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ABSTRACT

Because valves control many critical operations, they are prime
candidates for deployment of prognostic algorithms. But,
similar to the situation with most other components, examples
of failures experienced in the field are hard to come by. This
lack of data impacts the ability to test and validate prognos-
tic algorithms. A solution sometimes employed to overcome
this shortcoming is to perform run-to-failure experiments in a
lab. However, the mean time to failure of valves is typically
very high (possibly lasting decades), preventing evaluation
within a reasonable time frame. Therefore, a mechanism to
observe development of fault signatures considerably faster is
sought. Described here is a testbed that addresses these issues
by allowing the physical injection of leakage faults (which are
the most common fault mode) into pneumatic valves. What
makes this testbed stand out is the ability to modulate the
magnitude of the fault almost arbitrarily fast. With that, the
performance of end-of-life estimation algorithms can be tested.
Further, the testbed is mobile and can be connected to valves
in the field. This mobility helps to bring the overall pro-
cess of prognostic algorithm development for this valve a step
closer to validation. The paper illustrates the development of
a model-based prognostic approach that uses data from the
testbed for partial validation.

1. INTRODUCTION

Valves, and pneumatically-actuated valves in particular, play
a critical role in many systems, in cryogenic propellant load-
ing systems for controlling the flow of propellant (Daigle &
Goebel, 2011), in aircraft carrier steam catapults (Shevach
et al., 2014), the residual heat removal system in a nuclear
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power plant (Lin, Li, & Zio, 2014), and air bleed systems in
aircraft (Lorton, Fouladirad, & Grall, 2013). In these kinds
of systems, valve failures can have an adverse impact on sys-
tem safety and availability. Hence, there is a critical need for
valve health monitoring and failure prediction, and to develop
prognostic methods for computing end of life (EOL) and re-
maining useful life (RUL).

Experimental testbeds play a key role in maturing prognos-
tics algorithms. In particular, such testbeds require repeatable
and controllable injection of faults and degradations. Such
testbeds have been constructed for electrical power systems
(Poll, Patterson-Hine, Camisa, Garcia, et al., 2007; Poll, Patterson-
Hine, Camisa, Nishikawa, et al., 2007), electromechanical ac-
tuators (Balaban et al., 2010), mobile robots (Tang, Hettler,
Zhang, & DeCastro, 2011; Balaban et al., 2013) and fuel sys-
tems (Niculita, Jennions, & Irving, 2013). For the purpose
of maturing and validating valve prognostics approaches, a
pneumatic valve testbed was developed as discussed in (Kulkarni,
Daigle, & Goebel, 2013).

The contributions of this work are twofold. In the first phase
a hardware-in-the-loop testbed was developed for pneumatic
valves used for cryogenic propellant loading operations. The
testbed allows four different kinds of leakage faults to be in-
jected and their magnitude controlled to any desired fault pro-
gression function. The setup is similar to the one with actual
propellant loading systems in the field. The approach is ex-
tended to enable prognostics in real time, and demonstrated
using real data from the pneumatic valve testbed.

In the second phase a model-based prognosis framework is
implemented to two types of pneumatic valves. Unlike ear-
lier work based on particle filters (Daigle & Goebel, 2011), in
this paper a new model-based method using measurements of
valve open and close times is discussed, recently developed
in (Daigle, Kulkarni, & Gorospe, 2014). In real valve opera-
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tions, typically only valve position is measured, from which
the only meaningful information for prognostics are the valve
open and close times. Valve open/close times are computed
based on defined fully open/close position thresholds which
are defined based on respective valve operation. Difference
between completely open and completely close positions is
measured to compute time. Given that the valves are operated
discretely, and we measure position, we can just compute the
time difference of when these positions are measured. No ”air
leakage” measurement sensor is available in the field, hence
this is inferred in order to perform prognostics. While the
information is sparse compared to an environment with rich
sensor information. The overall model is simpler and requires
significantly less computation to isolate and identify faults,
and predict EOL and RUL. However, tradeoffs are made with
regards to prognostic horizon. The approach follows the gen-
eral estimation-prediction framework for model-based prog-
nostics (Orchard & Vachtsevanos, 2009; Daigle & Goebel,
2013).

The paper is organized as follows. Section 2 describes the
valve prognostics testbed. Section 3 explains the valve mod-
els. Section 4 provides the valve prognosis framework, and
Section 5 presents prognosis results using testbed data. Sec-
tion 6 discusses related work. Section 7 concludes the paper.

2. VALVE TESTBED

The valve prognostics testbed, schematic shown in Fig. 1 and
actual developed testbed shown in Fig. 2 , has been devel-
oped to demonstrate valve prognosis in the context of cryo-
genic refueling operations (Kulkarni et al., 2013). The dashed
lines denote the electrical signals, including the data acqui-
sition I/O signals, power lines, etc. The solid lines denote
the pneumatic pressure lines connecting the supply and the
valves. Electric power is routed through a power supply that
has a fail-safe mode which in turn isolates the valve prognos-
tics testbed from the field cryogenic loading system interface
in case of an emergency.

The testbed contains a discretely-controlled valve (DV), a
solenoid valve (SV), a continuously-controlled valve (CV),
a current-pressure transducer (IPT), and a number of propor-
tional valves for injecting leakage faults. The components are
described in the following subsections.

