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Abstract 

This document describes a recently developed analysis tool that enhances the resident capabilities of 
the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) (Refs. 1 to 3) 
and its application. MAC/GMC is a composite material and laminate analysis software package 
developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a 
graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic 
constitutive law parameters by fitting experimentally observed/measured stress-strain responses under 
various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the 
MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language (Ref. 4). 
Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic 
behavior is represented by a constitutive law described by seven parameters. The tool is general enough to 
fit any number of experimentally observed stress-strain responses of the material. The number of 
parameters to be optimized, as well as the importance given to each stress-strain response, are user 
choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, 
(2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can 
mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then 
use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to 
demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic 
matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures 
and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the 
tool through comparison with experimental results, a detailed virtual parametric study is presented 
wherein the combined effects of temperature and loading rate on the predicted response of a braided 
composite is investigated. 

Introduction 

The Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) is NASA 
developed software (Refs. 1 and 2). It can perform a comprehensive composite material and laminate 
analysis by utilizing the generalized method of cells (GMC) family of micromechanics theories (Ref. 3). 
These theories provide access to the local stress and strain fields in the composite material that are crucial 
for assessing damage initiation and progression in composite structures. The software package is built on 
a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, 
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application of simulated thermo-mechanical loading, generation of output results, and selection of 
repeating unit cell (RUC) architectures to represent the composite material have been automated in 
MAC/GMC. Finally, classical lamination theory, wherein GMC is used to model the composite material 
response of each ply, along with a recursive multiscale GMC for woven and braided composites, have 
been implemented within MAC/GMC. Thus, the full range of GMC composite material capabilities is 
available for analysis of arbitrary laminated/woven/braided configurations as well. The many features that 
are available in the code as well as the procedures to actually setup and run a problem are described in the 
MAC/GMC User’s Manuals (Refs. 1 and 2). 

Impact analysis of composites is of interest because it enables the assessment of deformation and 
damage that might occur during the service life of composite parts. However, high strain rate effects 
coupled with highly nonlinear viscoplastic deformation of certain matrix materials under thermomechani-
cal loading conditions pose some unique challenges. These need to be captured accurately in order to 
model the response of composite structures under impact loading. Current MAC/GMC code has inbuilt 
constitutive laws to represent such behavior. The matrix material constitutive behavior is represented with 
the aid of a multi parameter viscoplastic law, wherein the parameters need to be determined by fitting to 
carefully selected experimental stress-strain response curves. The task is not trivial because of the 
complex nonlinear nature of the material constitutive law, requiring a nonlinear regression fitting to 
determine the parameters. 

In order to determine the optimized constitutive law parameters a graphical user interface (GUI) 
based tool has been developed utilizing the MATLAB programming language. The tool is general enough 
to fit any number of experimentally observed stress-strain responses of the material that have been 
generated for a given material with a design of experiments. Furthermore, the parameters to be optimized, 
as well as the importance given to each stress-strain response curve, are kept as user choices. Thus the 
user may opt for only a subset of the parameters as design variables, as well as specify different weights 
to each of the experimentally observed stress-strain response. The parameters are extracted by minimizing 
the error between the experimentally observed stress-strain response and the corresponding responses 
predicted by MAC/GMC. For the minimization, three different optimization algorithms are utilized 
herein: (1) Optimization based on the gradient method, (2) Genetic algorithm (GA) based optimization, 
and (3) Particle Swarm Optimization (PSO). The user can use these algorithms sequentially, with the 
optimized results of one serving as the starting point for another. It is generally recommended to use 
either Genetic or PSO to zero in on plausible parameters followed by a fine tuning of the parameters by 
using the Gradient based algorithm. 

“Virtual Testing,” which provides material properties via simulation, can be valuable in situations 
where testing would be impractical. MAC/GMC (Refs. 1 and 2), can predict the multiaxial nonlinear data 
needed as input for the elastoplastic orthotropic material model (LS-DYNA MAT 213) (Ref. 5). The 
successful utilization of the Parameter Optimization Tool in the development of a virtual testing platform 
and all the required preliminary constituent-level and composite-level validations are demonstrated 
herein. 

This report is organized as follows. First the optimization algorithms and objective function 
implemented in the Multiobjective Viscoplastic Parameter Optimization Tool are described. This is 
followed by an overview of the modified Bodner-Partom viscoplastic material constitutive model (Refs. 6 
and 7) to which the tool has been applied. Next, a detailed description of the Multiobjective Viscoplastic 
Parameter Optimization Tool GUI and its functionality is given. Results are then presented which 
demonstrate and validate the application of the tool to a neat resin material as well as a triaxially braided 
composite whose matrix material is this same resin. For both the neat resin and the composite, stress-
strain responses are predicted under various rates, temperatures, and loading conditions and then validated 
through comparison with available experimental results. The validated Multiobjective Viscoplastic 
Parameter Optimization Tool, coupled with the MAC/GMC software, constitute a virtual material testing 
platform, which can be used to generate the required sets of stress-strain curves for use in LS-DYNA 
MAT213 (Ref. 5). 
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Optimization Algorithms 

Three different approaches to find the optimum parameters that minimize the error between target and 
predicted stress-strain responses with an optimum set of design parameters are available within the tool. 
These are (1) Gradient Based, (2) Genetic Algorithm, and (3) Particle swarm optimization.   

Gradient Based Optimization 

Gradient based optimization is the conventional, basic optimization procedure wherein it is assumed 
that the objective function is differentiable and a derivative of the function with respect to each of the 
design variables is available either explicitly or via finite difference scheme. The procedure starts with 
user given feasible starting design set of parameters. A search direction is constructed by using the first 
derivatives of an objective function with respect to each of the design parameters. MATLAB’s internal 
function “fmincon” is utilized to perform the gradient based optimization. For further details of the 
algorithm the user may refer to (Ref. 8).  

