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Motivation

Active Flow Control for high-lift systems

• 𝐶𝐿𝑚𝑎𝑥

• L/D

• Lift in the linear region 
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Active Flow Control (AFC)

Separation Mitigation                              Load Control 

Kral 1998
Johnson et al. 2008
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• Vertical tabs (Gurney flaps) can increase L/D
• Geometric tabs increase loads (flap weight)
• Tabs require physical space 
• Tabs are not necessarily continuous
• Quick movement of tab is desirable – AFC allows rapid activation

Load Control, Previous Work

Storms and Ross, 1995
Johnson et al. 2010

1%c tab located at 1%c upstream of trailing edge
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AFC Load Control, Previous Work

• No mechanical tabs, instead small jets normal to the surface
• Steady-blowing microjets: TE flow control similar to microtabs
• Experimental studies on a single-element S819 airfoil suggest a significant lift 

enhancement for relatively low momentum coefficient values and relative 
velocities, Ujet/U∞ = 0.5 – 1.0

Lift coefficient versus angle of attack for jets at 
Re = 1.0E6 with varying Cμ

Lift coefficient versus angle of attack for S819 airfoil with 
active jets on upper and lower surfaces, Re = 1.0E6, Cμ = 

0.0056
Ujet/U∞ = 0.7
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Outline

• Computational setup prior to microjet activation
– Various grid and solver sensitivities 

• Investigation of flap microjet up to date 
– Microjet vs. Microtab

– Sensitivities of lift and drag to microjet settings

• Future work and anticipated timeline
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• NLR7301: flap chord is 32%𝑐𝑟𝑒𝑓
• Flap deflection 20°, overlap  0.053c, gap 0.026c
• 2-dimentional 𝛼 = 6°, 𝑅𝑒 = 2.51𝐸6, and 𝑀 = 0.185

Vandenberg and Oskam 1980

Airfoil Definition 
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2-Dimentional Computational Setup

• Overset grid technology
• O-grid topology growing 50c away
• DCF mesh connectivity

• RANS OVERFLOW 2
• 4th order central difference and ARC3D diagonalized 

approximate factorization with matrix artificial dissipation
• SST turbulence model

Clock 
Time[min]

on 48 Haswell 
Processors

𝐶𝑙 ∆𝐶𝑙%  
error

𝐶𝑑 ∆𝐶𝑑%
error

32.08 2.3946 1.05% 0.0301 31.4%
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Microjet vs. Microtab Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

• Literature suggested 1%c in height and 0.2%c thickness tabs at 
95%c 

• How to model the jet?

• Modeled as a simple jet mass flow condition at the surface

• Suggested by: the flow control workshop held in 2004, the 
Blaylock dissertation

• Boundary condition 𝑈𝑗/𝑈∞ at flap TE was employed:

𝐶𝜇 =
ሶ𝑚𝑗𝑈𝑗

1

2
𝜌∞𝑈∞

2 𝑆𝑟𝑒𝑓
𝐶𝜇 =

𝜌𝑗𝑈𝑗
2ℎ𝑗𝑏

1

2
𝜌∞𝑈∞

2 𝑏 𝑐
𝐶𝜇 = 2

𝑈𝑗
2

𝑈∞
2 ℎ𝑗

ሶ𝑚𝑗 = (ρ𝑈𝐴)𝑗
Incompressible
c = 1
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Microjet vs. Microtab Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

𝐶𝑙 𝐶𝑑

Baseline (no AFC) 2.395

Microtab 2.626

Microjet 2.627
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Microjet vs. Microtab Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

𝐶𝑙 𝐶𝑑

Baseline (no AFC) 2.395 0.0301

Microtab 2.626 0.0358

Microjet 2.627 0.0284
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• 𝐶𝜇 range: 0.0004-0.04 for the jet exit ℎ𝑗 = 0.005

• 𝐶𝜇 < 0.01 converged with steady state simulations

• 𝐶𝜇 ≥ 0.01 required time-accurate simulations

Steps:

