC, Textron, UAVPro, FirebirdSE, Sunhillo, Dominion Energy, and Aviation Systems Engineering Company) and Task 5 Vehicle Task (Aurora, MTSI, NUAIR, Griffiss International Airport, AX Enterprize, Gryphon Sensors, Navmar Applied Sciences Corp.)
General Atomics (TC-DAA)	Space Act	Ikhana equipped with avionics and Proof of Concept DAA system directly supported by UAS-NAS Project and supported FT4. General Atomics supported ACAS-Xu FT2 and is currently collaborating to support the No Chase COA flight

Current Active Collaborations/Partnerships Status

Partner (Project Area)	Agreement In Place	Collaboration/ Partnership Role
Honeywell <i>(TC-DAA)</i>	Cooperative Agreement	Selectee for DAA subproject cooperative agreement
Honeywell <i>(TC-C2)</i>	Cooperative Agreement	Selectee for C2 subproject cooperative agreement for SatCom Ka-band development. Agreement was canceled.
NASA AOSP (Project Office)	NA	Coordination with Airspace Operations and Safety Program (AOSP) on UAS Traffic Management (UTM), SMART NAS, autonomy roadmapping, and other activities including collaborative effort on UAS integration strategies and LVC development. Full UAS Cohesive Strategy currently being worked
Rockwell Collins (TC-C2)	Cooperative Agreement	CNPC radio development and flight test. Cost sharing with Rockwell Collins concentrated in FY11-13, totaling \$3M contribution from Rockwell. Rockwell Collins delivered Gen-5 radios
RTCA SC-228 (<i>TC-C2, TC-DAA</i>)	NA	On-going support to DAA and C2 working groups
RTCA SC-147 <i>(TC-DAA)</i>	NA	Close coordination between ACAS Xu and DAA standards required for success of P2 MOPS Hosting workshops and performing flight test to ensure success of both working groups

- Phase 1 Technical Challenge Community Outcomes
 - FAA published Technical Standard Order (TSO)-C211 Detect and Avoid and TSO-C212 ATAR for Traffic Surveillance
 - FAA published TSO for DO-362 is under review within the FAA
 - No Chase COA is driving the community towards the first flight of an UAS in the NAS with a technology solution for "see and avoid" rules (i.e. Part 91)
- Phase 2 Technical Content Progress
 - Project baseline portfolio (M&S, HITLS, and Flight Tests) used to set aggressive goals for DAA and C2 within the community
 - Significant input to SC-228 white papers scoping upcoming standards
 - NASA challenging the community to demonstrate critical technologies and accelerate commercial operational approvals
- Phase 2 partnerships with the FAA are being coordinated though a Research Transition Team (RTT) that includes all Lines of Business

FY17 Accomplishments

- Detect and Avoid Subproject
 - Phase 1 MOPS Published
 - SC-228 DAA White Paper
- Integrated Test and Evaluation Subproject
 - ACAS Xu Flight Test 2
 - No Chase COA Planning
 - Flight Test 5 Planning
- Project Office
 - ICAO/VIP Day
 - Key Decision Point C (Baseline Review)
 - ARMD UAS Cohesive Strategy and FAA Research Transition Team

- Command and Control Subproject
 - Phase 1 MOPS Published
 - Ku-Band interference testing
 - Ka-Band cooperative agreement award and subsequent deletion
 - SC-228 C2 White Paper
- Awards
 - ARMD Associate Administrator (AA) Group award for technology and innovation for IT&Es work on Flight Test Series 4
 - Joseph J. Jacobs Master Builder Award for UAS in the NAS Fight Test 4 project

FY18 Look Ahead

- DAA HITL Simulation
- No Chase COA Flight Demonstration
- SIO Demo Industry Day and Partner Collaboration
- CNPC Radio Version 6 Flight Test

- Established Project Phase 2 Detect and Avoid and Command and Control Community Technical Challenges
- ✓ Established Project Phase 2 Baseline
- ✓ Successful On-time Completion of Multiple Project Research Activities
- ✓ Defined Executable Framework for SIO
- ✓ Provided Significant Contributions to the UAS Community
- ✓ Continued Effective Project and Subproject Management