Genetic Algorithm 

Genetic algorithms (GAs) are often considered as part of the Evolutionary Computational (EC) 
approaches or the evolutionary algorithms (Ref. 9). They are also referred to as global search algorithms. 
Essentially, evolution acts as type of natural optimization process based on the concepts of competition, 
reproduction, and mutation. Genetic algorithms are the most popular among ECs and the dominant use 
has been in optimization. The main difference between the conventional gradient based optimization and 
GA is that GA works with a starting population of eligible candidates that satisfy our constraints of upper 
and lower bounds. In contrast, in Gradient based approaches, as discussed above, the process starts with 
just one eligible candidate solution and attempts to improve it sequentially, while terminating the process 
when no further improvement is possible. In this context, the improvement means reduction in the error 
between target and the predicted solutions in the least square sense. The GA typically starts with a 
population of candidates and then improves this population from generation to generation. This involves 
four parts. The first part is keeping some of the best candidates as they are. These candidates are known 
as the elite candidates. Next, among the remaining population, a certain number of candidates (children) 
are generated by the so called “crossover” between the better candidates (parents). This number is 
arbitrary. In the present GA implementation, the same number of additional candidates are chosen by 
introducing Gaussian perturbations to the parents. Thus, for example if the number of children is set to 10, 
the algorithm creates 10 candidates by cross over and 10 more by introducing the Gaussian perturbations. 
The remaining population is made by generating fresh candidates, which are mixed with the existing ones 
and their mutations. Suppose that, for a given generation, the number of elite candidates from the 
previous generation is six, the number of mutations is 10, and the total population is 100. The 10 
Gaussian noise candidates will be generated along with 74 freshly populated candidates. Then the six elite 
candidates from the total population are identified, and the process repeats. If the GA is successful, the 
population of solutions will cluster at the global optimum after some number of generations. 

Another important difference between the conventional gradient algorithms and GA is that, while in 
the former, gradients of the objective function are required to perform the search operations, in the latter, 
the gradients are never required. So, for all cases where the functions are discontinuous or gradients can 
simply be not obtainable, GAs are perhaps the only possible avenue to perform the search for the 
optimum. In addition, since the process is not sequential, the algorithm adapts nicely to parallelization of 
the processes for improved computational performance. Readers interested in more details pertaining to 
GAs are advised to refer to textbooks such as Reference 9. 
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Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a population based stochastic optimization technique developed 
by Eberhart and Kennedy (Ref. 10). It is analogous to the social behavior of bird flocking or fish 
schooling. PSO shares many similarities with evolutionary computational techniques such as Genetic 
Algorithms (GA) in the sense that it attempts to solve a problem by having a population of candidate 
solutions satisfying all the constraints. The candidate solutions are usually termed “particles”. The 
particles fly through the problem space (design space) by closely following the current best set of 
particles. At the end of each iteration, based on the individual performance of particles, they are moved 
according to simple mathematical formulae over the particle’s position and velocity. Each particle’s 
movement is influenced by its local best known position, but is also guided toward the best known 
positions in the search space. The best known position is the position of the particle that is closest to the 
optimum. In the present case, this is the candidate having the least amount of error compared to the target 
values. Compared to GA, the advantages of PSO are that the actual implementation of the code is quite 
simple and there are very few parameters to adjust. PSO has been successfully applied in many areas: 
function optimization, artificial neural network training, fuzzy system control, and other areas where GA 
can also be applied. 

The algorithm that is implemented here is sometimes referred to as accelerated particle swarm 
optimization and is described in detail in Reference 11. There are two parameters that control the updated 
candidates, β and ϒ. β affects the fixed part of the correction to the population and varies between 0 and 
1. It is the fraction of the location of the best particle (design vector) from the previous generation that is 
added to (1- β) times the current candidate position to get the fixed part of the current population. This is 
then augmented with random noise that is equal to α times a random number which is picked from the 
standard normal distribution (zero mean and a standard deviation 1). α varies from generation to 
generation and is equal to ϒi where “i” is the iteration number and ϒ is a parameter between 0 and 1. As 
the iterations (generations) progress, the magnitude of the random noise correction diminishes. This is 
because, as the generations progress, the particles are tending towards the best possible solution and 
therefore do not need diversity that was needed initially to better scope the entire design space. Many 
different versions of PSO exist, and some are extremely fast but might end up in local minima. 
Conversely, some are slow but have better chance of locking on the global minimum. The one that is 
implemented in the current code is fairly robust in finding global minima quickly. The default values are 
set as β = 0.5 and ϒ = 0.75. As β increases, the convergence is faster, and similarly, as ϒ decreases, the 
convergence is faster. These parameters can be accessed by the user via the “Advanced Options” panel in 
the optimization tool GUI, as described below. 

Objective Function 

The objective of the parameter optimization is to minimize the error between the simulated versus target 
stress-strain responses for all datasets. Let Nds be the number of stress-strain responses. Let Wi be the 
weight for response dataset number i. Let y0 be the target and y be the simulated responses. We can 
construct the following objective function, which is based on a combined weighted root mean square error, 
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Here, yj and y0j are the predicted and the target stress values at strain xj and Nj is the number of target 
values (i.e., stress-strain points) in the ith response dataset. Erri is the total square error for the ith dataset. 
RMSErr is the weighted root mean square error for all the datasets combined. The same objective 
function is used for all the three optimization schemes. 

Viscoplastic Material Constitutive Model 

The Parameter Optimization Tool has been specialized herein for application to the Bodner-Partom 
viscoplastic model (Ref. 6), as modified by Goldberg et al. (Ref. 7) to include hydrostatic effects. Note, 
however, that the tool can be easily modified to handle any viscoplastic constitutive model. The flow rule 
in the model by Goldberg et al. (Ref. 7) is given by, 
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where a dot over a symbol denotes a time-derivative, ij  is the Kronecker delta, J2 is the second invariant 

of the deviatoric stress tensor, whose components are iĵ , and, 
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The evolution equations for the internal state variables, Z and t, are given by, 
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and I
m  is the mean inelastic strain rate. In the above equations, D0, Z1, 1, q, and n are material 

parameters, as are the initial values of the state variables Z and t, denoted by Z0 and 0.  
This viscoplastic constitutive model has been implemented within the MAC/GMC micromechanics 

software (Refs. 1 and 2) such that it can simulate the behavior of the matrix material within a 
unidirectional, laminated, woven, or braided composite (as well as the neat resin matrix itself).   
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Description of the Multiobjective Viscoplastic Parameter Fitting Tool 

The neat PR520 resin stress-strain curves depicted in Figure 1 were used to demonstrate the 
capabilities of the Parameter Optimization Tool. These room-temperature results, which were generated 
as part of the experimental program described in Reference 7, were conducted at different strain rates, 
with three tests representing torsion (pure shear) and two tests representing tension. Because the 
employed constitutive model does not admit post-yield softening as observed in the torsion results, the 
three experimental torsion curves were capped at their maximum values and subsequently treated as 
perfectly plastic. Since these capped experimental curves were provided to the Parameter Optimization 
Tool, it is the goal of the tool to match these capped curves as closely as possible. 

