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The National Aeronautics and Space Administration has several centers and

facilities located near the coast that are undoubtedly susceptible to climate change.

One of those facilities is Wallops Flight Facility on the Eastern Shore of Virginia which is

separated into three areas: Main Base, Mainland, and the Island. Wallops Island has

numerous buildings and assets that are vulnerable to flood inundation, intense storms,

and storm surge. The shoreline of Wallops Island is prone to beach erosion and is

slated for another beach replenishment project in 2019. In addition, current climate

projections for NASA’s centers and facilities, conducted by the Climate Adaptation

Science Investigators, warn of inevitable increases in annual temperature, precipitation,

sea level rise, and extreme events such as heatwaves. The aforementioned

vulnerabilities Wallops Island faces in addition to the projections of future climate

change reveal an urgency for NASA to adjust how new buildings at its centers and



facilities near the coast are built to adapt to the inevitable effects of climate change.

Although the agency has made strides to mitigate the effects of climate change by

incorporating L.E.E.D. into new buildings that produce less greenhouse gas, the strides

for the agency to institute clear climate adaptation policies for the buildings at its centers

and facilities near the coast seem to lag behind.

As NASA continues to formulate formidable climate change adaptation plans for

its centers and facilities, an architectural trend that should be examined for its potential

to replace several old buildings at Wallops Island is shipping containers buildings.

Shipping containers or Intermodal Steel Building Units offer an array of benefits such as

strength, durability, versatility, modular, and since they can be upcycled, they are also

eco-friendly. Some disadvantages of shipping containers are they contain harmful

chemicals, insulation must be added, fossil fuels must be used to transport them to the

site, and multiple ISBU’s are needed. Ultimately, this Masters Research Project will

focus on how the benefits of shipping containers can be incorporated into the climate

change adaptation plans at Wallops Island and will make recommendations for NASA

climate change policies and facility design guidelines.



CHAPTER 1:

INTRODUCTION

Coastal Flooding at NASA Centers and Facilities

The relentless pumping of CO2 emissions into the atmosphere by human beings

continues to exasperate global warming (National Research Council of the National

Academies, 2011). A direct product of global warming is sea level rise (SLR), which is

an unsustainable phenomenon that has put many coastal towns, cities and various

properties in jeopardy of having increases in coastal flooding that will impact daily

operations, including the National Aeronautics and Space Administration centers located

on the coast (Rozensweig & et.al, 2014). Thus, putting a tremendous risk on their

respective assets. One of those locations is NASA Goddard Space Flight Center's

Wallops Flight Facility (WFF) nestled on Virginia's Eastern Shore as expressed on

NASA’s Climate Resilience Workshop Report:

"Because of its coastal location, WFF faces an increasing risk of impacts from sea level
rise (SLR), storm surge, snow events, and other climate-related stresses, including
threats to human health. Vulnerabilities of WFF to risks associated with climate change
are multi-faceted and are worsened by its subjection to extreme weather events like
hurricanes and Nor’easters...WFF currently encounters yearly damage due to
hurricanes and Nor’easters with storm surge and wind acting as the two biggest
contributing factors to infrastructure damage on Wallops Island." (Moisan, Turner,
Mitchell, & Bonsteel, 2013)

Aside from rocket launches, supply missions to the International Space Station,

collecting beautifully detailed photos of the cosmos through the Hubble Telescope, and

preparing to send humans to Mars, NASA is also a giant in climate science by leading

the monitoring of our precious Earth’s "Vital Signs” by way of observing SLR, global

temperatures, carbon dioxide levels, and arctic ice melts to name a few (NASA, 2017).

Since two-thirds of NASA’s assets are within 16 feet (or 5 meters) of sea level



(Rozensweig & et.al, 2014), those vital signs are pivotal in determining what federal

agencies like NASA, as well as cities near the coast, will have to prepare for if SLR

predictions come into fruition and disrupt daily operations by impeding on infrastructures

such as transportation, electrical, storm water management, and communications.