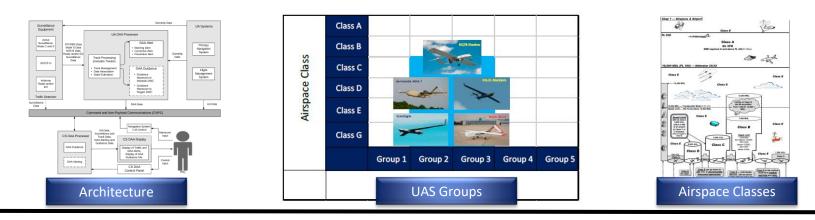
Project continues to provide positive impacts towards the Integration of UAS into the NAS

UAS-NAS Technical Challenge Performance Backup Slides

Technical Baseline Element Number	Technical Baseline Element Title	Reference Schedule Package Numbers
TBEN-005	Alternative Surveillance and Well Clear/Alerting Requirements ConOps	SP D.1.30, SP D.2.10
TBEN-006	Alternative Surveillance: Foundational Fast-time Simulation (FY17)	SP D.1.40
* TBEN-007	Alternative Surveillance: Display Requirements	SP D.1.50
* TBEN-008	Alternative Surveillance: Unmitigated Fast-time Simulation (FY18)	SP D.1.60
* TBEN-009	Alternative Surveillance: HITL Simulation 1	SP D.1.70, SP T.7.20
* TBEN-010	Alternative Surveillance: Unmitigated/Mitigated Fast- time Simulation (FY19)	SP D.1.80
* TBEN-011	DELETED September 2017 MRB: Alternative Surveillance: HITL Simulation 2	SP D.1.90, SP T.7.40

* Accomplishment chart not included

Technical Baseline Element Number	Technical Baseline Element Title	Reference Schedule Package Numbers
TBEN-012	Well Clear/Alerting Requirements: Foundational Terminal Operations HITL Simulation 1	SP D.2.30, T.7.10
TBEN-013	Well Clear/Alerting Requirements: Foundational Terminal Operations Fast-time Simulation 1	SP D.2.40
TBEN-014	Well Clear/Alerting Requirements: Fast-time Simulation 2	SP D.2.50
* TBEN-015	Well Clear/Alerting Requirements: Fast-time Simulation 3	SP D.2.60
* TBEN-016	Well Clear/Alerting Requirements: HITL Simulation 2	SP D.2.70
* TBEN-017	Well Clear/Alerting Requirements: HITL Simulation 3	SP D.2.80
TBEN-018	ACAS-Xu: Mini HITL Simulation	SP D.3.20
* TBEN-019	ACAS-Xu: HITL Simulation 1	SP D.3.50, SP D.7.30



Technical Baseline Element Number	Technical Baseline Element Title	Reference Schedule Package Numbers
TBEN-020	Integrated Event: ACAS-Xu Flight Test 2	SP D.5.10, SP T.8.10
TBEN-021	Integrated Event: Flight Test 5	SP D.5.20, SP T.8.30
* TBEN-022	Integrated Event: Flight Test 6	SP D.5.30 <i>,</i> SP T.8.40
TBEN-023	No Chase Certificate of Waiver or Authorization Flight Demonstration	SP T.8.20

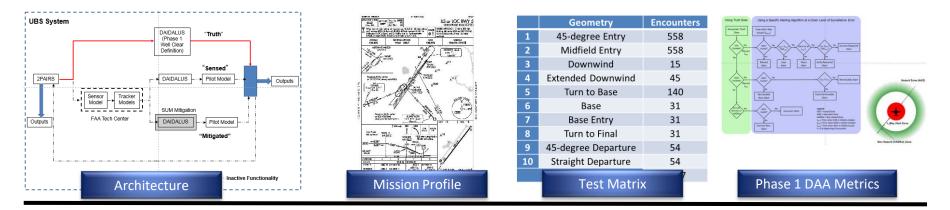
Alternative Surveillance and Well Clear/Alerting Requirements ConOps