It should also be noted that the Parameter Optimization Tool is designed only to optimize a material’s 
viscoplastic constitutive model parameters, not its elastic constants. Therefore, the elastic constants must 
be provided. For the PR520 epoxy resin at room-temperature, the isotropic Young’s modulus is 3.54 GPa 
and the Poisson’s ratio is 0.38.  

To use the Multiobjective Viscoplastic Parameter Fitting Tool, the user must provide (in addition to 
various settings) the following basic input data: 

 
1. A number of target (usually experimental) stress-strain curves, stored in Microsoft Excel. 
2. The same number of MAC/GMC input files that simulate these stress-strain curves utilizing the 

Reference 7 constitutive model and the associated output X-Y type stress-strain data. 
3. The names of the X-Y plot output files, as specified in the above MAC/GMC input files. 

 
Note that the contents of the target stress-strain curve Microsoft Excel files used herein are given in the 
Appendices, along with MAC/GMC input files. The tool is a standalone Microsoft Windows program and 
must be placed in the same folder as the folder that contains all the MAC/GMC input files, and the Excel 
files containing stress-strain response data. Installation of the full MATLAB program is not necessary, 
however, the run time libraries must be installed. These can be installed from MATLAB website for free.  

 

 
Figure 1.—Room-temperature, rate-dependent stress-strain responses for PR520 material used 

in a braided composite whose properties are to be used as input for MAT213.  
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Figure 2, shows the GUI layout of the Multiobjective Viscoplastic Constitutive Law Parameter Fitting 
Tool. The figure presents all available windows, buttons, graphic panels, and tables and appears 
somewhat cluttered. The intention of including this figure is to indicate every possible item that the GUI 
contains. However, when the program is executed, the actual design of the GUI follows context sensitive 
windows, tables and buttons in the sense that, depending on the user choice, only the appropriate 
windows and buttons are shown, and all the other details are suppressed. This keeps a clean and 
uncluttered look to interface when it is in use. Furthermore, context-sensitive helpful tips for all the user 
choices are provided to give appropriate hints pertaining to the inputs just by hovering the mouse pointer 
over the button on box. The next few paragraphs provide a step-by-step introduction to the GUI’s tables, 
buttons, and boxes that require user interaction.  
 

 
Figure 2.—Multiobjective Viscoplastic Constitutive Law Parameter Fitting Tool graphical user interface layout. 
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Figure 3.—Shown are the boxes that appear after user selects the option “Gradient” from the button group 

“Choose Algorithm”. 
 

The program is started by double clicking the *.exe file which, along with the MAC/GMC input and 
Excel data files, are required to be present in the same folder. The program starts by showing some input 
dialogue boxes, as seen in Figure 3. As a next step the user chooses one of the optimization algorithms 
from the button-group titled “Choose Algorithm,” which has three choices: Gradient, Genetic, and PSO. 
Choosing one leads to the opening of four boxes of input, as shown below the “Choose Algorithm” box in 
Figure 3. Of these four boxes, the red outlined box is the only one that is different for each of the 
algorithms. The red box is denoted “Advanced Options,” and as the name indicates, the first time user 
need not be concerned with these details. These options pertain to some advanced settings with good 
default values are already provided. The various inputs for each of the boxes are described. 

Opt Dashboard 

There two editable boxes and four buttons in the “Opt Dashboard” section of the GUI. 
 
Editable Box “Program”: The user should fill this box with the name of the MAC/GMC executable file. 
It is currently defaulted to “mac4z-3_6”.  Note that the “.exe” extension should be omitted.  

Editable Box “# of Datasets”: The number of experimental stress-strain curves provided by the user for 
fitting purposes is filled in here. The default is 5. 

Button “Fnames”: Pushing this button opens an input dialogue and spaces where in the user provides 
MAC/GMC input data filenames, without the extension “.mac” (Fig. 4(a)). The MAC/GMC executable 
program uses these input files to simulate the stress-strain curves. The number of filenames should be 
same as the number of datasets, and the simulation defined in each MAC/GMC input file must correspond 
to each set of target data provided in Microsoft Excel format (see “Targets” below).  

Button “Mac Outputs”: Pushing this button opens an input dialogue and spaces where in the user 
provides the output file names that MAC/GMC used to write the respective stress-strain X-Y data. These 
must be specified without the extension, so that the optimization algorithm can read and use the predicted 
response. Note that these names must be identical to those specified in each MAC/GMC input file under 
the Keyword *XYPLOT (Ref. 1) (see Appendix A). 

Button “Targets”: The User specifies the Microsoft Excel full file names with extension (e.g., xls, xlsx) 
containing the experimentally obtained stress-strain data. Each file should contain two columns, the first 
of which is strain and the second of which is stress (see Appendix B). 
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Button “Weights”: Here the user may specify the weighting to be given to each of the target responses to 
bias the fitting toward or away from each target response. For example, the default weighting of 1 will 
apply equal weight to each target response.  

All the buttons are colored red at start and they turn green once pushed and the appropriate inputs are 
provided by the user. 
 

