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Active Flow Control for high-lift systems
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- Vertical tabs (Gurney flaps) can increase L/D
* Geometric tabs increase loads (flap weight)
* Tabs require physical space

* Tabs are not necessarily continuous

* Quick movement of tab is desirable — AFC allows rapid activation

Storms and Ross, 1995
Johnson et al. 2010
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AFC Load Control, Previous Work

* No mechanical tabs, instead small jets normal to the surface

» Steady-blowing microjets: TE flow control similar to microtabs

* Experimental studies on a single-element S819 airfoil suggest a significant lift
enhancement for relatively low momentum coefficient values and relative
velocities, U;,/U., = 0.5-1.0

Lift coefficient versus angle of attack for S819 airfoil with

Lift coefficient versus angle of attack for jets at
active jets on upper and lower surfaces, Re = 1.0E6, Cu =

Re = 1.0E6 with varying Cu
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 Computational setup prior to microjet activation
— Various grid and solver sensitivities

* Investigation of flap microjet up to date
— Microjet vs. Microtab
— Sensitivities of lift and drag to microjet settings

* Future work and anticipated timeline
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* NLR7301: flap chord is 32%c. ¢

* Flap deflection 20°, overlap 0.053c, gap 0.026¢
e 2-dimentionala = 6°, Re = 2.51F6,and M = 0.185
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* Overset grid technology
* O-grid topology growing 50c away
 DCF mesh connectivity
 RANS OVERFLOW 2
» 4th order central difference and ARC3D diagonalized
approximate factorization with matrix artificial dissipation
e SST turbulence model

Clock Cl ACl% Cd ACd%

Time[min] error error

on 48 Haswell

Processors

32.08 2.3946 1.05% 0.0301 31.4%

n
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Microjet vs. Microtab Study

a=6°, Re = 2.51E6, and Ma = 0.185, Steady State COLLEGE oF ENGINEERING

Literature suggested 1%c in height and 0.2%c thickness tabs at
95%cC

How to model the jet?

 Modeled as a simple jet mass flow condition at the surface

* Suggested by: the flow control workshop held in 2004, the
Blaylock dissertation

* Boundary condition Uj /U at flap TE was employed:

Incompressible

ijzhjb c=1

_ ' _ j _ Y 5
Ch= l,DooUgoSref ‘ Ch= %PooUgobC ‘ Ch= ZUgo h]
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Microjet vs. Microtab Study UCDAVIS @
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G Cq
Baseline (no AFC) 2.395
Microtab 2.626
Microjet 2.627

Mach Number: 0 0.05 0.1 015 0.2 025 03 035 04 045 0.5
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Microjet vs. Microtab Study UCDAVIS %

a=6°, Re = 2.51E6, and Ma = 0.185, Steady State COLLEGE oF ENGINEERING

G Cq
Baseline (no AFC) 2.395 0.0301
Microtab 2.626 0.0358
Microjet 2.627 0.0284

Mach Number: 0 0.05 0.1 015 0.2 025 03 035 04 045 0.5
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Microjet Momentum Coefficient

0=6°, Re = 2.51E6, and Ma = 0.185 COLLEGE oF ENGINEERING

* C, range: 0.0004-0.04 for the jet exit h; = 0.005
* (, <0.01 converged with steady state simulations
* (, = 0.01required time-accurate simulations

Steps:

1. Steady state: converge the baseline airfoil (no microjet)
2. Steady state: turn on the microjet

3. If not converged, run time-accurate

S

mj'lb‘l .
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Convergence Study UCDAVIS é‘

a=6°, Re = 2.51E6, and Ma = 0.185, C,, = 0.04 COLLEGE oF ENGINEERING
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Convergence Study UCDAVIS E‘?g
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a=6°, Re = 2.51E6, and Ma = 0.185, C,, = 0.04 COLLEGE OF ENGINEERING
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Flow Visualization UCDAVIS =
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Momentum Coefficient Sensitivity

0=6°, Re = 2.51E6, and Ma = 0.185
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Spot Checks: Literature UCDAVIS L‘r”
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Symmetric t/c = 18% airfoil
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Drag Validation

a=0°, Re = 2.51E6, and Ma = 0.185, C, = 0.01
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Case Integration at G Ca