- Research Objective:
 - Develop a ConOps describing the scope of DAA alternative surveillance and Well Clear Definition research to support the development of DAA Phase 2 MOPS and Non-Cooperative Sensor MOPS

• Status:

- Alternative Surveillance ConOps completed June 2017
 - Internal Project document
- Well Clear/Alerting Requirements ConOps completed August 2017
- Next Steps:
 - Public release of Well Clear/Alerting Requirements ConOps to be completed October 2017

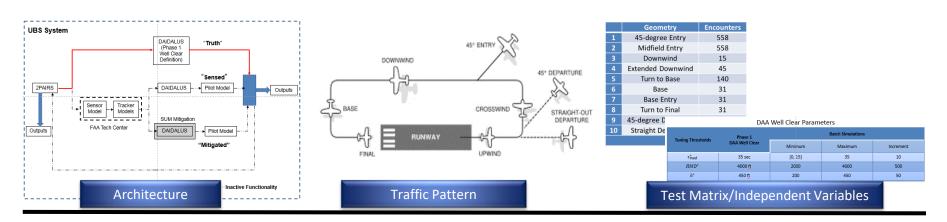
Alternative Surveillance and Well Clear/Alerting Requirements ConOps available to shape future Project research


Technical Baseline Element Number: TBEN-005 (SP D.1.30, SP D.2.10)

Well Clear/Alerting Requirements: Foundational Terminal Operations Fast-time Simulation 1

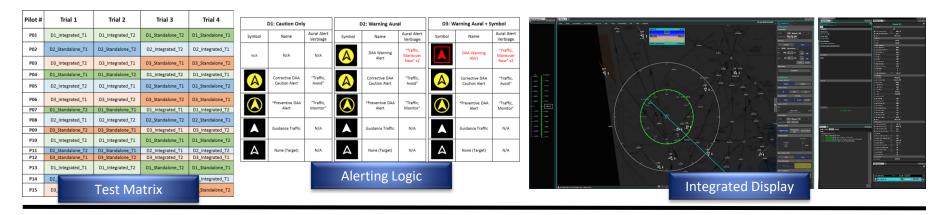
Research Objective:

Collect empirical data to address well clear issues



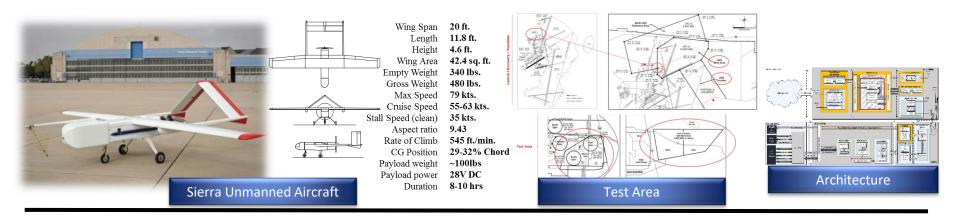
- Experiment design, shakedown, and data collection completed August 2017
 - Phase 1 Well clear Definition
- Next Steps:
 - Report to be completed November 2017

Well Clear/Alerting Requirements: Fast-time Simulation 2


- Research Objective:
 - Collect empirical data to address well clear issues

- Experiment design, shakedown, and data collection completed August 2017
 - Independent variables: Well Clear Definition parameters
- Next Steps:
 - Report to be completed October 2017

- Research Objective:
 - 1) Determine that the Ames Research Centers Human Autonomy Teaming Laboratory components are installed properly and up to date for Project Phase 2 research (Primary) and 2) provide data on alerting, display and/or guidance Phase 1 DAA MOPS (Secondary)



- Experimental Design including Stakeholder input completed January 2017
- Data Collection completed August 2017
- Next Steps:
 - Report to be completed December 2017

Research Objective:

 Conduct a flight test providing data to support development of the RTCA SC-228 Phase 2 Detect and Avoid and Alternative Surveillance MOPS