 
(a) (b) (c) 

 

 
(d) 

Figure 4.—“Opt Dashboard” push buttons and their respective inputs. (a) Button “Fnames”. (b) Button “Mac Outputs”. 
(c) Button “Targets”. (d) Button “Wts?”. 
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Algorithm Input Details Table 

The next set of input details are common to all three algorithm choices. It consists of a table of details 
related to the seven parameters of the material constitutive law. The seven parameters are D0, Z1, 1, q, n, 
Z0, and 0 as explained above. The user must provide the lower bound (LB), the upper bound (UB), and 
starting values for these parameters, as well as scaling values for these parameters. The scaling parameter 
provides the tool with a sense of the relative magnitudes of each of the parameters. This is important 
because the parameters typically vary widely in magnitude from each other, and it is recommended that 
these are scaled in such a manner the resulting scaled parameter values are all of same order of 
magnitude. Appropriate defaults are provided for all of these and thus the user usually needs only to 
choose the starting values. Row 5 values (Fig. 3) toggle between 0 and 1 to enable users to turn 
parameters on (1) or off (0) in the fitting optimization process. If a parameter is turned off (0), it will be 
kept at its start value and not optimized to improve the fit. In Figure 3, all the values are set to the default 
value of 1, meaning all seven parameters will be treated as active variables. Once the minimization of the 
error is accomplished, row 6 is populated with the appropriate optimum values for the parameters. 

Advanced Options 

The advanced options are intended for fine tuning the optimization algorithms and are specific to each 
of the three algorithms. The default values should provide a sufficient starting point for most users. 
Figures 5(a) to (c) show these option panels for each algorithm. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 5.—Advanced options for the three different 
optimization algorithms that are supported by the 
tool. (a) Advanced Options for the Gradient based 
algorithm. (b) Advanced Options for the Genetic 
algorithm. (c) Advanced Options for the Particle 
Swarm Optimization. 
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Advanced Options for the Gradient Option  

For the gradient based algorithm there are four advanced options TolX, Fstep, TolF, and Iter, as 
shown in Figure 5(a). For further details of these the user is advised to check MATLAB help files under 
the “fmincon” algorithm (Ref. 8). A brief description of these are given below: 
 

1. TolX: Termination tolerance on x, the design vector. 
2. Fstep: Step size used to compute the numerical derivatives and is known by the name 

“FiniteDifferenceStepSize” by the MATLAB algorithm “fmincon”. 
3. TolF: Termination tolerance on the function value. 
4. Iter: Number of iterations allowed to terminate the optimization process. 

Advanced Options for the Genetic Algorithm 

For Genetic Algorithm (GA), the advanced options are shown in Figure 5(b). Each of the four boxes 
of the inputs are explained below: 
 

1. NPop: The number of candidate solutions that satisfy the upper and lower bounds. Based on this 
number, the program generates candidates by using a uniform probability distribution between 
the upper and lower bounds. For example shown a population consisting of 100 has been chosen. 

2. NGen: The number of generations the GA is required to perform the search operations, after 
which the optimization stops. Here we have chosen this number to be 10. 

3. NElite: After performing the fitness calculations (that is the square of the error between 
prediction and target) for each candidate, the top candidates which give rise to the lowest error 
are considered elite and are preserved for the next generation as they are. The number of elite 
candidates must be even and is typically 2 or higher. In this example, 2 has been chosen. 

4. NMut: This is the number of cross over, or Gaussian noise, candidates to be chosen by the 
algorithm. In the example shown here, NMut = 10. It should be noted that in the algorithm it is 
hardcoded to have the Gaussian and cross over candidates to be equal, however, in general they 
can be different. 

Advanced Options for the PSO Algorithm 

For the particle swarm optimization algorithm the advanced options are shown in Figure 5(c). Each of 
these are explained briefly here: 
 

1. Nps: Number of particles constituting the total population. 
2. NSteps: Number of steps before the process is terminated. 
3. Gamma: Particle swarm algorithm ϒ parameter (see discussion in “Optimization Algorithm” 

Section). 
4. Beta: Particle swarm algorithm β parameter (see discussion in “Optimization Algorithm” 

Section). 

SwitchBoard 

After completing all the necessary input the user pushes the button “Start” to begin the fitting 
optimization (on right in Fig. 3). Once the algorithm completes it indicates the CPU time taken to 
complete the procedure. The red “Stop” button, if pushed at any time aborts the program. Figure 6 shows 
the switchboard and its contents at the end of successful gradient based algorithm run. As the run 
completes, the “SwitchBoard” shows a box that indicates the total CPU time taken in seconds (here it is 
253.8677 s) and a push button labeled “Results?”. In addition, row 6 of the algorithm input details  
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Figure 6.—Contents 

of Switchboard at the 
end of a successful 
Gradient based 
algorithm run. 

 
table, “Opt Parms”, is populated with optimum parameters that the tool determined by performing the 
optimization. During the execution at the end of each iteration, the code outputs two figures. The first one 
shows the progress of each design variable and the computed least square error (objective function value) 
as a function of iteration number. The second figure shows a comparison of target and predicted stress-
strain curves at the end of each iteration. These figures are output only for the Gradient based algorithm 
and are meant for monitoring the code progress towards an optimum set of design variables. Once the 
optimum set of design variables is determined, the code depicts a dialogue box showing “all the 
operations are completed”. At this point the user may push the “Results” button to see how the code 
performed in matching the target stress-strain response curves with the predictions based on the optimum 
set of design variables (row 6). 

Results and Discussion 

In this section, results are presented that first validate the optimized material parameters (and 
associated viscoplastic model) for neat PR520 epoxy resin. Next, the Parameter Optimization Tool is 
applied to determine parameters optimized for the in-situ resin response within a multiscale MAC/GMC 
model of a triaxially braided T700/PR520 carbon/epoxy composite, with the model results and again 
validated vs. experimental data. The ability to generate virtual stress-strain curve data for the composite, 
suitable for use in LS-DYNA MAT 213 (Ref. 5), is also demonstrated, followed by presentation of a 
parametric study wherein the combined effect of temperature and loading rate on the predicted composite 
response is investigated. 

Application to Monolithic Resin Material 

As an illustrative example we chose a cascading approach where we first try to get a feasible 
optimum design vector by using the Genetic Algorithm based optimization followed by a Gradient based 
optimization to arrive at the best possible solution. Genetic Algorithm based optimization often becomes 
computationally intensive, however, for those problems with many local minima in which no good 
starting point can be easily found. In such cases GA can be used to arrive at a good starting point from 
which a Gradient search method can be used to quickly zero in on the best possible solution. Here we 
chose a population of 1000, NElite = 10, NGen = 20, and NMut = 80. The algorithm was run overnight 
for this problem. The total time taken was 13622 s and the results are shown in Figure 7. 
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Figure 7.—GA based optimization results. 