Baseline (no jet) surface 1.624 0.01985
Baseline (no jet) 0.3c far-field  1.624 0.01979
Baseline (no jet) 0.5c far-field  1.624 0.01978
Baseline (no jet) 0.7c far-field  1.624 0.01977
Pressure side jet  surface 1.979 0.02285
Pressure side jet 0.3c far-field 1.980 0.02289
Pressure side jet  0.5¢ far-field 1.980 0.02304
Pressure side jet 0.7c far-field 1.082  0.02318
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Effects on Lift and Drag

Re = 2.51E6, and Ma =0.185, C, = 0.01
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Effect on Pressure Profiles UCDAVIS >
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Drag Decomposition Study UCDAVIS (‘
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F = j(—P(SU + 1) njdA + quiuj njdA wmsyp D = F.cosa+ F;sina
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Drag Decomposition Study UCDAVIS §© ‘(‘

Re = 2.51E6, and Ma = 0.185, C, = 0.01 COLLEGE oF ENGINEERING
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Effects on Lift and Drag

Re = 2.51E6, and Ma =0.185, C, = 0.01
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Pressure lift is 2 orders of magnitude

higher than due to added momentum

C, ata=6° Baseline Pressure Suction
No jet side jet side jet
Pressure 2.39414  2.75046 2.13282
Viscous 0.00048  0.00076 0.00038
Momentum 0 0.00839  -0.00760
Total 2.39466  2.75961 2.12260

F = _[(_PSU +Tij) le dA +fpuiuj ledA

L = —E.sina + F,cosa
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Effects on Lift and Drag UCDAVIS (ﬂ

Re = 2.51E6, and Ma = 0.185, C, = 0.01 COLLEGE oF ENGINEERING

Pressure lift is 2 orders of magnitude
higher than due to added momentum

C, ata=6° Baseline Pressure Suction
No jet side jet side jet
Pressure 2.39414 |[+0.35632 -0.26132
Viscous 0.00048 +0.00028 -0.00010
Momentum 0 +0.00839 -0.00760
Total 2.39466  2.75961 2.12260

F = _[(_PSU +Tij) le dA +fpuiuj ledA

L = —E.sina + F,cosa
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Microjet vs. Microtab: Drag UCDAVIS gg

a=6°, Re = 2.51E6, and Ma = 0.185, Steady State COLLEGE ofr ENGINEERING

C,; ata=6° Baseline Pressure Pressure
No jet side tab side jet

Pressure 0.01995 0.02576 0.01622

Viscous 0.01014 0.01006 0.01007
Momentum 0 0 0.00211
Total 0.03008 0.03582 0.02839

Mach Number: 0 0.05 0.1 015 0.2 025 03 035 04 045 0.5
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The high lift system is a critical component of transport airplanes. E.g., for a large
twin-engine civil transport jet on takeoff/landing (Boeing, 1993):

— A(L/D) = +1% results in an increase in airplane payload of 2,800 Ib assuming second-segment
climb limited performance

— AC;, . =+1.5% results in an increase in airplane payload of 6,600 Ib at fixed approach speed
— AC_ =+0.10 reduces required landing gear height results in a reduction in airplane empty weight
of 1,400 |b
This study focuses on the application of AFC for airplane high lift systems
— Involves a nominally-orthogonal jet injecting momentum normal to the airfoil surface near the
flap trailing edge, where it modifies the trailing edge flow and, thereby, the airfoil circulation.
The initial 2-D CFD results for the two-element high lift airfoil demonstrate the
feasibility of the microjet concept for high lift system performance enhancement
and aerodynamic load control.

* Ability to shift lift curve up (blowing on pressure side of flap) and down (blowing on suction side
of flap) in linear regime of the curve

* Modify the stall angle and maximum lift coefficient of the multi-element airfoil
* Improve lift-to-drag ratio of the multi-element airfoil

30
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Immediate Next Steps
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 Complete the microjet feasibility study on the two-element
NLR7301 airfoil

* Validate CFD jet behavior:
— Malavard et al (1956) experimental results

* 3-D Reynolds-averaged Navier-Stokes on NLR7301 flapped airfoil
(or other multi-element airfoil configuration). Various microjet
configurations