The fault injection testbed is portable. That is, it can be
moved from the lab environment and it can be connected to
the actual propellent loading system on field. This gives the
testbed the unique ability to test faults on any of the discrete
and continuously-controlled valves not only during develop-
ment in the lab but also for validation in the production envi-
ronment.

2.1. DV Operation

The discrete-controlled valve (DV), illustrated in Fig. 3 is
a normally-open valve with a linear cylinder actuator. The
valve is closed by filling the chamber above the piston with
pressurized air up to the supply pressure, and opened by evac-
uating the chamber to atmosphere. The spring returns the
valve to its default position.

A three-way two-position solenoid valve (SV), illustrated in
Fig. 4, is used for controlling the operation of the DV valve.
The cylinder port connects to the DV valve, the normally
closed (NC) port connects to the supply pressure, and nor-
mally open (NO) port is left unconnected, allowing venting
to atmosphere. When the solenoid is energized, the path from
the NC port to cylinder port is open, allowing pressurized air
to pass from the supply to the valve, thus actuating the valve.
When de-energized, the supply pressure is closed off and the
path from the cylinder port to the NO port is opened, thus
venting the actuation pressure in the DV valve, allowing the
valve to open due to the return spring. The solenoid is pow-
ered by 24 V DC either through the power supply or by a
backup battery.

2.2. DV Fault Injection

Pneumatic valves can suffer from leaks, an increase in friction
due to wear, and spring degradation (Daigle & Goebel, 2011).
Because friction and spring faults cannot easily be injected or
their rate of progression controlled, only to leak faults are
discussed in this work. However, leaks are the most common
faults found in pneumatic valves.

For the DV, two different leak faults may be considered: (i) a
leak to atmosphere, and (ii) a leak from the supply. In the for-
mer, this can be manifested as a leak across the NO seat of the
solenoid valve, or a leak in the pressure line going to the pneu-
matic valve. For the latter case, the fault can be manifested
as a leak across the NC seat of the solenoid valve. To emu-
late these faults, two remotely-operated proportional valves,
V1 and V2, were installed as shown in Fig. 1. One valve,
V1, leaks to atmosphere (henceforth called the vent valve),
while the other, V2, is installed on a bypass line around the
solenoid valve (henceforth called the bypass valve). The po-
sition of the vent and bypass valves can be controlled through
a current signal, continuously between 0 and 100% open. In
this way, one can control the fault progression (growth of leak
size) according to various progression profiles.

Fig. 5 illustrates a leak to atmosphere using the vent valve
(V1). The leak through V1 emulates a leak at the cylinder
port or across the NO seat.

Similarly, Fig. 6 illustrates a leak from the supply using the
bypass valve (V2). The leak through V2 emulates a leak
across the NC seat.
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Figure 1. Prognostics demonstration testbed schematic.

2.3. CV Operation

The CV, illustrated in Fig. 7, is a normally-closed valve with
a linear cylinder actuator with dual pressure chambers. The
valve is positioned by a pressure difference between the pri-
mary pressure chamber which is at standard operational pres-
sure and the secondary chamber which can vary in pressure
as controlled through the IPT.

The IPT output pressure is regulated down from the input
pressure and is directly proportional to the applied control
current supplied to the transducer. Thus, a low current will
create a lower output pressure and a higher current will in-
crease the output pressure.

2.4. CV Fault Injection

As shown in Fig. 8, two different leak faults for the CV are
considered: (i) a leak to atmosphere from the signal line,
through valve V3; and (ii) a leak to atmosphere from the sup-
ply line, through valve V4. Like V1 and V2, V3 and V4 are
proportional valves that can be controlled from 0 to 100% to
implement any desired fault progression profile.

3. VALVE MODELING

In this work, a model-based approach to valve prognostics (Daigle
& Goebel, 2011) is developed and implemented, which re-
quires dynamic models of the components that describe both
nominal and degraded operation. A physics-based approach
is adopted where the model is described using ordinary differ-
ential equations. For implementation purposes, discrete-time
versions are converted using a sample time of 1× 10−4 s.
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Figure 2. Developed Testbed
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Figure 3. Discretely-controlled valve.

Models for both discretely- and continuously-opening pneumatically-
actuated valves are developed, which were were originally
presented in (Daigle et al., 2014; Kulkarni, Daigle, Gorospe,
& Goebel, 2015), and are summarize here for completeness.
Along with providing dynamics of the respective components,
the section presents how EOL is defined for these valves.

In (Daigle & Goebel, 2011) the authors concluded that corrosion-
based leaks are not a function of usage, i.e., cycling, but are
correlated to environmental conditions only. Usage would
have an effect on other fault modes which are out of scope
for this study. The work discussed herein focuses on faults
that can be controlled in experiments.

Figure 4. Three-way two-position solenoid valve.
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Figure 5. Leak to atmosphere fault on the DV injected
through the vent valve V1.

3.1. Discrete Valve Modeling

A normally-open discretely-opening valve (as seen in Fig. 3)
is considered in this work. Normally, the chamber above the
piston is open to atmosphere, and so the piston is forced up by
the return spring. The valve is closed by filling the chamber
up to the supply pressure. The pressure force overcomes the
spring force, moving the piston downward, closing the valve.
The valve is opened by evacuating the gas in the chamber to
atmosphere.