 
The GA algorithm led to the following optimum set of design parameters: 

 

D0 = 6.803106 s, n = 1.0575, Z0 = 1.9503108 Pa, Z1 = 6.6344108 Pa, q = 96.8116, 0 = 0.2559, 
1 = 0.10. The quality of the fit can be seen from the Figure 7 in the “Results” panel. Although, results are 
close to target response, it is clear a better fit can probably still be pursued. At this point we used the 
following starting point that is close to the GA design point and chose to optimize with Gradient based 
approach. The starting point is 
 

D0 = 6.8106 s, n = 1.0575, Z0 = 1.95108 Pa, Z1 = 6.63108 Pa, q = 96.8, 0 = 0.26, 1 = 0.1.  
 

The Gradient based approach is able to improve the solution significantly. The CPU time taken was 
253.8677 s. The optimum design parameters are listed below: 
 

D0 = 6.3358106 s, n = 0.9546, Z0 = 1.421108 Pa, Z1 = 7.353108 Pa, q = 92.0838, 0 = 0.01, 1 = 0.01.  
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The results of Gradient based approach are shown in Figure 8. 
As discussed in the Introduction, the Multiobjective Viscoplastic Parameter Optimization Tool along 

with MAC/GMC form the basis for a “Virtual Testing” platform. Given some experimental data, either on 
the scale of the constituent materials of a composite or that of a composite material itself, optimized 
constitutive model parameters for the constituent materials can be determined. Then, other data (e.g., 
stress-strain responses under other types of loading, at other temperatures, or at other loading rates) can be 
predicted for either constituents or composites. The predicted virtual data, in combination with available 
experimental data, can then be used as input for characterization of other models. A perfect example of 
such a model is the LS-DYNA MAT 213 elastoplastic orthotropic material model (Ref. 5). This 
constitutive model requires as input 12 stress-strain curves in the form of tabular data for each 
temperature and each applied strain rate. Some of these curves are difficult to obtain experimentally and 
the ability to obtain virtual data to fill in gaps in the experimental data can be quite valuable. 

 
 

 
Figure 8.—Illustrative example showing the use of Genetic Algorithm followed by a fine tuning with 

Gradient approach. The results shown above are by Gradient Based optimization. 
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Figure 9 compares the predicted nonlinear PR520 resin behavior at varying temperatures, loading 
rates, and loading scenarios where the previously optimized model parameters have been employed. 
viscoplastic parameters were determined utilizing the Multiobjective Viscoplastic Parameter Optimization 
Tool at room temperature to reproduce the reported stress-strain response of PR520 resin (Fig. 8). An 
example of neat resin elastic and viscoplastic parameters at room temperature, as they appear in the 
MAC/GMC input file, are provided in Appendix A (Files 1-5). Note that these files provide starting 
points for the Parameter Optimization Tool, and they are not updated with the output from the parameter 
optimization. This is why the viscoplastic parameters (specified using “VI=” under the *CONSTITUENTS 
keyword) in the Appendix A files do not match the output from the optimization tool shown in Figure 8. 
 

  
 

  

  
Figure 9.—Tensile and torsional (shear) stress-strain responses of Neat resin (PR520) at various rates and temperatures. 

Note that the scales are different across the plots. 
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While the viscoplastic parameters remained unchanged from the reported values, elastic modulus was 
adjusted from 3.5 GPa at 23 C to be 3.2 GPa at 50 C, and 2.5 GPa at 80 C. As it can be seen in 
Figure 9, the model can predict the stress-strain responses with minimal error in majority of the cases. 
Details of the plotted experimental results are reported in Reference 7. A higher percentage of error 
(~16 percent) is observed at higher temperatures (T = 80 C), which might stem from the fact that 
viscoplastic parameters were left unchanged across different temperatures. This was mainly done to 
assess the predictive capability of the Multiobjective Viscoplastic Parameter Optimization Tool across 
various temperature profiles, instead of calibrating the model for every given temperature value, which 
could also be done. 

Application to a Triaxially Braided T700/PR520 Composite 

Once the predicted nonlinear PR520 behavior was validated at the various temperatures and rates 
(Fig. 9), the mechanical response of a T700/PR520 braided composite system was predicted and 
validated. Figure 10 shows the geometry of the multiscale model of the braided composite simulated 
using the Multiscale Generalized Method of Cells (MSGMC) capability within MAC/GMC. The 
procedure and geometry employed follows that presented in References 12 and 13, in which MSGMC 
was applied to model the elastic response and viscoplastic response, respectively, of triaxially braided 
composites. A typical architecture of the triaxial braided composite is shown in Figure 10(a) with the 
indicated repeated unit cell. It is composed of three significant volumes: pure matrix, axial tows, and 
braided tows. Straight axial fiber tows and braided fiber tows are oriented at an angle θ (braid angle). The 
architecture being analyzed is assumed to be an idealized homogenized RUC with the transversely 
isotropic elastic fibers and a viscoplastic resin (Fig. 10(c) and (d)). The present homogenization 
methodology represents the triaxial braided composite with its constituent materials (fiber and matrix), 
where the constitutive models are applied. Larger scale stress state and moduli are determined through the 
GMC homogenization methods (Ref. 3). Further details about microstructural parameters in defining a 
triaxial braided composite architecture can be found in Reference 12. For the triaxial braided composite 
analyzed here, resin PR520 properties are calibrated through Multiobjective Viscoplastic Parameter 
Optimization Tool and the transversely isotropic T700 fiber properties are acquired from Reference 7 
(EA = 230 GPa, ET = 15 GPa, A = 0.2, A = 0.2, GA = 15 GPa). The subcell dimensions shown in 
Figure 10(c) are: h1 = 0.0022, h2 = 0.00251, d = 0.00018, with the length units being arbitrary. The fiber 
volume fractions shown in Figure 10(c) are: Vf1 = 0.8, Vf2 = 0.7467, Vf3 = 0.3733. As discussed in 
Reference 12, the fiber volume fractions account for the regions of pure resin that are homogenized into 
the subcells. These subcell dimensions and fiber volume fractions result in an overall composite fiber 
volume fraction of 0.56. 