33
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Computational Setup/Validation UCDAVIS @ ‘(f‘
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* Overset grid technology
* O-grid topology growing 50c away
 PEGASUS mesh connectivity
 RANS OVERFLOW 2
» 4th order central difference and ARC3D diagonalized
approximate factorization with matrix artificial dissipation
* SA turbulence model
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NLR7301 Experimental Data UCDAVIS g
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Surface Grid Sensitivity

0=6°, Re = 2.51E6, and Ma = 0.185, Steady State
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Surface Grid Sensitivity

a=6°, Re = 2.51E6, and Ma = 0.185, Steady State COLLEGE of ENGINEERING
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Volume Grid Refinement UCDAVIS ¢ "v’
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Velocity Mcgnh‘ude =
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Vorticity Magnitude
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Volume Grid Sensitivity
a=6°, Re = 2.51E6, and Ma = 0.185, Steady State
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Grid Connectivity Study UCDAVIS gj
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a=6°, Re = 2.51E6, and Ma = 0.185, Steady State COLLEGE ofr ENGINEERING

* PEGASUS: Outside of OVERFLOW
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Grid Connectivity Study

0=6°, Re = 2.51E6, and Ma = 0.185, Steady State

N
COLLEGE ofF ENGINEERING ‘XLJ/

0 2500 5000 7500 10000 12500 15000
Time Step Number

C AC,% error Cq AC;% error 8 ~ Pegasus
Pegasus 2.436 0.65% 0.0266 %16.2 6 e DCF
DCF 2413 030%  0.0289  %26.2 4 ® Experimental
o
4 <
2
2 2.44 0
o e 200 02 04 06 08 10 1.2
0 G2.42 Xx/Cref
2.41 g
2.40 -E o -6
_2 [ 14200 1#::2 Ste;4|33rnnber14son 1500C G "6
0 2500 5000 7500 10000 12500 15000% E 8
S -
3 0.031 5 g
0.030 E ﬁ
0.029 oo -10
2 Goozs £ 'E', —
: L.
G’ 1 0.027 3 -12
0-026 37560 14300 14600 14800 15000 0 2500 5900 7500 10000 12500 15000
Time Step Number Time Step Number
0
DCF is the selected overset tool

45



Grid Modification

a=6°, Re = 2.51E6, and Ma = 0.185, Steady State

UCDAVIS 3

COLLEGE ofF ENGINEERING

=
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Solver Study

0=6°, Re = 2.51E6, and Ma = 0.185, Steady State
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LHS RHS Clock Cl ACl% Cd ACd%
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Solver Study

a=6°, Re = 2.51E6 and Ma = 0.185, Steady State
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Solver Study

a=6°, Re = 2.51E6 and Ma = 0.185, Steady State
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Solver Study

a=6°, Re = 2.51E6 and Ma = 0.185, Steady State

UCDAVIS %3¢
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Turbulence Model Study

0=6°, Re = 2.51E6, and Ma = 0.185, Steady State

UCDAVIS 3

COLLEGE ofF ENGINEERING

Experiment accuracy: Cl: £0.4% Cd: £2.0%

Turbulence Model Clock C AC,% Cq AC;%
Time[min] error error
SA 16.38 2.4159 0.16% 0.0284 24.0%
SST 32.08 2.3946 1.05% 0.0301 31.4%
SST with Langtry-Menter transition 52.35 2.4609 1.69% 0.0260 13.5%
-5 . -5
* SA * SA
-6 e sSST —6| 8 e SST

m  SST with Transition

Main Element Grid
Logl0(L2 norm of RHS)

Flap Element Grid
Logl0(L2 norm of RHS)

-12

-13

-14 -14

m  SST with Transition

0 5000 10000 15000 20000 25000 30000 0
Time Step Number

5000 10000 15000 20000 25000 30000

Time Step Number

Future studies will implement SST with transition
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Microjet vs. Microtab Study

0=6°, Re = 2.51E6, and Ma = 0.185, Steady State

UCDAVIS [
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Ko

8.5

8.0

7.5

*

Baseline (no AFC)
Pressure Side Tab
Pressure Side Jet

0.0 0.2

0.4 0.6 0.8 1.0
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Microjet Momentum Coefficient

0=6°, Re = 2.51E6, and Ma = 0.185 COLLEGE oF ENGINEERING

* C, range: 0.0004-0.04 for the jet exit h; = 0.005
* (, <0.01 converged with steady state simulations
* (, = 0.01required time-accurate simulations