The valve model is based on mass and energy balances. The
system state includes the position of the valve, x(t), the ve-
locity of the valve, v(t), the mass of the gas in the volume
above the piston, and the mass of the gas in the pipe connect-
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Figure 7. Continuously-controlled valve.

ing the solenoid valve to the pneumatic valve port:

x(t) =


x(t)
v(t)
mt(t)
mp(t)

 . (1)

The position is defined as x = 0 when the valve is fully
closed, and x = Ls when fully open, where Ls is the stroke
length of the valve.

Supply Pressure
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supply pressure port
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signal  pressure port

V4
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IPT

Figure 8. CV valve leaks.

The derivatives of the states are described by

ẋ(t) =


v(t)
a(t)
ft(t)
fp(t)

 , (2)

where a(t) is the valve acceleration, ft(t) is the mass flow
going into the pneumatic port from the pipe, and fp(t) is the
total mass flow into the pipe.

The single input is considered to be

u(t) =
[
ut(t)

]
, (3)

where ut(t) is input pressure to the pneumatic port, which
alternates between the supply pressure and atmospheric pres-
sure depending on the commanded valve position.

The acceleration is defined by the combined mass of the pis-
ton and plug, m, and the sum of forces acting on the valve,
which includes the force from the pneumatic gas, Fp = (pt(t)−
patm)Ap, where pt(t) is the gas pressures on the top of the
piston, and Ap is the surface area of the piston; the weight of
the moving parts of the valve, Fw = −mg, where g is the ac-
celeration due to gravity; the spring force, Fs = k(x(t)+xo),
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where k is the spring constant and xo is the amount of spring
compression when the valve is open; friction, Ff = −rv(t),
where r is the coefficient of kinetic friction, and the contact
forces Fc(t) at the boundaries of the valve motion,

Fc(t) =


kc(−x), if x < 0,

0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

(4)

where kc is the (large) spring constant associated with the
flexible seals. Overall, the acceleration term is defined by

a(t) =
1

m
(Fs − Fp − Ff − Fw + Fc). (5)

The pressure pt(t) and the pipe pressure, pp(t), are calculated
as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))
(6)

pp(t) =
mp(t)RgT

Vp
(7)

where an isothermal process is assumed in which the (ideal)
gas temperature is constant at T , Rg is the gas constant for
the pneumatic gas, Vt0 is the minimum gas volume for the
gas chamber above the piston, and Vp is the pipe volume.

The gas flows are given by:

fp,in(t) = fg(ut(t), pp(t)) (8)
fp,leak(t) = fg(pp(t), pleak) (9)
fp,t(t) = fg(pp(t), pt(t)) (10)
fp(t) = fp,in(t)− fp,t(t)− fp,leak(t) (11)
ft(t) = fp,t(t) (12)

where fp,in is the flow into the pipe from the supply or at-
mosphere, fp,leak is a leak term with pleak being the pres-
sure outside the leak, fp,t is the flow from the pipe to the
chamber above the piston, and fg defines gas flow through
an orifice for choked and non-choked flow conditions (Perry
& Green, 2007). Non-choked flow for p1 ≥ p2 is given by
fg,nc(p1, p2) =

CsAsp1

√√√√ γ

ZRgT

(
2

γ − 1

)((
p2
p1

) 2
γ

−
(
p2
p1

) γ+1
γ

)
,

(13)

where γ is the ratio of specific heats, Z is the gas compress-
ibility factor, Cs is the flow coefficient, and As is the orifice
area. Choked flow for p1 ≥ p2 is given by

fg,c(p1, p2) = CsAsp1

√√√√ γ

ZRgT

(
2

γ + 1

) γ+1
γ−1

. (14)

Choked flow occurs when the upstream to downstream pres-
sure ratio exceeds

(
γ+1
2

)γ/(γ−1)
. The overall gas flow equa-

tion is then given by

fg(p1, p2) =



fg,nc(p1, p2) if p1 ≥ p2
and p1

p2
<
(
γ+1
2

) γ
(γ−1) ,

fg,c(p1, p2) if p1 ≥ p2
and p1

p2
≥
(
γ+1
2

) γ
(γ−1) ,

−fg,nc(p2, p1) if p2 > p1

and p2
p1
<
(
γ+1
2

) γ
(γ−1) ,

−fg,c(p2, p1) if p2 > p1

and p2
p1
≥
(
γ+1
2

) γ
(γ−1) ,

.

(15)

As shown by Eq. 13 and Eq. 14, the leak rate is determined
by pressure differences, gas properties, and valve parameters
Cleak and Aleak. As the leak grows (by the corresponding leak
valve opening), this is reflected as a change in Aleak. Based
on the developed testbed experimental data, it is observed that
the leak area is proportional to the square of the valve posi-
tion, i.e.,

Aleak = Kleakx
2
leak, (16)

for some proportionality constant Kleak. As the leak area in-
creases it directly affects the position travelled by the valve
during operation. The relationship in Eq. 16 is specific to
the valves under test. A generalized relationship is discussed
in (Richer & Hurmuzlu, 1999)

The only available measurement is the valve position, given
by

y(t) =
[
x(t)

]
. (17)

Fig. 9 shows an example nominal valve cycle. The valve
starts in its default open state. The valve is commanded to
close at 0 s. Supply pressure (75 psig) is delivered to the
pipe and to the valve, causing the piston to lower, closing the
valve just after 1 s. At 4 s, the valve is commanded to open,
and the pipe is opened to atmosphere. The pipe pressure and
valve pressure drop, and once the pressure drops low enough,
the spring overcomes the pressure force and the piston moves
upwards. The valve completes opening just after 6 s. The
valve parameters were identified from known valve specifica-
tions, and unknown parameters estimated to match the nomi-
nal opening and closing times, which for the actual valve, are
both around 3.5 s.