Rather than using the previously optimized neat resin material parameters, the ability of the 
optimization tool to utilize composite level stress-strain data as input was employed to back out in-situ 
data for the resin in the composite. This is a key capability that enables the tool to function even in cases 
where neat resin data is unavailable. Two available composite level stress-strain curves were used for this 
purpose (transverse tension and in-plane shear), along with the gradient based optimization method. 

The multiscale model of the T700/PR520 composite was subjected to simulated tensile and shear 
loading at room-temperature at a strain rate of 510–5 /s and compared to available experimental data in 
Figure 11. For the two stress-strain curves used to determine the in-situ resin viscoplastic parameters, the 
simulated response is labeled as “correlation,” whereas, the remaining simulations represent predictions. 
In cases where there was no available experimental data, the simulations represent virtual test data, and 
the associated plots in Figure 11 are labeled as such. Examining Figure 11, the stress-strain response of 
the composite is reproduced with relatively acceptable error (< 20 percent) for all loading cases. The 
error observed for compression seems to be the highest (~20 percent). This may be due to the complex 
nature of composite nonlinear deformation under compression, which depends on various interacting  
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mechanisms other than just matrix viscoplasticity. Therefore, it can still be stated that the model’s 
predictive capability is fairly good for various loading scenarios at room-temperature. The virtual data 
reported in Figure 11 (without one-to-one comparison with experiments) seems to fall in a reasonable 
range, when compared to similar available data in literature (Ref. 14). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10.—MAC/GMC multiscale model of a triaxially braided composite 
(T700/PR520). (a) Triaxial braid pattern with repeating unit cell identified. (b) Top 
view of the triaxial braid repeating unit cell. (c) MAC/GMC idealization of the triaxial 
braid repeating unit cell (Ref. 12), with subcell dimensions (h1, h2, d) and fiber 
volume fractions (Vf1, Vf2, Vf3) denoted. (d) Repeating unit cell used to model the 
unidirectional composite within each tow. 
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Figure 11.—Stress-strain responses under various loading conditions of the triaxially braided T700/PR520 composite 

at room temperature and 510–5 strain rate. Note that the scales are different across the plots. 
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Figure 12.—Parametric study showing combined effect of temperature and loading rate on the stress-strain response 

of the braided T700/PR520 composite. Note that the scales are different across the plots. 
 

Performing composite parametric studies to evaluate the “virtual testing” predictions over the full 
range of temperatures and rates for composite systems constitutes the final step for a viable virtual testing 
platform. After validating the composite response through available tests at room temperature, parametric 
studies were conducted to examine the influence of rate and temperature variation on the mechanical 
behavior of the composite system for various loading scenarios. Sample parametric study results are 
shown in Figure 12, wherein room-temperature/low rate and high-temperature/high rate results are 
compared. As shown, variation of temperature and rate has a relatively minor effect, except for the 45 
off-axis shear loading. Note that the 13 and 23 plane 45 off-axis shear results were nearly identical, so 
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only the 13 plane results are shown. Also, although not shown, the rate was increased in various 
increments (from 0.00005 to 200 /s) and the resulted stress-strain curves were obtained for every case. A 
noticeable difference in stress-strain response (for the presented loading scenarios) was only observed 
when the rate reached approximately 100 /s. Therefore, it was not deemed necessary to illustrate 
redundant stress-strain curves with no distinct difference in this section. Further parametric studies on 
different composite systems are necessary to obtain a better understanding of rate/temperature influence 
on a given system. 

Conclusion 

The Multiobjective Viscoplastic Constitutive Law Parameter Fitting Tool helps in fitting 
experimentally observed stress-strain responses generated at different temperatures and different strain 
rates to a seven parameter Bodner-Partom constitutive law. The fit can be performed for a neat matrix 
material (as done herein) or for the composite-scale response. The software supports any number of 
stress-strain response curves as well as the importance given to these responses in the form of weights. 
Furthermore, three different algorithms (gradient based, genetic and particle swarm) provide flexibility to 
be used sequentially or individually in order to zero in on an optimum set of constitutive law parameters 
with a reasonable amount of computational resources. 

The constitutive law parameters for the modified Bodner-Partom model generated by the tool were 
utilized within a multiscale micromechanics model in MAC/GMC to predict the response of braided 
composites that were then compared with experimental stress-strain curves. Two available composite 
level stress-strain curves (transverse tension and in-plane shear) were used to back-out in-situ data for the 
resin in the composite. Utilizing these in-situ properties, remaining composite stress-strain curves were 
predicted successfully with an acceptable margin of error for most of the loading cases. Some higher 
deviation in compression was observed which might be due to complicated nature of a composite 
behavior under compression. The tools discussed herein form the basis of a virtual test platform, wherein 
stress-strain curves that are extremely difficult to obtain experimentally can be predicted using the model. 
This can be very valuable in minimizing experimental costs and filling in experimental gaps. 
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Appendix A.—Input Data for MAC/GMC Executable, 
(see Refs. 1 and 2 for details) 

File 1: Goldberg_PR520-EXPO123.mac:  (The input deck is meant to output axial tensile stress for an 
applied rate (1.4 /s) and temperature (23 C). The rate is the strain/time ratio). 
MAC/GMC - effective properties 
*CONSTITUENTS 
  NMATS=1 
# -- PR520 Resin Pa 
  M=1 CMOD=12 MATID=U MATDB=1 & 
   EL=3.54E9,3.54E9,0.38,0.38,1.28261E9,45.E-6,45.E-6 & 
   VI=1E6,1.07,206977131.37,868911452.11,348.72,0.2548,0.126 
*RUC 
   MOD=1 M=1 
*MECH 
  LOP=1 
  NPT=2 TI=0.,0.014 MAG=0.,0.02 MODE=1 
*THERM 
  NPT=2 TI=0.,0.014 TEMP=23.,23. 
*SOLVER 
  METHOD=1 NPT=2 TI=0.,0.014 STP=0.00003  
*XYPLOT 
  FREQ=1 
  MACRO=1 
   NAME=goldberg_PR520-EXP0128 X=1 Y=7 
  MICRO=0 
*PRINT 
  NPL=6 
*END 
 