- ConOps and System Requirements Review completed August 2017
- Next Steps:
 - Flight Test 5 to be completed December 2018
 - Flight Test 5 reports to be completed February 2019

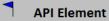
TC-DAA (1 of 3)

NameTC - Detect and Avoid (DAA); DAA Subproject[TWP D.1] Alternative Surveillance Requirements[SP D.1.10] Tiger Team[SP D.1.20] Partnerships[SP D.1.20] Partnerships[SP D.1.30] CONOPS[SP D.1.40] Foundational Fast-Time Simulation (FY17)[SP D.1.50] Display Requirements[SP D.1.60] Unmitigated Fast-Time Simulation (FY18)[SP D.1.70] HITL Simulation 1[SP D.1.80] Unmitigated/Mitigated Fast-Time Simulation (FY19)[TWP D.2] Well Clear/Alerting Requirements[SP D.2.10] CONOPS	FY2017				FY2	018		FY2019				FY2020					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
TC - Detect and Avoid (DAA); DAA Subproject																	
[TWP D.1] Alternative Surveillance Requirements			:														
[SP D.1.10] Tiger Team																	
[SP D.1.20] Partnerships																	
[SP D.1.30] CONOPS																	
[SP D.1.40] Foundational Fast-Time Simulation (FY17)					-	>											
[SP D.1.50] Display Requirements																	
[SP D.1.60] Unmitigated Fast-Time Simulation (FY18)							\diamond	- \$	>								
[SP D.1.70] HITL Simulation 1					_	\diamond	\prec	>									
[SP D.1.80] Unmitigated/Mitigated Fast-Time Simulation (FY19)										->		->					
[TWP D.2] Well Clear/Alerting Requirements			:										5				
[SP D.2.10] CONOPS																	
[SP D.2.20] Definition																	
[SP D.2.30] Foundational Terminal Ops HITL 1				-													
[SP D.2.40] Foundational Terminal Ops Fast-Time Simulation 1			_	٠	⇒												
[SP D.2.50] Fast-Time Simulation 2			-	٠	⊳												
[SP D.2.60] Fast-Time Simulation 3					_	\diamond	⇒										
[SP D.2.70] HITL Simulation 2							-	\succ	->								
[SP D.2.80] HITL Simulation 3											♦	-	\diamond				

🛨 L1 Program (IASP)

L2 Project

API Element



TC-DAA (2 of 3)

Name		FY2017				FY2	018			FY2019				FY2020			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
[TWP D.3] ACAS-Xu Interoperability	<u> </u>				-												
[SP D.3.10] Stakeholder Meeting																	
[SP D.3.20] Mini HITL																	
[SP D.3.30] Sensor Model Integration																	
[SP D.3.40] ACAS Xu ConUse Review																	
[SP D.3.50] HITL Simulation 1			1					\diamond	♦								
[TWP D.4] External Coordination		<u> </u>			_											_	
[SP D.4.10] DAA SC-228 White Paper																	
[SP D.4.20] SC-228/147 Support					_									->			
[SP D.4.30] ICAO/JARUS/EUROCAE Support					_					!							
[SP D.4.40] Research Technology Transfer (RTT) DAA					_											—	
[TWP D.5] Integrated Events		:		:	_	<u> </u>											
[SP D.5.10] ACAS-Xu Flight Test				★	_]											
[SP D.5.20] Flight Test 5					C				*	•							
[SP D.5.30] Flight Test 6													-	~ ~>			
[SP D.5.40] Common Architecture Implementation																	

t1 Program (IASP)

L2 Project

TC-DAA (3 of 3)