As discussed in Section 2, two different leak faults are con-
sidered, one in which there is a leak from the supply pressure
input to the valve (pleak is the supply pressure), emulated us-
ing the bypass valve, and one in which there is a leak out
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Figure 9. Nominal DV operation.

to atmosphere (pleak is atmospheric pressure), emulated using
the vent valve. In the former case, the valve will close more
slowly and open faster, and in the latter, the valve will open
more slowly and close faster. With a large enough leak, the
valve may fail to open or close completely. Fig. 10 shows the
changes in valve timing with the leak from the supply, and
Fig. 11 shows the changes in valve timing with the leak to
atmosphere.

In this work a damage progression model is considered where
the leak hole area increases linearly with time (Fontana, 1986;
Ahammed, 1998). The growth curve used in this work is
completely based on assumed operating corrosion conditions
like humidity, salt in air, temperature which stay more or
less constant over the experiment cycles. Any fluctuations
like seasonal effects are averaged out because the degrada-
tion phenomena is progressing at a very slow rate and does
not change with each operating cycle. This growth curve can
be controlled systematically through the developed tested by
injecting specific profile of damage progression. With ad-
ditional knowledge the damage progression provided based
on corrosion type similar profile can be programmed into the
system.

End of life (EOL) is defined through open/close time limits

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

Time (cycles)

T
im

e 
(s

)

 

 
Opening Time
Closing Time

Figure 10. DV timing with leak from supply, with linearly
increasing leak coefficient.
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Figure 11. DV timing with leak to atmosphere, with linearly
increasing leak coefficient.

of the valves, as in real valve operations (Daigle & Goebel,
2011). The valve in the testbed is required to open within
8.5 s and close within 6 s.

3.2. Continuous Valve Modeling

The actuator has two pressure ports, one for the supply pres-
sure, and one for the signal pressure as seen in Fig. 7 for a
normally-closed continuously-controlled valve . External to
the valve, the signal pressure is controlled between 3–15 psig
in order to move the valve between fully closed and fully
open. A pressure regulator maintains a loading pressure on
top of the valve piston, and the piston moves by modulating
the actuating pressure via the pilot valve. The pilot valve,
balanced by the spring and the diaphragm assembly, moves
up or down according to the signal pressure. When moving
up, the volume below the piston is opened up the atmosphere,
and when the pilot moves down, the volume below the piston
is opened up to the supply pressure.

Similar to the DV, the CV model is based on mass and energy
balances. The system state includes the position of the piston,
xp(t), velocity of the piston, vp(t), position of the pilot/spring
assembly, xs(t), velocity of the pilot/spring assembly, vs(t),
mass of gas in volume below the piston mb(t), mass of gas in
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the pipe connecting to the supply input, msp(t), and mass of
gas in the pipe connecting to the signal input, msg(t):

x(t) =



xp(t)
vp(t)
xs(t)
vs(t)
mb(t)
msp(t)
msg(t)


. (18)

The piston position is defined as xp = 0 when the valve is
fully closed, and xp = Ls when fully open, where Ls is the
stroke length of the valve (about 20 mm). When fully closed,
the pilot/spring assembly position is also defined as xs = 0.

The derivatives of the states are described by

ẋ(t) =



vp(t)
ap(t)
vs(t)
as(t)
fb(t)
fsp(t)
fsg(t)


, (19)

where a is acceleration and f is mass flow.

The two inputs are considered to be

u(t) =

[
usp(t)
usg(t)

]
, (20)

where usp(t) is input pressure to the supply port, which is
nominally 75 psig, and usg(t) is the input pressure to the sig-
nal port, which varies between 3–15 psig, depending on the
commanded valve position.

The acceleration of the piston is defined by the combined
mass of the piston and plug, mp, and the sum of forces act-
ing on the piston, which includes the force from the actuating
pressure, Fa = pbAp, where Ap is the area of the piston in
contact with the actuating pressure; the force from the load-
ing pressure, Fl = Alpl, where Al is the area of the piston in
contact with the loading pressure; friction, Ff = −rpvp(t),
where rp is the coefficient of kinetic friction; the spring force,
Fs = k(xp + xo − xs) where xo is the spring compression at
the closed position; the weight, Fw = −mpg, and the contact
forces, Fc(t), at the boundaries of the valve/piston motion,

Fc(t) =


kc(−x), if x < 0,

0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

(21)

where kc is the (large) spring constant associated with the

flexible seals. Overall, the acceleration term is defined by

ap(t) =
1

mp
(Fa − Fs − Fl − Fw − Ff + Fc) (22)

The pressures pl is assumed to be constant and known, and
the pressure pb is computed as

pb =
mb(t)RgT

Vb0 +Apxp(t)
, (23)

where an isothermal process is assumed in which the (ideal)
gas temperature is constant at T , Rg is the gas constant for
the pneumatic gas, and Vb0 is the minimum gas volume for
the gas chamber below the piston.