1. Steady state: converge the baseline airfoil (no microjet)

2. Steady state: turn on the microjet 

3. If not converged, run time-accurate

Microjet Momentum Coefficient
α=6°, Re = 2.51E6, and Ma = 0.185 
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Convergence Study
α=6°, Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.04 
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Convergence Study
α=6°, Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.04 
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Flow Visualization
α=6°, Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.04 

Steady Unsteady, St = 0.072 Unsteady, St = 0.103

Baseline (no jet) 𝐶𝜇 = 0.01 𝐶𝜇 = 0.04
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Momentum Coefficient Sensitivity
α=6°, Re = 2.51E6, and Ma = 0.185 
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Spot Checks: Literature

Symmetric airfoil

Malavard 1956.
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Spot Checks: Literature

Malavard 1956.

Symmetric airfoil
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Spot Checks: Literature

Leopold and Krothapalli 1983
Blaylock 2012

Symmetric t/c = 18% airfoil

NACA 0018 airfoil
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Drag Validation
α=0°, Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 
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Effects on Lift and Drag 
Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 

∆𝑪𝒍 = 0.36

∆𝑪𝒍 = -0.27

α = 6°
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Effect on Pressure Profiles
α=6°, Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 
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Drag Decomposition Study
Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 

𝑭 = න(−𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗) 𝑛𝑗 𝑑𝐴 + න𝜌𝑢𝑖𝑢𝑗 𝑛𝑗𝑑𝐴 𝐷 = 𝐹𝑥𝑐𝑜𝑠𝛼 + 𝐹𝑧𝑠𝑖𝑛𝛼

∆𝑪𝒅 = - 0.0113

∆𝑪𝒅 = 0.0041
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Drag Decomposition Study
Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 

𝑭 = න(−𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗) 𝑛𝑗 𝑑𝐴 + න𝜌𝑢𝑖𝑢𝑗 𝑛𝑗𝑑𝐴 𝐷 = 𝐹𝑥𝑐𝑜𝑠𝛼 + 𝐹𝑧𝑠𝑖𝑛𝛼

∆𝑪𝒅 = - 0.0113

∆𝑪𝒅 = 0.0041
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Effects on Lift and Drag 
Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 

∆𝑪𝒍 = 0.36

∆𝑪𝒍 = -0.27

Pressure lift is 2 orders of magnitude 
higher than due to added momentum

𝐶𝑙 at α=6° Baseline  
No jet

Pressure 
side jet

Suction 
side jet

Pressure 2.39414 2.75046 2.13282

Viscous 0.00048 0.00076 0.00038

Momentum 0 0.00839 -0.00760

Total 2.39466 2.75961 2.12260

𝑭 = න(−𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗) 𝑛𝑗 𝑑𝐴 + න𝜌𝑢𝑖𝑢𝑗 𝑛𝑗𝑑𝐴

𝐿 = −𝐹𝑥𝑠𝑖𝑛𝛼 + 𝐹𝑧𝑐𝑜𝑠𝛼

α = 6°
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Effects on Lift and Drag 
Re = 2.51E6, and Ma = 0.185, 𝐶𝜇 = 0.01 

∆𝑪𝒍 = 0.36

∆𝑪𝒍 = -0.27

Pressure lift is 2 orders of magnitude 
higher than due to added momentum

𝐶𝑙 at α=6° Baseline  
No jet

Pressure 
side jet

Suction 
side jet

Pressure 2.39414 +0.35632 -0.26132

Viscous 0.00048 +0.00028 -0.00010

Momentum 0 +0.00839 -0.00760

Total 2.39466 2.75961 2.12260

𝑭 = න(−𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗) 𝑛𝑗 𝑑𝐴 + න𝜌𝑢𝑖𝑢𝑗 𝑛𝑗𝑑𝐴

𝐿 = −𝐹𝑥𝑠𝑖𝑛𝛼 + 𝐹𝑧𝑐𝑜𝑠𝛼

α = 6°
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Microjet vs. Microtab: Drag
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

𝐶𝑑 at α=6° Baseline  
No jet

Pressure 
side tab

Pressure 
side jet

Pressure 0.01995 0.02576 0.01622

Viscous 0.01014 0.01006 0.01007

Momentum 0 0 0.00211

Total 0.03008 0.03582 0.02839
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Conclusion