Name				FY2017						FY2	019		FY2020				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
TC - Detect and Avoid (DAA); Integrated Test & Evaluation (IT&E)																	
[TWP T.6] Integration of Technologies into LVC		<u> </u>															
[SP T.6.10] Systems Engineering & Management		:			-							: :			-		
[SP T.6.20] ACAS Xu Integration		<u> </u>	: :	<u> </u>	-												
[SP T.6.30] DAA MOPS Integration		:															
[SP T.6.40] Low SWaP Integration											-						
[SP T.6.50] Improvements & Maintenance		<u> </u>		<u> </u>	-										-		
[TWP T.7] Simulation Planning & Integration		:			_												
[SP T.7.10] Foundational Terminal Ops HITL 1		:			_												
[SP T.7.20] Alternative Surveillance HITL Simulation 1					—												
[SP T.7.30] ACAS Xu HITL Simulation 1																	
[TWP T.8] Integrated Flight Test					_												
[SP T.8.01] SC-228 Support					_	<u>.</u>											
[SP T.8.02] External Coordination: RTT NCC						1											
[SP T.8.10] ACAS Xu Flight Test 2		٠		*	⊳												
[SP T.8.20] No Chase COA					_	-0	\prec	>									
[SP T.8.30] Flight Test 5					_			-	≻☆								
[SP T.8.40] Flight Test 6													\sim	~ ~			

🕇 L1 Program (IASP)

L2 Project

Technical Baseline Element Number	Technical Baseline Element Title	Reference Schedule Package Numbers
TBEN-001	Ku-Band Spectrum Interference Evaluation System Development	SP C.5.10
TBEN-002	Ku-Band Propagation Flights and Interference Analysis	SP C.5.11
TBEN-003	C-Band Design Study, Verification & Validation Planning	SP C.5.40, SP C.5.41
TBEN-004	Terrestrial C2 Radio Evaluation System Development and Test and Evaluation	SP C.6.10, SP C.6.11

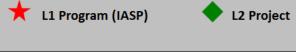
Ku-Band Spectrum Interference Evaluation System Development

- Research Objective:
 - Develop the Ku-Band interference evaluation system

- Status:
 - System design, installation, and integration completed July 2017
 - Technical Baseline Element completed July 2017

Ku-Band Spectrum Interference Evaluation System ready for flight test and evaluation

- Research Objective:
 - Transfer research data for the development and validation of standards for C-Band SatCom C2 data link


• Status:

- Contract awarded and Kickoff meeting completed June 2017
- Next Steps:
 - Review with contractor to be completed October 2017
 - Earth station design to be completed April 2019
 - Verification and Validation Plan to be completed July 2019
 - C-Band SatCom final report to be completed April 2020

Name		FY2	017			FY2	018			FY2	019			FY2	2020		
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
TC - Command and Control (C2)																	
[TWP C.5] Satellite-Based UAS Command & Control																	
[SP C.5.01] External Coordination: RTT C2 SatCom]						
[SP C.5.05] Establish NASA/Industry Cooperative Agreement		+															
[SP C.5.10] Ku-Band Spectrum Interference Evaluation System Devleopment				٠													
[SP C.5.11] Ku-Band Propagation Flights and Interference Analysis																	
[SP C.5.40] C-Band Design Study											<u>.</u>						
[SP C.5.41] C-Band Verification and Validation Planning										<	≻			4	>		
[TWP C.6] Terrestrial-Based UAS Command & Control					_												
[SP C.6.01] External Coordination: RTT C2 Terrestrial		<u> </u>															
[SP C.6.10] Terrestrial C2 Radio Evaluation System Development		•			♦												
[SP C.6.11] Terrestrial C2 Radio Test and Evaluation							4	>	⋗		- (≻	¢			∽≺	>

API Element

Green Status Line Date 9/30/17

UAS-NAS SIO Status Backup Slides

Systems Integration and Operationalization from the Technology perspective:

- **[All OEs]** Integrated Testing of Systems: Development of vehicle technologies (i.e. DAA, C2, and others) is insufficient to close complex integrated system gaps. Technologies must be integrated into vehicle systems and systematically tested in a relevant operational environment
- **[IFR/VFR-Like]** Creation of standards typically leverage RTCA guidance for drafting performance standards that include expectations for meeting aircraft level functional and operational requirements. Other essential vehicle technologies are not being address by RTCA.

Technology Benefits of SIO

NASA's leadership in vehicle technology development through performance of high profile integrated tests can push the industries state of the art UAS development, while ensuring aircraft level functional and operational performance criteria are included in standards activities.