The acceleration of the pilot/spring assembly is defined by
their combined mass, ms, and the sum of forces acting on
the assembly, which includes the force from the spring Fs
(as defined above); the force from the signal pressure, Fsg =
(psg − patm)Ad, where Ad is the area of the diaphragm in
contact with the signal pressure and patm is atmospheric pres-
sure; friction, Ffs = rsvs(t), where rs is the coefficient of
kinetic friction; the force from the supply pressure, Fsp =
(psp − patm)Asp, where Asp is the area of the pilot in con-
tact with the supply pressure; the weight, Fws = msg; and
contact forces Fcs (defined as above but with Lss, the stroke
length of the pilot/spring assembly).

The pressures psg and psp are computed as

psg =
msg(t)RgT

Vsg
, (24)

psp =
msp(t)RgT

Vsp
, (25)

where Vsg is the volume of the pipe containing the signal
pressure, and Vsp is the volume of the pipe containing the
supply pressure.

The mass flows fb(t), fsp(t), and fsg(t) are defined by

fb(t) = (xs < 0) · fg(psp(t), pb(t))
− (xs > 0) · fg(pb(t), patm), (26)

fsp(t) = fg(usp(t), psp(t))− fsp,leak(t)

− (xs < 0) · fg(psp(t), pb(t)), (27)

fsg(t) =fg(usg(t), psg(t))− fsg,leak(t), (28)

where fsg,leak and fsg,leak are leak terms (both leaks to atmo-
sphere). Note also that the flows into and out of the underside
of the piston depend on the position of the pilot/spring assem-
bly. Here, fg defines gas flow through an orifice for choked
and non-choked flow conditions (Eq. 15).
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The only available measurement is the valve position, given
by

y(t) =
[
xp(t)

]
. (29)

Fig. 12 shows an example nominal valve cycle. The valve
starts in its default closed state. The valve is commanded to
50% open using a signal pressure of 9 psig. The pilot valve
moves, allowing gas from the supply line to enter below the
piston, increasing the mass of gas below the piston and in-
creasing the pressure. When there is enough pressure, the
piston begins to move up, and when the valve reaches 50%
open, the forces balance and the pilot valve closes. Due to
small fluctuations in pressure the pilot intermittently moves
up and down to keep the pressures balanced, causing sllight
disturbances in position.

Leak faults will cause an effect on the behavior of the valve.
With a leak from the supply line, trends observed are seen
in Figs. 13 and 14. Due to the decrease in effective supply
pressure, it takes longer to close the valve and the steady-
state position decreases because the valve is set up based on a
nominal supply pressure. With a leak from the signal line, the
effect on valve timing is not very significant, but since signal
pressure will be lower due to the leak, its steady-state position
will decrease.

End of life (EOL) is defined through the use of timing limits
on the valves, as is done in real valve operations (Daigle &
Goebel, 2011), and also the error in its steady-state position.
The valve in the testbed is required to open within 7.5 s, close
within 5 s, and when commanded to open to 100% it must
open up at least to 98.5%.

4. VALVE PROGNOSIS

In this section the prognosis framework developed for the
valves, following the general estimation-prediction framework
of model-based prognostics as defined in the scientific lit-
erature (Luo, Pattipati, Qiao, & Chigusa, 2008; Orchard &
Vachtsevanos, 2009; Daigle & Goebel, 2013). However, since
only valve timing values are used for prognosis, a simpler es-
timation approach (Daigle et al., 2014), similar to that devel-
oped in (Teubert & Daigle, 2013) is implemented, as opposed
to more complex and computationally intensive filtering ap-
proaches used in previous works (Daigle, Saha, & Goebel,
2012; Orchard & Vachtsevanos, 2009). Section 4.1 formu-
lates the prognostics problem, followed by a description of
the estimation approach and a description of the prediction
approach.
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Figure 12. Nominal CV operation.

4.1. Problem Formulation

The system model assumed may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (30)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (31)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1

1Bold typeface denotes vectors, and na denotes the length of a vector a.
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Figure 13. CV open times with a progressing leak from the
supply line.
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Figure 14. CV steady-state position with a progressing leak
from the supply line.

In prognostics, the key factor is in predicting the occurrence
of some event E that is defined with respect to the states,
parameters, and inputs of the system. The event is defined
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1} changes from the value
0 to 1 (Daigle & Sankararaman, 2013). That is, the time of
the event kE at some time of prediction kP is defined as

kE(kP ) ,

inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}. (32)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (33)

In the context of systems health management, TE is defined
via a set of performance constraints that define what the ac-
ceptable states of the system are, based on x(k), θ(k), and
u(k) (Daigle & Goebel, 2013). In this context, kE represents
end of life (EOL), and ∆kE represents remaining useful life
(RUL). As described in Section 3, for the valves, timing and
steady-state position requirements define TEOL.

The prognostics problem is to compute estimates of EOL
and/or RUL. This is done is two steps, an estimation step that
computes estimates of x(k) and θ(k), followed by a predic-
tion step that computes EOL/RUL using these values as initial
states. For the case of the valve, the future inputs are known,
i.e., the valve is simply cycled open and closed, so there is no
uncertainty with respect to future inputs.

4.2. Fault Detection

Since valve position is measured, only valve timing values
and steady-state position values are useful for prognostics.
Timing information is obtained from the continuous position
measurement data by extracting and computing the difference
in time between when the valve is commanded to move, and
when it reaches its final position. As discussed in Section 3.1,
open and close times are used for faults in the DV, and, as
discussed in Section 3.2, close times and steady-state position
are used for faults in the CV.