Steps:
1. Steady state: converge the baseline airfoil (no microjet)
2. Steady state: turn on the microjet

3. If not converged, run time-accurate " gy
. B :
DT — % where AT — %—H’Leedf D = Height of equivalent
i e D micro-tab |
100LS, St =.21 (White 2008)
GofP 1 b =1
YT Uy f S Us _ DT = 0.000234




Effect on Pressure Profiles UCDAVIS (ﬂ

a=11°, Re = 2.51E6 and Ma =0.185, C,, = 0.01 COLLEGE oF ENGINEERING
N Pressure Side Jet Cu = 0.01
11 ::: No Jet
10 ;’;" =  Suction Side Jet Cu = 0.01

8
6
4
2
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
X/Cref

dp/dx line plot is desired
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Motivation

COLLEGE ofF ENGINEERING

« High-lift systems have significant impact on sizing, economics and safety of
transport airplanes

— L/D and szax 1.0% can increase passenger count by 14-22

— —[_

Sp CLmax

]05

w 2
~ Vo = 12V; = 12[(Pro 75—

— TOP = (_)TOC (_)TO o= £

PsL

STO = 20.9(TOP) + 87 |TOP(— — &) T/W: thrust-to-weight f(altitude )
1774 L
D

« high-lift system accounts for somewhere
* between 6% and 11% (p
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Summary | %
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* The high lift system is a critical component of transport airplanes with small
changes in its aerodynamic performance having a large impact on the overall
performance of the airplane. E.g. for a large twin-engine civil transport jet
(Boeing, 1993):

— Takeoff/landing

* A(L/D)=+1% results in an increase in airplane payload of 2,800 |b assuming second-
segment climb limited performance

* AC; . =+1.5% resultsin anincrease in airplane payload of 6,600 Ib at fixed approach
speed

* AC_=+0.10 reduces required landing gear height results in a reduction in airplane empty
weight of 1,400 |b
e This study focuses on the application of active flow control (AFC) for airplane
high lift systems.

 The AFC concept studied is the microjet to control the aerodynamic loads and
performance of airplane high lift systems.

 The microjet involves a nominally-orthogonal jet injecting momentum normal to
the airfoil surface near the flap trailing edge, where it modifies the trailing edge
flow and, thereby, the airfoil circulation.
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Summary Il %
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* The study proposes the use of CFD to study achievable gains in the aerodynamic
performance of the high lift system

* OVERFLOW is the CFD flow solver applied for this study. It uses structured
overset grids to simulate fluid flow, and is being used on a wide range of
aeronautical research projects in government labs, industry, and academia.

 The CFD method was validated for a two-element high lift airfoil (NLR7301) for
which benchmark experimental results are available in the open literature.

* The initial 2-D CFD results for the two-element high lift airfoil demonstrate the
feasibility of the microjet concept for high lift system performance enhancement
and aerodynamic load control.

* Ability to shift lift curve up (blowing on pressure side of flap) and down (blowing on
suction side of flap) in linear regime of the curve

* Modify the stall angle and maximum lift coefficient of the multi-element airfoil
* Improve lift-to-drag ratio of the multi-element airfoil
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Next Steps Il UCDAVIS >
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Ko

* 3-D Reynolds-averaged Navier-Stokes on realistic airplane wing.

* High lift version of the NASA Common Research Model (CRM). Extensively
studied in a wide range of configurations by a large number of researchers.

* Validate CFD results for the baseline high lift configuration

* Apply findings of preceding 2-D and 3-D studies for microjet layout on CRM
and study effects on airplane lift, drag, moment, and flap load, hinge
moment.

* Overall system considerations for CRM configuration
* Blowing power requirements
* Mass flow requirements
* Impact on overall airplane system
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Future Studies

Microjet Al
AIAA 2019

Boeing Internship:

Alrplane Level Feasibility Study on a Boeing Geometry

rplane Level Studies
Aviation Conference

Microjet 3-D Sensitivities
2019 Sci-Tech Conference

_ Microjet Validations Against Experimental|Data
Microjet Feasibility Study Microjet 2-D Sensitivities
AIAA 2018 Sci-Tech Conference AIAA Flow Control Conferemce
| ! | T | 1 T .
Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan
2017 2018 2019
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