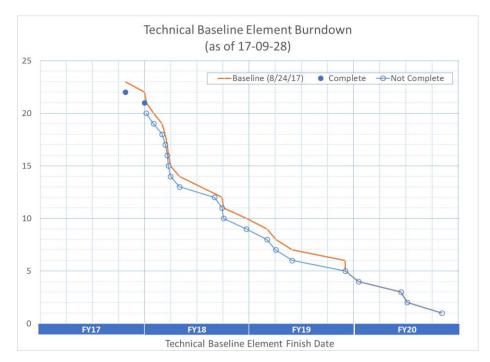
Systems Integration and Operationalization from the Policy perspective

- **[All OEs]** UAS Operationalization: Integration of UAS is a broad multi-faceted problem that requires a systems level approach for implementation of technologies into the NAS, with a focus on ensuring FAA policy is created in a timely manner
- **[IFR/VFR-Like]** Creation of standards largely benefits the Aviation Safety line of business at the FAA, but does not ensure broad FAA policy for operational approvals will follow
 - Risks of inconsistent operational approval policies are significantly reduced by standards, but in order for policies to be created in time for industry operations the FAA needs ongoing efforts consistent with those that were leveraged to develop the standards
 - The high risk nature of system implementation without policy guidance creates an environment of opportunity for federal entities to assume some of this risk

Policy Benefits of SIO

Increasing confidence in the maturity of integrated C2, DAA, and other vehicle technologies an SIO demonstration will provide FAA the opportunity to stress/modify the approval process, leading to a playbook for industry to gain access for IFR/VFR-Like missions for extended operations within Classes D,E, and G Airspace.

Project Level Performance Backup Slides



- Twenty-three Technical Baseline Elements approved 24 August 2017
- Twenty remain open at end of FY17
- One deleted
 - TBEN-011 (SP D.1.90, SP T.7.40)
 - Verify and Validate 1) UAS pilot performance of a DAA system with low size, weight, and power sensor, 2) interoperability of low size, weight, and power sensor requirements with DAA alerting, guidance, and display requirements, and 3) the final DAA and Non-cooperative sensor Phase 2 MOPS
- Two completed
 - TBEN-001 (SP C.5.10)
 - Ku-Band Spectrum Interference Evaluation System Development
 - TBEN-002 (SP C.5.11)
 - Transfer technology and interference research data for the development and validation of standards for Ku-Band SatCom C2 data link

тс	Baseline, 8/24/17	FY17 Deleted	FY17 Completed	Total Remaining
C2	4	0	2	2
DAA	19	1	0	18
Total	23	1	2	20

FY17 Project Deliverables	Technical Challenge	Date	Type of Deliverable
Flight Testing Future Technologies to Overcome the Barriers of integrating UAS into the NAS	TC-DAA	Feb-17	Briefing
Cohesive Full UAS Integration Strategy	Project Office	Feb-17	Briefing
Tech Activity Update US (NASA) HAT-MAPP Models, Agents Principles and Patterns (MAPP)	TC-DAA	May-17	Briefing
Performing a Comprehensive Unmanned Aircraft System Full Integration Analysis for NASA ARMD	Project Office	Mar-17	Report
Ikhana UAS Overview	TC-DAA	May-17	Briefing
Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operational Performance Standards for Integrating Unmanned Aircraft into the National Airspace System Briefing	TC-DAA	Jun-17	Briefing
DAIDALUS Results from UAS in the NAS Flight Test 4	TC-DAA	Jun-17	Paper
UAS Well Clear Recovery against Non-Cooperative Intruders using Vertical Maneuvers	TC-DAA	Jun-17	Paper
An Alternative Time Metric to Modified Tau for Unmanned Aircraft System Detect And Avoid	TC-DAA	Jun-17	Paper
Generic Resolution Advisor and Conflict Evaluator (GRACE) in Applications to Detect-And-Avoid (DAA) Systems of Unmanned Aircraft	TC-DAA	Jun-17	Paper
UAS-NAS Flight Testing Overview	TC-DAA	Jun-17	Briefing
Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operational Performance Standards for Integrating Unmanned Aircraft into the National Airspace System	TC-DAA	Jun-17	Report
Validation of Minimum Display Requirements for a UAS Detect and Avoid System	TC-DAA	Jun-17	Report
Ku-Band Air-to-Ground Propagation Measurement System Overview	TC-C2	Sep-17	Report