To detect faults, predefined threshold are set on the opening
times, closing times, and steady-state position. If the mean
value, averaged over the last 3 cycles, is over the threshold,
then a fault is detected.

4.3. Estimation

Using the model, measurements from valve timing and steady-
state position are mapped back to the fault size (i.e., equiva-
lent leak area). In order to perform the estimation, an offline
lookup table is constructed using the simulation models of
the valves to compute, for different values of leak size in the
expected ranges, the open and close times (for the DV) and
close times and steady-state position (for the CV) (Teubert &
Daigle, 2013; Daigle et al., 2014). With a fine enough granu-
larity, a lookup table will provide accurate estimates but at a
fraction of the computational cost of online estimation meth-
ods.

The developed testbed allows for modular use of different
corrosion propagation models. If a alternative corrosion growth
is deemed to be a more desirable choice, it can be swapped in
easily through replacement of a function call in the governing
program. The prognostics approach is similarly flexible, be-
cause the open/close times are mapped to leak sizes. While
it is assumed here that the leak sizes grow linearly, different
leakage behavior can be used without impacting the rest of
the prognostics framework

The calculated equivalent leak area is mapped back to the
position of the leak valve. According to Eq. 16, the leak
area increases linearly with the square of the leak valve po-
sition, hence square root of the leak size is calculated, i.e.,
xleak =

√
Aleak/Kleak. The leak valve position, xleak, is as-

sumed to be increasing linearly, so as to estimate the linear
coefficients (where the slope is lumped with

√
Kleak). Given

10
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the estimated values of damage progression, a regression step
is performed to find the line that fits this data, using the last
N cycles.

For the leak to atmosphere of the DV, only closing times can
be used (Daigle et al., 2014). This is because, in the presence
of this leak, the valve may not get up to the full supply pres-
sure when the valve closes in time for the next cycle, so since
the internal valve actuator pressure is not measured, a cor-
rect initial condition is not available for the simulation with
which to estimate the leak parameter value for the following
opening time. For the supply leak of the DV, analogous situa-
tion arises and can use only opening times for leak parameter
estimation.

For the signal line leak fault of the CV, steady state values are
used. The signal pressure controls the open/close position of
the valve while the supply pressure is used for regulating the
pressure inside the valve. When this fault is injected, there is
no change in the supply pressure but the signal pressure de-
creases and so the valve is not able to reach its desired steady
state final value.

For the supply line leak fault of the CV, open time values are
used. When this leak is injected, there is a decrease in the
supply pressure, which leads to an increase in the valve open-
ing time (since the corresponding pressure forces take longer
to develop). As the leak increases the open time increases
accordingly, while the steady state values remain relatively
constant.

4.4. Fault Isolation

Faults are isolated by inspecting open/close timing and steady-
state position trends (see Fig. 11, Fig. 10, Fig. 13, and Fig. 14).
For the DV, since the two faults produce different qualitative
changes on the valve timing, the observed trends tell us which
fault is actually present.

For the CV, both faults have the same qualitative effects; they
produce an increase in valve opening time and a decrease
in steady-state position. However, their quantitative effects
are different; the signal pressure leak has a greater effect on
steady-state position and the supply pressure leak a greater
effect on opening time. Therefore, based on the more signifi-
cant trend faults can be isolated. For a signal leak, the devia-
tion in nominal behavior will be observed first in steady-state
position, and for a supply leak, the deviation will be observed
first in the opening time. Depending upon the fault isolated
the predictions for RUL are computed.

4.5. Prediction

Given the current estimated leak parameter value, and the re-
gression parameters, leak parameter value at any future time
can be calculated, using the damage progression equation (i.e.,
linearly progressing leak valve position). Using the lookup ta-

ble, maximum valve open/close times and/or steady-state po-
sition values to maximum leak parameter values for the leak
faults are mapped, and this defines the EOL thresholds in the
leak parameter space. Using the relationship between leak
size and leak valve position, obtain corresponding maximum
values, and then solve for the time at which that threshold is
crossed, given the fitted line, and thus compute EOL.

Prediction is not performed until a fault is detected. The re-
gression is performed only over the data obtained since fault
detection, so that nominal valve behavior is not used to esti-
mate the fault progression parameters. The use of a filter on
the data for fault detection introduces a slight lag, however
in practice fault progression is very slow so this lag is negli-
gible relative to the true EOL. In general, more robust fault
detection strategies may also be used, but for our purposes a
simple threshold works well.

5. EXPERIMENTAL RESULTS

In this section, experimental results using the valve prognos-
tics testbed are discussed. The valve is continually cycled
open and closed in each experiment, with one cycle every 10
seconds, until the end of life condition is reached. For fault
injection, the leak valve is opened at an increment of 1% at
each cycle. The time 10 seconds is chosen such that the value
has sufficient time to perform given operations under normal
operating conditions. In the following sections results for the
discrete valve and the continuous valve are presented respec-
tively.