File 2: Goldberg_PR520-EXPO123.mac:  (The input deck is meant to output axial tensile stress for an 
applied rate (510–5 /s) and temperature (23 C). The rate is the strain/time ratio). 
MAC/GMC - effective properties  
*CONSTITUENTS 
  NMATS=1 
# -- PR520 Resin Pa 
  M=1 CMOD=12 MATID=U MATDB=1 & 
   EL=3.54E9,3.54E9,0.38,0.38,1.28261E9,45.E-6,45.E-6 & 
   VI=1E6,1.07,206977131.37,868911452.11,348.72,0.2548,0.126 
*RUC 
   MOD=1 M=1 
*MECH 
  LOP=1 
  NPT=2 TI=0.,600. MAG=0.,0.032 MODE=1 
*THERM 
  NPT=2 TI=0.,600. TEMP=25.,25. 
*SOLVER 
  METHOD=1 NPT=2 TI=0.,600. STP=1  
*XYPLOT 
  FREQ=1 
  MACRO=1 
   NAME=goldberg_PR520-EXP0117 X=1 Y=7 
  MICRO=0 
*PRINT 
  NPL=6 
*END 
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File 3: Goldberg_PR520-EXPO123.mac:  (The input deck is meant to output out-of-plane shear stress 
(Torsion) for an applied rate (2.6 /s) and temperature (23 C). The rate is the strain/time ratio). 

MAC/GMC - effective properties  
*CONSTITUENTS 
  NMATS=1 
# -- PR520 Resin Pa 
  M=1 CMOD=12 MATID=U MATDB=1 & 
   EL=3.54E9,3.54E9,0.38,0.38,1.28261E9,45.E-6,45.E-6 & 
   VI=1E6,1.07,206977131.37,868911452.11,348.72,0.2548,0.126 
*RUC 
   MOD=1 M=1 
*MECH 
  LOP=6 
  NPT=2 TI=0.,0.115 MAG=0.,0.3 MODE=1 
*THERM 
  NPT=2 TI=0.,0.115 TEMP=25.,25. 
*SOLVER 
  METHOD=1 NPT=2 TI=0.,0.115 STP=0.0002  
*XYPLOT 
  FREQ=1 
  MACRO=1 
   NAME=goldberg_PR520-EXP0108 X=6 Y=12 
  MICRO=0 
*PRINT 
  NPL=6 
*END 
 
File 4: Goldberg_PR520-EXPO123.mac:  (The input deck is meant to output out-of-plane shear stress 
(Torsion) for an applied rate (1.310–4 /s) and temperature (23 C). The rate is the strain/time ratio). 

MAC/GMC - effective properties *CONSTITUENTS 
  NMATS=1 
# -- PR520 Resin Pa 
  M=1 CMOD=12 MATID=U MATDB=1 & 
   EL=3.54E9,3.54E9,0.38,0.38,1.28261E9,45.E-6,45.E-6 & 
   VI=1E6,1.07,206977131.37,868911452.11,348.72,0.2548,0.126 
*RUC 
   MOD=1 M=1 
*MECH 
  LOP=6 
  NPT=2 TI=0.,3076. MAG=0.,0.4 MODE=1 
*THERM 
  NPT=2 TI=0.,3076. TEMP=25.,25. 
*SOLVER 
  METHOD=1 NPT=2 TI=0.,3076. STP=5  
*XYPLOT 
  FREQ=1 
  MACRO=1 
   NAME=goldberg_PR520-EXP0106 X=6 Y=12 
  MICRO=0 
*PRINT 
  NPL=6 
*END 
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File 5: Goldberg_PR520-EXPO123.mac:  (The input deck is meant to output out-of-plane shear stress 
(Torsion) for an applied rate (700 /s) and temperature (25 C). The rate is the strain/time ratio). 
MAC/GMC - effective properties *CONSTITUENTS 
  NMATS=1 
# -- PR520 Resin Pa 
  M=1 CMOD=12 MATID=U MATDB=1 & 
   EL=3.54E9,3.54E9,0.38,0.38,1.28261E9,45.E-6,45.E-6 & 
   VI=1E6,1.07,206977131.37,868911452.11,348.72,0.2548,0.126 
*RUC 
   MOD=1 M=1 
*MECH 
  LOP=6 
  NPT=2 TI=0.,0.000714 MAG=0.,0.5 MODE=1 
*THERM 
  NPT=2 TI=0.,0.000714 TEMP=25.,25. 
*SOLVER 
  METHOD=1 NPT=2 TI=0.,0.000714 STP=0.000001  
*XYPLOT 
  FREQ=1 
  MACRO=1 
   NAME=goldberg_PR520-EXP0103 X=6 Y=12 
  MICRO=0 
*PRINT 
  NPL=6 
*END 
    