Milestones		FY2017									FY2018										FY	2019)						FY2	2020)			
Willestones	10	111	2 1	2	3 4	4 5	6	7	8 9	10	11 1:	2 1	2 3	4	5	6 7	8 9	ə 10	111	2 1	2 3	4	5 (5 7	8 9	ə 10 1	1 12	2 1	2 3	4	56	7	8 9) 1(
Project Comments to MOPS					C2	2 WF	hite		DAA er (L		e Pa	per ((L2)		c	2 Sat	Com	мо	ps	ん い		DA Rev	A M	OPS	<u>ک</u> ر	7	С				AOPS	r	1 1 1	
[TC-C2]																																		Τ
Satellite-Based UAS Command & Control								•														\diamond							<	2				
Terrestrial-Based UAS Command & Control			•								8					\diamond		⊅						\diamond		<	>					<	>	Ŷ
[TC-DAA]																																		
Alternative Surveillance Requirements									<	Ŷ	¢		\diamond	<	>	\diamond	<	>			\diamond				\diamond									
Well Clear/Alerting Requirements										<	\diamond		>		¢	\diamond			\diamond	•			¢			\diamond								
ACAS Xu Interoperability																<	>	•	\diamond															
External Coordination																					\diamond								\diamond					
DAA Flight Tests				•			•		۲	<	>																							
Subprojects DAA / IT&E																		\diamond	$\sum_{i=1}^{n}$	5	♦													
														>		\diamond										\diamond	2	7	0	•				
Level 1	<	>	L	_ev	el :	2								٩,	AP	I Ele	eme	ent								1								

Project Office

Name		FY2	017			FY2	018			FY2	019						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Project Level																	
SC-228 DAA White Paper and MOPS												☆	-			☆	•
SC-228 C2 White Paper and MOPS			,	ł					7	7						☆	

ACAS	Airborne Collision Avoidance System
ACAS-Xu	Version of ACAS for Unmanned Aircraft
ADS-B	Automatic Dependent Surveillance - Broadcast
AFRC	Armstrong Flight Research Center
AFRL	Air Force Research Lab
AGL	Above Ground Level
AOSP	Airspace Operations and Safety Program
API	Annual Performance Indicator
AR	Annual Review
ARC	Ames Research Center or Aviation Rule Making Committee
ARD	Aeronautics Research Director
ARMD	Aeronautics Research Mission Directorate
ATC	Air Traffic Controller
ATM	Air Traffic Management
ATO	Air Traffic Organization-FAA Organization/Authority to Operate
BLOS	Beyond Line of Sight
BRLOS	Beyond Radio Line of Sight
BVLOS	Beyond Visual Line of Sight
C2	Command and Control
СА	Collision Avoidance
CAN	Cooperative Agreement Notice

CAS	Collision Avoidance System
CDR	Critical Design Review
CE	Chief Engineer
Cert	Certification
CNPC	Control and Non-Payload Communications
CNS	Communication, Navigation and Surveillance
COA	Certificate of Authorization or Waiver
Comm	Communications
CONOPS	Concept of Operations
CR	Change Request or Continuing Resolution
CS	Civil Servant
DAA	Detect and Avoid
DAIDALUS	Detect and Avoid Alerting Logic for Unmanned Systems
DoD	Department of Defense
E2V2	End to End Verification and Validation
EUROCAE	European Organization for Civil Aviation Equipment
ExCom	Executive Committee
FAA	Federal Aviation Administration
FL	Flight Level
FRAC	Final Review and Comment
FT	Flight Test