To evaluate the experiments, two metrics, prognostics horizon
and relative accuracy (Saxena, Celaya, Saha, Saha, & Goebel,
2010) are computed. Relative accuracy is computed as the
difference in the true and predicted values divided by the true
value (in this case, for EOL):

RA =
|k∗E − kE |

k∗E
, (34)

where k∗E denotes the true value. We define prognostics hori-
zon, kPH , as the first time point after fault detection (kd) in
which the relative accuracy remains within a fraction α of the
true value, in this case α = 0.15 is used. To compare experi-
ments with different detection times and EOLs, the metric is
normalized by computing it as the fraction:

PH =
|kPH − kd|
kE − kd

, (35)

where a smaller value, which means accurate results earlier,
is better. An averaged relative accuracy is computed over all
prediction points from kd to kE .
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Figure 15. DV open times with a leak to atmosphere.

5.1. Discrete Valve

For faults in the discrete valve leak to atmosphere and leak to
supply faults are discussed.

5.1.1. Leak to Atmosphere

A total of 5 experiments were performed for this fault. As de-
scribed in Section 2, the leak to atmosphere fault is injected
by controlling the position of the leak valve V1. This em-
ulates a leak across the NO seat of the solenoid valve. As
described in Section 3, this fault causes an increase in clos-
ing times and a decrease in opening times. Fig. 15 shows the
open times of the valve during the fault progression, with a
noticable downwardward progression, in agreement with the
model. Fig. 16 shows the close times, but any trend is masked
by the noise in the computed closing times. A fault is detected
at the 59th cycle based on the opening times.

The estimated leak parameter values, based on the open times
of the DV, are shown in Fig. 17. In order to estimate the
fault progression parameters, the all values since detection
are used. The EOL predictions are given in Fig. 18 and the
RUL values in Fig. 19, where α = 0.15 represents a desired
accuracy constraint, EOL∗ denotes the true EOL, andRUL∗

denotes the true RUL. The predictions converge soon after
the fault is detected, with PH = 47.83%. RA averages to
98.33%.

Over all experiments, PH averages to 66.31% and average
RA to 95.42%. For this fault, the progression of the fault is
not very large relative to the nominal opening times, and so
predictions are accurate only after halfway to EOL.
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Figure 16. DV close times with a leak to atmosphere.
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Figure 17. Estimated leak parameter values based on valve
opening times for the leak to atmosphere for the DV.

5.1.2. Leak from Supply

A total of 6 experiments were performed for this fault. As de-
scribed in Section 2, the leak from supply fault is injected by
controlling the position of the leak valve V2. This emulates
a leak across the NC seat of the solenoid valve. As described
in Section 3, this fault causes an increase in opening times
and a slight decrease in closing times. Fig. 20 shows the open
times of the valve during the fault progression, with a clear
upward progression, in agreement with the model. Fig. 21
shows the close times, but any trend is masked by the noise
in the computed closing times. A fault is detected at the 52nd
cycle based on the opening times.

The estimated leak parameter values, based on the open times
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Figure 18. Predicted EOL values for the leak to atmosphere
for the DV.

Figure 19. Predicted RUL values for the leak to atmosphere
for the DV.

of the DV, are shown in Fig. 22. In order to estimate the
fault progression parameters, the last 15 values are used. The
EOL predictions are given in Fig. 23 and the RUL values in
Fig. 24, where α = 0.15 represents a desired accuracy con-
straint, EOL∗ denotes the true EOL, and RUL∗ denotes the
true RUL. The predictions converge relatively quickly after
the fault is detected, with PH = 13.04%. RA averages to
99.07%.

Over all experiments, PH averages to 14.83% and average
RA to 98.22%. For this fault, the progression of the fault is
relatively clear in the opening times, and so predictions are
very accurate and are accurate early.
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Figure 20. Valve open times with a leak from supply.
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Figure 21. Valve close times with a leak from supply.

5.2. Continuous Valve

For CV leak from the signal line and the leak from the supply
line faults are dicsussed.

5.2.1. Leak from Signal Line

A total of 4 experiments were performed for this fault. As de-
scribed in Section 2, the leak from signal line fault is injected
by controlling the position of the leak valve V3. As described
in Section 3, this fault causes an increase in opening times and
an increase in steady-state position error. Fig. 25 shows the
open times of the valve during the fault progression, without
a clear trend. Fig. 26 shows the steady-state position values,
with a clear downward trend. A fault is detected at the 48th
cycle based on the steady-state position.
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Figure 22. Estimated leak parameter values based on valve
opening times for the leak from supply for the DV.
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the DV.

The estimated leak parameter values, based on the steady-
state positions of the CV, are shown in Fig. 27. In order to
estimate the fault progression parameters, the last 10 values
are used. The EOL predictions are given in Fig. 28 and the
RUL values in Fig. 29. The predictions converge more slowly
than other faults, with PH = 60.00%. Due to the slower
convergence, RA over the period from fault detection to EOL
averages to 88.82%.

Results are similar for the other experiments. Over all 4 ex-
periments, PH averages to 63.15%, and average RA to 83.90%.
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Figure 24. Predicted RUL values for the leak from supply for
the DV.
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Figure 25. CV open times with a leak from signal line.

5.2.2. Leak from Supply Line

A total of 6 experiments were performed for this fault. As de-
scribed in Section 2, the leak from supply line fault is injected
by controlling the position of the leak valve V4. As described
in Section 3, this fault causes an increase in opening times
and an increase in steady-state position error. Fig. 30 shows
the open times of the valve during the fault progression, with
a clear trend. Fig. 26 shows the steady-state position values,
without a clear trend. A fault is detected at the 51st cycle
based on the open times.