File 6: goldberg_triax_test: (The input deck is meant to output transverse axial stress for an applied rate 
(510–5 /s) and temperature (25 C). The rate is the strain/time ratio). 
MAC/GMC - effective properties 
*CONSTITUENTS 
  NMATS=2 
# -- T700 fiber - Pa 
  M=1 CMOD=6 MATID=U MATDB=1 & 
   EL=230.E9,15.E9,0.2,0.2,15.E9,-99.E-6,-99.E-6 
# -- PR520 Resin Pa 
  M=2 CMOD=12 MATID=U MATDB=1 & 
   EL=3.54E9,3.54E9,0.38,0.38,1.28261E9,45.E-6,45.E-6 & 
   VI=1775518,1.969662,1.51E8,6.33E8,249.05,0.477916,0.1 
# Axial tension 3, transverse tension 2, and in-plane shear 4. 
*MSGMC 
   NA=1 NB=4 NG=1 
   D=0.00070 
   H=0.00220,0.00251,0.00220,0.00251 
   L=0.00272 
# -- gamma = 1 
   SM=-17,-18,-19,-20 
*MSMATS 
  NMATS=11 
  MSM=-17 DIM=3 ARCHID=99 
   NA=4 NB=1 NG=1 
   D=0.00018,0.00018,0.00018,0.00018 
   H=1.00000 
   L=1.00000 
# -- gamma = 1 
   SM=-23 
   SM=-21 
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   SM=-21 
   SM=-22 
  MSM=-18 DIM=3 ARCHID=99 
   NA=4 NB=1 NG=1 
   D=0.00018,0.00018,0.00018,0.00018 
   H=1.00000 
   L=1.00000 
# -- gamma = 1 
   SM=-27 
   SM=-27 
   SM=-24 
   SM=-24 
  MSM=-19 DIM=3 ARCHID=99 
   NA=4 NB=1 NG=1 
   D=0.00018,0.00018,0.00018,0.00018 
   H=1.00000 
   L=1.00000 
# -- gamma = 1 
   SM=-22 
   SM=-21 
   SM=-21 
   SM=-23 
  MSM=-20 DIM=3 ARCHID=99 
   NA=4 NB=1 NG=1 
   D=0.00018,0.00018,0.00018,0.00018 
   H=1.00000 
   L=1.00000 
# -- gamma = 1 
   SM=-25 
   SM=-25 
   SM=-26 
   SM=-26 
  MSM=-21 DIM=2 ARCHID=1 VF=8.000000e-01 F=1 M=2 
   D1=0.00000,0.00000,1.00000 
   D2=0.00000,1.00000,0.00000 
   D3=-1.00000,0.00000,0.00000 
  MSM=-22 DIM=2 ARCHID=1 VF=7.466667e-01 F=1 M=2 
   D1=0.00000,0.86603,0.50000 
   D2=1.00000,0.00000,0.00000 
   D3=0.00000,0.50000,-0.86603 
  MSM=-23 DIM=2 ARCHID=1 VF=7.466667e-01 F=1 M=2 
   D1=0.00000,-0.86603,0.50000 
   D2=1.00000,0.00000,0.00000 
   D3=-0.00000,0.50000,0.86603 
  MSM=-24 DIM=2 ARCHID=1 VF=0.3733 F=1 M=2 
   D1=-0.17795,0.85220,0.49202 
   D2=0.00000,0.50000,-0.86603 
   D3=0.98404,0.15411,0.08897 
  MSM=-25 DIM=2 ARCHID=1 VF=0.3733 F=1 M=2 
   D1=0.17795,0.85220,0.49202 
   D2=0.00000,0.50000,-0.86603 
   D3=0.98404,-0.15411,-0.08897 
  MSM=-26 DIM=2 ARCHID=1 VF=0.3733 F=1 M=2 
   D1=-0.17795,-0.85220,0.49202 
   D2=0.00000,0.50000,0.86603 
   D3=0.98404,-0.15411,0.08897 
  MSM=-27 DIM=2 ARCHID=1 VF=0.3733 F=1 M=2 
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   D1=0.17795,-0.85220,0.49202 
   D2=0.00000,0.50000,0.86603 
   D3=0.98404,0.15411,-0.08897 
*MECH 
  LOP=2 
  NPT=2 TI=0.,600. MAG=0.,0.03 MODE=1 
*THERM 
  NPT=2 TI=0.,600. TEMP=25.,25. 
*SOLVER 
  METHOD=1 NPT=2 TI=0.,600. STP=0.9  
*XYPLOT 
  FREQ=1 
  MACRO=1 
   NAME=goldberg_triax_test  X=2 Y=8 
  MICRO=0 
*PRINT 
  NPL=6 
*END 
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Appendix B.—Target Stress-Strain Response Files 

EXP0103.xls:  Experimental data (first column: strain- second column: stress (Pa)) for torsion test (rate = 700 /s, 
temperature = 23 C) 

0 0 
0.01008 13320000 
0.02016 24734000 
0.03006 34250000 
0.03996 43984000 
0.04998 50133000 
0.06018 57125000 
0.07014 64719000 
0.08034 69359000 
0.09006 74234000 
0.10002 77633000 
0.11022 81641000 
0.12012 84820000 
0.13008 86078000 
0.14004 88609000 
0.15006 88617000 
0.25006 88617000 
0.35006 88617000 
0.45006 88617000 

0.5037 88617000 
 
EXP0106.xls: Experimental data (first column: strain- second column: stress (Pa)) for torsion test (rate = 1.3e-4 /s, 
temperature = 23 C) 

0 0 
0.010031 7212500 
0.020062 14428000 
0.030094 21641000 
0.040125 28022000 
0.050125 33016000 
0.060156 38009000 
0.070187 42450000 
0.080219 44947000 
0.09025 47719000 
0.10028 49941000 
0.11031 51328000 
0.11991 53547000 
0.13081 54378000 
0.17081 54378000 
0.21081 54378000 
0.25081 54378000 
0.29081 54378000 
0.33081 54378000 
0.39025 54378000 
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EXP0108.xls: Experimental data (first column: strain- second column: stress (Pa)) for torsion test (rate = 2.6 /s, 
temperature = 23 C) 

0 0 
0.010032 10822000 
0.020063 18591000 
0.030063 26916000 
0.040094 34959000 
0.050125 40509000 
0.060157 47169000 
0.070625 53828000 
0.080219 58269000 
0.091125 62431000 
0.098533 65481000 
0.109433 67703000 
0.119903 70200000 
0.130343 71859000 
0.140373 72137000 
0.175373 72137000 
0.210373 72137000 
0.245373 72137000 
0.280373 72137000 
0.310873 72137000 

 
EXP0117.xls: Experimental data (first column: strain- second column: stress (Pa)) for tension test (rate = 5e-5 /s, 
temperature = 23 C) 

0 0 
0.002081 6793700 
0.004031 13369000 
0.006006 19944000 
0.008025 25856000 
0.010044 31337000 
0.012019 36381000 
0.014006 40981000 
0.016019 44925000 
0.018031 49306000 
0.020044 53912000 
0.022062 57200000 
0.024006 60706000 
0.026019 63994000 

0.028 65744000 
0.03005 68594000 

0.032631 70562000 
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EXP0128.xls: Experimental data (first column: strain- second column: stress (Pa)) for tension test (rate = 1.4 /s, 
temperature = 23 C) 

0 0 
0.001013 3650000 
0.00205 6443700 

0.003019 9025000 
0.004031 12250000 
0.005006 15900000 
0.006044 18262000 
0.007019 21269000 
0.008025 24281000 
0.009069 26856000 
0.010044 29006000 
0.011013 32012000 
0.01205 34594000 

0.013094 38031000 
0.014006 40181000 
0.015044 42756000 
0.01585 44694000 
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