Acronyms

FTE	Full Time Equivalent
	Fiscal Year
FY	
GA	General Atomics
GA-ASI	General Atomics Aeronautical Systems Inc.
GBDAA	Ground Based Detect and Avoid
GBSAA	Ground Based Sense and Avoid
GCS	Ground Control Station
GDS	Great Dismal Swamp
Gen	Generation
GPS	Global Positioning System
GRC	Glenn Research Center
HF	Human Factors
HITL	Human-in-the-loop
HMD	Horizontal Missed Distance
HSI	Human Systems Integration
HQ	Headquarters
IASP	Integrated Aviation Systems Program
ICAO	International Civil Aviation Organization
IDIQ	Indefinite-Delivery, Indefinite-Quantity
IFR	Instrument Flight Rules
IHITL	Integrated Human-In-The-Loop

IMS	Integrated Master Schedule
IR	Infra Red
IRP	Independent Review Panel
IT&E or ITE	Integrated Test and Evaluation
KDP	Key Decision Point
L1	Level 1
L2	Level 2
LaRC	Langley Research Center
LOS	Line of Sight
LoWC	Losses of Well Clear
LS	Large Scale
LVC	Live Virtual Constructive
LVC-DE	Live Virtual Constructive Distributed Environment
MACS	Multi Aircraft Control Station
MIT-LL	Massachusetts Institute of Technology Lincoln Labs
MITRE	MITRE Corporation
MOA	Memorandum of Agreement
MOPS	Minimum Operational Performance Standards
M&S	Modeling and Simulation
MS&A	Modeling, Simulation, and Analysis
MSL	Mean Sea Level

N2	2nd upgrade to the original NBS
NAS	National Airspace System
NASA	National Aeronautics and Space Administration
NCC	No Chase COA
NextGen	Next Generation
NRA	NASA Research Announcement
ODM	On Demand Mobility
OE	Operating Environment
OEM	Original Equipment Manufacturer
OPNET	OPNET Technologies
OSD	Office of the Secretary of Defense Slide 15
OV-1	Operational View
P1	Phase 1
P2	Phase 2
PDR	Preliminary Design Review
PE	Project Engineer
PER	Preliminary Experiment Review
PI	Progress Indicator
PM	Project Manager
PO	Project Office
PP	Project Plan

Acronyms

PPBE	Planning, Programming, Budgeting, and Execution
PRD	Project Requirements Document
PRP	Performance Review Panel
РТ	Part Task
PVS	Prototype Verification System
Q	Quarter
RA	Resolution Advisory
RADAR	Radio Detection and Ranging
R&D	Research and Development
RF	Radio Frequency
RFI	Request for Information
RFP	Request for Proposal
RPAS	Remotely Piloted Aircraft Systems
RT	Research Theme
RTT	Research Transition Team
SAA	Sense and Avoid or Space Act Agreement
SatCom	Satellite Communications
SC	Special Committee
SEMP	System Engineering Management Plan
SIERRA	Sensor Integrated Environmental Remote Research Aircraft
Sim	Simulation

SIO	Systems Integration Operationalization
SME	Subject Matter Expert
SP	Schedule Package
SPM	Subproject Manager
SS	Self Separation
SWaP	Size Weight and Power
ТВ	Technical Baseline
TBD	To Be Determined
TBEN	Technical Baseline Element Number
ТС	Technical Challenge
TCAS	Traffic Collision Avoidance System
ToR	Terms of Reference
TRL	Technology Readiness Level
TSO	Technical Standard Order
ТТ	Technology Transfer
TWP	Technical Work Package
UA	Unmanned Aircraft
UAS	Unmanned Aircraft Systems
UAS-NAS	Unmanned Aircraft Systems Integration in the National Air Space System
UAV	Unmanned Aircraft Vehicle
UNITD	UAS-NAS Interoperability for TCAS and DAA

Acronyms

US	United States
UTM	UAS Traffic Management
VFR	Visual Flight Rules
VIP	Very Important Person
VLOS	Visual Line of Sight
vMDIO	Virtual Mission Directorate Integration Office
VSCS	Vigilant Spirit Control Station
WG	Working Group
WYE	Work Year Equivalent