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Objective
• Characterize the GPS signal visibility that is

possible in distant, cislunar orbit regimes, in
order to understand the practical upper
altitude limit to GPS-based navigation.
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Space Service Volume
• The Space Service Volume (SSV) is defined as the 

volume of space surrounding the Earth from the edge 

of LEO to GEO, i.e., 3,000 km to 36,000 km altitude

• The SSV overlaps and extends beyond the GNSS 

constellations, so use of signals in this region often 

requires signal reception from satellites on the 

opposite side of the Earth – main lobes and sidelobes

• Signal availability constrained by poor geometry, 

Earth occultation, and weak signal strength

• Formal altitude limit of GNSS usage in space is 

36,000 km, but the practical limit is known to extend 

well beyond this.
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High-Altitude GPS 
• 1990s: Early flight experiments demonstrated basic 

feasibility – Equator-S, Falcon Gold

• 2000: Reliable GPS orbit determination demonstrated 

at GEO employing a bent pipe architecture and 

ground-based receiver (Kronman 2000)

• 2001: AMSAT OSCAR-40 mapped GPS main and 

sidelobe signals (Davis et al. 2001)

• 2015: MMS employed GPS operationally at 76,000 

km and recently 150,000 km

• 2016: GOES-16 employed GPS operationally at GEO
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Lunar GPS 
• Barton et al. 1993 concluded signal availability limited to 

<190,800 km with 9 dB antenna gain and 26 dB-Hz 
acq/trk threshold – sufficient for trans-lunar injection burn 
and mid-course correction burn

• Vision for Space Exploration era (2001-2009)
Carpenter et al. 2004, Bamford et al. 2008, Winternitz 

et al. 2009, Lee et al. 2009
• Recent

Winternigg et al. 2015,Capuano et al. 2015, Shehaj et 
al. 2017

Winternitz et al. 2017
Simulated MMS GPS system with high-gain antenna 
in Lunar exploration trajectory, concluded strong 
navigation possible (~1km radial, ~100m lateral)

• Deep Space Gateway, EM-1, EM-2
Permanent, international way-station in the vicinity of 

the moon for staging deep space activity
Near Rectilinear Halo Orbit (NRHO) is one of those 

proposed – outbound cruise and NRHO used here

Altitude 
[km]

Altitude 
[RE]

GPS 20,200 3

GEO 36,000 5.6

MMS 1 76,000 12

MMS 2 153,000 24

Moon 378,000 60
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Simulation
• GPS signals visible if 1) line of sight is unobstructed and 2) 

carrier-to-noise spectral density (C/N0) exceeds receiver 
acquisition/tracking threshold

• Orbit Determination Toolbox (ODTBX) used to simulate 
user receiver properties, geometry, and transmitter 
properties necessary to compute C/N0

• Constellation model
31 SVs with block composition consistent with validation 

flight data epochs (spring 2017)
IIR/IIR*/IIR-M patterns public, IIA used for IIF
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Verification with GOES-16 Flight Data
• Geostationary Operational Environmental Satellite 16 

(GOES-16) mission 
First operational use of GPS for a civilian GEO 

satellite – the formal limit of the SSV
Early demonstrated performance: >11 satellites 

visible on average, no outages (Winkler et al. 
2017)

• Simulation configuration
27 hour span at 18:00 UTC March 30, 2017
GPS antenna for GEO – 11 dB peak gain at 22 deg

off-boresight, 40 deg half-beamwidth
12 channel receiver with 25 dB-Hz acq/trk treshold

• Results
• 11.8 satellites visible on average in simulation, 

11.2 in flight data – sim has less outages
• Visibility per SV shown on following slide as well 

as C/N0 comparisons for representative SVs
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Verification with GOES-16 Flight Data
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Validation with GOES-16 Flight Data (cont.)
• Shape of C/N0 profile primarily driven by 

transmit antenna patterns

• GOES-16 provides an opportunity to evaluate 

the reference patterns used in the simulation

• Back-calculation of transmit antenna patterns 

from flight data C/N0 and simulation 

parameters:

• Main lobes and first sidelobes show good 

agreement, azimuthal variation in IIF not 

captured in reference pattern
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Verification with MMS Flight Data
• Magnetospheric Multiscale (MMS) mission 

Transitioned to Phase 2 in early 2017 – highly 
elliptical orbit, apogee altitudes ~153,000 km

Highest altitude operational use of GPS
Published results demonstrate 3 signals tracked 

near apogee on average, 1+ 99% of the time, 4+ 
70% of the time (Winternitz et al. 2017)

• Simulation configuration
8 day span from May 22, 2017
GPS antenna approximation of spinning/multiple 

on-board antennas: pointed toward ecliptic north, 
7 dB peak gain at 90 degrees

12 channel receiver with 22 dB-Hz acq/trk treshold
• Results

• 4+ SVs visible well past formal limit of SSV
• Visibility per SV shown on following slide as well 

as average number of SVs over altitude
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Verification with MMS Flight Data (cont.)
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Lunar Simulation
• US plans to return to human exploration of the Moon 

and cislunar space with EM-1 and EM-2; one long-
term objective is the Deep Space Gateway, an 
international, permanent way-station in the vicinity of 
the moon

• Near Rectilinear Halo Orbit (NRHO) is one proposed 
orbit; this is used here for the lunar simulation with 
only the outbound cruise 

• Three mission configurations: 
Validation – same antenna gain (7 dB peak), 

pointing, and receiver acq/trk thresholds as MMS 
(22 dB-Hz)

High gain antenna – 10 and 14 dB peak gain, same 
22 dB-Hz receiver acq/trk thresholds 

Receiver design baseline – 10 dB peak gain 
antenna, but 1 dB-Hz receiver thresholds 
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Lunar Simulation
Lunar trajectory: number of SVs visible over altitude Number of satellites visible over altitude for different antenna gains
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Lunar Simulation
• Outbound lunar NRHO visibility with 22 dB-Hz acq/trk threshold:

• A modest amount of additional gain or sensitivity increases 
coverage significantly

Peak Antenna 
Gain

1+ 4+ Maximum 
Outage

7 dB 63% 8% 140 min

10 dB 82% 17% 84 min

14 dB 99 % 65% 11 min

Number of satellites visible over altitude and receiver threshold
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Conclusions
• At altitudes as high as 25 RE, available models provide 

consistency between our simulations and available flight data to 
within a few percent in overall visibility metrics

• A modest amount of additional gain or sensitivity increases 
coverage significantly

• Future work must translate this availability to mission-level 
navigation performance, considering the effects of Dilution of 
Precision, etc.

• Efforts are underway through the United Nations International 
Committee on GNSS (ICG) to formalize and document the 
multi-GNSS SSV – further study must extend the results of this 
paper to include the combined capability of all six GNSS 
constellations

Apollo 12 Hasselblad image from film magazine 50/Q
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• GOES-16: http://www.spaceflightinsider.com/wp-content/uploads/2017/02/GOES-R_Earth-
Reflection-2012_rsz-1600x1060.jpg

• MMS: https://svs.gsfc.nasa.gov/vis/a010000/a011500/a011551/MMS.jpg

• Moon: https://boingboing.net/2015/10/02/nasa-just-released-8400-apoll.html

Image Sources