The estimated leak parameter values, based on the open times
of the CV, are shown in Fig. 32. In order to estimate the fault
progression parameters, all values are from the point of fault
detection to the present time are used. The EOL predictions

14



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Cycles
0 10 20 30 40 50 60 70

St
ea

dy
 S

ta
te

 P
os

iti
on

 V
al

ue
s

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

Fault DetectionEOL Threshold

Detection Threshold

Figure 26. CV steady-state position with a leak from signal
line.
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Figure 27. Estimated leak parameter values based on steady-
state position for the leak from signal line for the CV.

are given in Fig. 33 and the RUL values in Fig. 34. The pre-
dictions converge relatively quickly, with PH = 23.08%.
RA averages to 97.54%.

Over all 6 experiments, PH averages to 29.85%, and average
RA to 93.06%.

6. RELATED WORK

Despite their prevalence in many domains, and their critical-
ity in many kinds of system operations, applying prognostics
to valves has only recently received attention in the scientific
literature. In (Gomes, Ferreira, Cabral, Glavão, & Yoneyama,
2010), a valve in a pressure control system was investigated.
The probability integral transform was used to compute a
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Figure 28. Predicted EOL values for the leak from signal line
for the CV.

Cycles
0 10 20 30 40 50 60 70

R
U

L
 (

cy
cl

es
)

0

10

20

30

40

50

60

70

80
Fault Detection

RUL*

+α

-α

Figure 29. Predicted RUL values for the leak from signal line
for the CV.

dissimilarity measure for the identification of anomalies and
trends in anomalous behavior. However, no prediction method
was developed.

The unscented particle filter is used by (Tao, Zhao, Zio, Li,
& Sun, 2014) for the estimation of the health state of a pneu-
matic valve. Based on the predicted health distribution a re-
placement strategy is developed. The approach is validated
only in simulation.

The prognostics of a launch valve in the steam catapult of
an aircraft carrier is considered in (Shevach et al., 2014). A
risk-sensitive particle filter is used for state estimation, and an
exponential moving average filter is used for prediction. Like
our approach, valve timing data is used for fault detection and

15



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Cycles
0 10 20 30 40 50 60

O
pe

n 
T

im
e 

(s
)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Fault Detection

EOL Threshold

Detection Threshold

Figure 30. Valve open times with a leak from supply line for
the CV.
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Figure 31. Valve steady-state position with a leak from supply
line for the CV.

as the basis for prediction. However, our approach predicts
EOL/RUL based on a dynamic model, whereas this approach
uses a trend learned from data with the moving average filter.

Pneumatic valves for air bleed systems in aircraft are con-
sidered in both (Lorton et al., 2013) and (Ribeiro, Yoneyama,
Souto, & Turcio, 2015). In the former, a piecewise-deterministic
Markov process (PDMP) modeling framework is used, with
a Monte Carlo-based prediction approach. In the latter, only
degradation level is identified and no prediciton is performed.
A PDMP modeling framework with Monte Carlo-based pre-
diction is also used in (Lin et al., 2014), but for a pneumatic
valve in a nuclear power plant residual heat removal system.
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Figure 32. Estimated leak parameter values based on steady-
state position for the leak from signal line for the CV.
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Figure 33. Predicted EOL values for the leak from supply
line for the CV.

7. CONCLUSIONS

This paper described development of a model-based prognos-
tics approach to two types of pneumatic valves, for which
a custom testbed provided run-to-failure data. The system
health management functions exercised included fault detec-
tion, fault isolation, damage estimation, and remaining life
prediction. The algorithms were validated on experimental
results from the testbed, that allowed for faults to be injected
and fault magnitude to be modulated according to a fault pro-
gression model. The function governing the fault progression
model can be updated based on preferred fault propagation
model choice.

Faults were detected late (with a prognostic horizon bar ˜0.2)
due to masking of the fault signatures in indirect sensor mea-
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Figure 34. Predicted RUL values for the leak from supply
line for the CV.

surements (a fairly common problem in systems health man-
agement). Prediction after detection was quite accurate for
the DV valve (with all predicted estimates falling within the
20% alpha cone at PH=0.28) but not as accurate for the CV
valve (most values outside of alpha-lambda cone), owing to a
convolution of sensor noise and model shortcomings. Nonethe-
less, the convergence performance was very high for all valves
and fault modes

A limitation of the current approach is that the fault progres-
sion was carried out using a linear increase of the valve leak-
age. Although there is a nonlinear relationship between per-
cent open and leak size/flow, this behavior does not necessar-
ily represent the progression of a fault due to corrosion really
well. A better model reflecting that relationship can be im-
posed on the testbed without any other change to the model
of the valve or the testbed. Additional fault progression pro-
files representing other fault modes (besides corrosion) could
easily be implemented since it would just be a change of the
opening times of the proportional valves.

A CV valve would typically be opened to different positions.
Whereas this information should be used (and possibly help
to further improve performance), the work here only consid-
ered open/close information. Initial work in that direction for
a rotary valve has been performed in (Daigle, 2015).

A further direction for future work is to consider uncertainty
(Sankararaman, Daigle, & Goebel, 2014). Currently, uncer-
tainty is ignored, although there is substantial uncertainty in
the fault estimates and in the future valve operation, which
can result in corresponding prediction uncertainty that should
be captured. Another aspect to look into is correlating ac-
celerated aging of the components with real life aging. Addi-
tional field usage data may help in mapping accelerated aging
experimental data with real usage data.
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