• The high lift system is a critical component of transport airplanes. E.g., for a large 
twin-engine civil transport jet on takeoff/landing (Boeing, 1993):
– Δ(L/D) = +1% results in an increase in airplane payload of 2,800 lb assuming second-segment 

climb limited performance

– Δ𝐶𝐿𝑚𝑎𝑥
= +1.5% results in an increase in airplane payload of 6,600 lb at fixed approach speed

– ΔCL = +0.10 reduces required landing gear height results in a reduction in airplane empty weight 
of 1,400 lb

• This study focuses on the application of AFC for airplane high lift systems
– Involves a nominally-orthogonal jet injecting momentum normal to the airfoil surface near the 

flap trailing edge, where it modifies the trailing edge flow and, thereby, the airfoil circulation.

• The initial 2-D CFD results for the two-element high lift airfoil demonstrate the 
feasibility of the microjet concept for high lift system performance enhancement 
and aerodynamic load control.
• Ability to shift lift curve up (blowing on pressure side of flap) and down (blowing on suction side 

of flap) in linear regime of the curve

• Modify the stall angle and maximum lift coefficient of the multi-element airfoil

• Improve lift-to-drag ratio of the multi-element airfoil                                                                         
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Immediate Next Steps

• Complete the microjet feasibility study on the two-element 
NLR7301 airfoil

• Validate CFD jet behavior:
– Malavard et al (1956) experimental results

• 3-D Reynolds-averaged Navier-Stokes on NLR7301 flapped airfoil 
(or other multi-element airfoil configuration). Various microjet 
configurations
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BACKUP
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Computational Setup/Validation

• Overset grid technology
• O-grid topology growing 50c away
• PEGASUS mesh connectivity

• RANS OVERFLOW 2
• 4th order central difference and ARC3D diagonalized 

approximate factorization with matrix artificial dissipation
• SA turbulence model
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• Reported accuracy 
• 𝐶𝑙 within ±0.4%
• 𝐶𝑑 within ±2% 
• 𝐶𝑝 within ±0.5%

• α within ±0.05 °

Vandenberg and Oskam 1980

NLR7301 Experimental Data
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NLR7301 Experimental Data

Vandenberg and Oskam 1980
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Main Element Flap Element

Coarse 600 300

Medium 800 400

Fine 1000 500

Extra-fine 1200 600

Main TE thickness:  0.0009 
Flap TE thickness: 0.00115

Surface Grid Sensitivity
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State
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∆𝐶𝑙% = 0.3 < 0.4% exp_accuracy

∆𝐶𝑑% = 5.2 > 2.0% exp_accuracy

Surface Grid Sensitivity
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State
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Volume Grid Refinement
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Flap grid refinement to capture the
shear layer leaving the main element TE

Wake grid addition to 
capture flap element TE wake Lift improves : 

0.14% < 0.4% exp_accuracy
Drag improves:
1.48% < 2.0% exp_accuracy

𝑪𝒍 𝑪𝒅

Baseline 2.4321 0.0270

Grid refinement for shear layer 2.4371 0.0267

Wake layer grid addition 2.4325 0.0268

Both grid addition 2.4356 0.0266

Experimental 2.42 0.0229

Volume Grid Sensitivity
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State
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• PEGASUS: Outside of OVERFLOW

• Domain Connectivity Function (DCF): Built-in in OVERFLOW

Grid Connectivity Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 
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Grid Connectivity Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

𝐶𝑙 ∆𝐶𝑙%  error 𝐶𝑑 ∆𝐶𝑑% error

Pegasus 2.436 0.65% 0.0266 %16.2

DCF 2.413 0.30% 0.0289 %26.2

DCF is the selected overset tool
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Grid Modification
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

𝐶𝑙 ∆𝐶𝑙%  
error

𝐶𝑑 ∆𝐶𝑑% 
error

Final
Grid

2.416 0.16% 0.0284 24.0%
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Solver Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

LHS RHS Clock 
Time[min]

𝐶𝑙 ∆𝐶𝑙%  
error

𝐶𝑑 ∆𝐶𝑑%
error

00 ARC3D approx. factor. Central diff. 27.30 2.4159 0.16% 0.0284 24.0%

20 ARC3D diag. approx. factor. Central diff. 16.38 2.4159 0.16% 0.0284 24.0%

60 SSOR Central diff. 39.11 2.4159 0.16% 0.0284 24.0%

26 ARC3D diag. approx. factor. HLLE++ upwind 23.21 2.4276 0.31% 0.0286 24.9%

66 SSOR HLLE++ upwind 42.14 2.4276 0.31% 0.0286 24.9%
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Solver Study
α=6°, Re = 2.51E6 and Ma = 0.185, Steady State 

𝑞 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒0

]
𝛏 = 𝛏(x,y,z,t)
𝛈 = 𝛈(x,y,z,t)
𝛇 = 𝛇(x,y,z,t)

𝜕𝑞

𝜕𝑡
+ 
𝜕𝐸

𝜕𝜉
+ 
𝜕 Ԧ𝐹

𝜕𝜂
+ 
𝜕 Ԧ𝐺

𝜕𝜁
= 0

A ≈ 𝐿𝐻𝑆 x

b

Ax = b

ARC3D approx. factor.
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Solver Study
α=6°, Re = 2.51E6 and Ma = 0.185, Steady State 

𝑞 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒0

]
𝛏 = 𝛏(x,y,z,t)
𝛈 = 𝛈(x,y,z,t)
𝛇 = 𝛇(x,y,z,t)

𝜕𝑞

𝜕𝑡
+ 
𝜕𝐸

𝜕𝜉
+ 
𝜕 Ԧ𝐹

𝜕𝜂
+ 
𝜕 Ԧ𝐺

𝜕𝜁
= 0

A ≈ 𝐿𝐻𝑆 x

b

Ax = b

First order time diff: 𝜃 = 0
Second order time diff: 𝜃 = 0.5

Add pseudo time
for time-accurate
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Solver Study
α=6°, Re = 2.51E6 and Ma = 0.185, Steady State 

𝑞 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝑒0

]
𝛏 = 𝛏(x,y,z,t)
𝛈 = 𝛈(x,y,z,t)
𝛇 = 𝛇(x,y,z,t)

𝜕𝑞

𝜕𝑡
+ 
𝜕𝐸

𝜕𝜉
+ 
𝜕 Ԧ𝐹

𝜕𝜂
+ 
𝜕 Ԧ𝐺

𝜕𝜁
= 0

A ≈ 𝐿𝐻𝑆 x

b

Ax = b

Forward
Sweep

Backward
Sweep
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Turbulence Model Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 

Turbulence Model Clock 
Time[min]

𝐶𝑙 ∆𝐶𝑙%  
error

𝐶𝑑 ∆𝐶𝑑%
error

SA 16.38 2.4159 0.16% 0.0284 24.0%

SST 32.08 2.3946 1.05% 0.0301 31.4%

SST with Langtry-Menter transition 52.35 2.4609 1.69% 0.0260 13.5%

Future studies will implement SST with transition

Experiment accuracy: Cl: ±0.4%  Cd: ±2.0%
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Microjet vs. Microtab Study
α=6°, Re = 2.51E6, and Ma = 0.185, Steady State 
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• 𝐶𝜇 range: 0.0004-0.04 for the jet exit ℎ𝑗 = 0.005

• 𝐶𝜇 < 0.01 converged with steady state simulations

• 𝐶𝜇 ≥ 0.01 required time-accurate simulations

Steps:

1. Steady state: converge the baseline airfoil (no microjet)

2. Steady state: turn on the microjet 

3. If not converged, run time-accurate

𝐷𝑇 =
∆𝑇

𝐿
𝑈∞

𝑤ℎ𝑒𝑟𝑒 ∆𝑇 =

1
𝑓

100
→ 𝑛𝑒𝑒𝑑 𝑓

𝑆𝑡 =
𝑓.𝐷

𝑈∞
→
1

𝑓
=

𝐷

𝑆𝑡𝑈∞

Microjet Momentum Coefficient
α=6°, Re = 2.51E6, and Ma = 0.185 

𝐷𝑇 =
𝐷

100𝐿𝑆𝑡

D = Height of equivalent 
micro-tab
St = .21 (White 2008)
L = 1
DT = 0.000234

ሶ𝒎𝒋
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dp/dx line plot is desired

Effect on Pressure Profiles
α=11°, Re = 2.51E6 and Ma = 0.185, 𝐶𝜇 = 0.01 
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Motivation

• High-lift systems have significant impact on sizing, economics and safety of 
transport airplanes

– 𝐿/𝐷 𝑎𝑛𝑑 𝐶𝑙𝑚𝑎𝑥 1.0% can increase passenger count by 14-22

– 𝑉𝑠 = [
𝑊

𝑆

2

𝜌𝐶𝐿𝑚𝑎𝑥

]0.5

– 𝑉𝑇𝑂 = 1.2𝑉𝑠 = 1.2[(
𝑊

𝑆
)𝑇𝑂

2

𝜌𝐶𝐿𝑚𝑎𝑥

]0.5

– 𝑇𝑂𝑃 = (
𝑊

𝑆
)𝑇𝑂

1

𝐶𝐿𝑚𝑎𝑥

(
𝑊

𝑆
)𝑇𝑂

1

𝜎
𝜎 =

𝜌𝑇𝑂

𝜌𝑆𝐿

𝑆𝑇𝑂 = 20.9 𝑇𝑂𝑃 + 87 𝑇𝑂𝑃(
𝑇

𝑊
−

1
𝐿
𝐷

) T/W: thrust-to-weight f(altitude )

• high-lift system accounts for somewhere

• between 6% and 11% (p
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Summary I

• The high lift system is a critical component of transport airplanes with small 
changes in its aerodynamic performance having a large impact on the overall 
performance of the airplane. E.g. for a large twin-engine civil transport jet 
(Boeing, 1993):
– Takeoff/landing

• Δ(L/D) = +1% results in an increase in airplane payload of 2,800 lb assuming second-
segment climb limited performance

• Δ𝐶𝐿𝑚𝑎𝑥
= +1.5% results in an increase in airplane payload of 6,600 lb at fixed approach 

speed

• ΔCL = +0.10 reduces required landing gear height results in a reduction in airplane empty 
weight of 1,400 lb

• This study focuses on the application of active flow control (AFC) for airplane 
high lift systems.

• The AFC concept studied is the microjet to control the aerodynamic loads and 
performance of airplane high lift systems.

• The microjet involves a nominally-orthogonal jet injecting momentum normal to 
the airfoil surface near the flap trailing edge, where it modifies the trailing edge 
flow and, thereby, the airfoil circulation.
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Summary II

• The study proposes the use of CFD to study achievable gains in the aerodynamic 
performance of the high lift system 

• OVERFLOW is the CFD flow solver applied for this study. It uses structured 
overset grids to simulate fluid flow, and is being used on a wide range of 
aeronautical research projects in government labs, industry, and academia.

• The CFD method was validated for a two-element high lift airfoil (NLR7301) for 
which benchmark experimental results are available in the open literature.

• The initial 2-D CFD results for the two-element high lift airfoil demonstrate the 
feasibility of the microjet concept for high lift system performance enhancement 
and aerodynamic load control.

• Ability to shift lift curve up (blowing on pressure side of flap) and down (blowing on 
suction side of flap) in linear regime of the curve

• Modify the stall angle and maximum lift coefficient of the multi-element airfoil

• Improve lift-to-drag ratio of the multi-element airfoil     
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Next Steps II

• 3-D Reynolds-averaged Navier-Stokes on realistic airplane wing.
• High lift version of the NASA Common Research Model (CRM). Extensively 

studied in a wide range of configurations by a large number of researchers.

• Validate CFD results for the baseline high lift configuration

• Apply findings of preceding 2-D and 3-D studies for microjet layout on CRM 
and study effects on airplane lift, drag, moment, and flap load, hinge 
moment.

• Overall system considerations for CRM configuration
• Blowing power requirements

• Mass flow requirements

• Impact on overall airplane system
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Future Studies