Perhaps the shipping container building trend can serve as a viable solution to address

the flood inundation issues due to predicted increases in heavy precipitation events and

storm surge from storms at The Island section of Wallops Flight Facility.

Overview of Wallops Flight Facility

In 1945, the National Advisory Committee for Aeronautics (NACA), the precursor

to NASA, established WFF as a center for aeronautic research (NASA WFF, 2015). The

facility is currently owned and operated by NASA Goddard Space Flight Center (NASA

GSFC, 2012). Located on the on the Eastern Shore of Virginia in Accomack County

(Figure 2-1), WFF is an ideal location for rocket launches because the trajectory of the

rockets travel directly over the Atlantic Ocean and away from any population centers. In

addition, WFF is NASA’s principal facility for management and implementation of

suborbital research programs (NASA WFF, 2015) and home to a team of approximately

1,100 full time employees including 281 civil servants (NASA, 2016) and has

constructed assets of approximately $900 million or 2.8% of NASA’s agency wide total

of constructed assets of $32 billion (Rozensweig & et.al, 2014).



Figure 1- 1: Map of the Virginia Eastern Shore. (The Nature Conservancy, 2011)



The facility has a partnership with the Mid-Atlantic Regional Spaceport

(M.A.R.S.) to support the launch of orbital vehicles such as the Antares rocket that

brings the Cygnus cargo capsule into orbit where Cygnus makes it trek to deliver

supplies and science experiments to the crew of the International Space Station

(Virginia Space, n.d.). The WFF mission Plan includes the following objectives (Moisan,

Turner, Mitchell, & Bonsteel, 2013):

1. To help achieve NASA's strategic objectives for scientific and educational

excellence through cost efficient integration, launch, and operations of suborbital

and small orbital payloads.

2. To enable scientific, educational, and economic advancement by providing the

facilities and expertise to enable frequent flight opportunities for a diverse

customer base.

3. To serve as a key facility for operational test, integration, and certification of

NASA and commercial next-generation, low-cost orbital launch technologies.

4. To pioneer productive and innovative government, industry, and academic

partnerships.

Three Areas of Wallops Flight Facility

WFF is divided into three areas: the Main Base, Mainland, and the Island

(Figure 1-2 ) (NASA GSFC, 2012) and has various assets located there as shown on

Table 1-1. The Island, better known as Wallops Island, is the WFF focus area for this

MRP. Locations of facilities and assets at Wallops are shown on Figure 1-3.



Wallops
Mainland

Figure 1- 2: Map of the three areas of Wallops Island. (NASA GSFC, 2012)



AREA SIZE ASSETS

Main Base 1,800 acres
(720 hectares)

• Offices
• Laboratories
• Maintenance
• NASA owned airport
• Air traffic control facilities
• Hangers
• Runways
• Aircraft maintenance
• Ground support buildings
• Water & sewage treatment plants

Mainland 100 acres
(40.5 hectares)

• Long-range radar
• Communications
• Optical tracking installations

Island
(see Figure 2-

3)

4,600 acres
(1,680 hectares)

• Launch and testing facilities
• Rocket storage facilities
• Assembly shops
• Unmanned aerial vehicle (UAV) runway
• Other related support structures

Table 1- 1: Three areas of Wallops Flight Facility and Assets.

Figure 1- 3: Map of Facilities at Wallops Island. (NASA GSFC WFF, 2013)



Research Direction

On October 5th, 2009, President Barak Obama signed Executive Order (EO)

13514 into law for “Leadership in Environmental, Energy, and Economic Performance”

requiring U.S. agencies such as the National Aeronautics and Space Administration

(NASA) “to establish an integrated strategy towards sustainability in the Federal

Government and to make reduction of greenhouse gas emissions (GHS) a priority of

Federal agencies.” (C.F.R., 2009). Thus, ushering in a new era for U.S. federal

agencies to counter climate change with adaptation and mitigation policies. Since then,

EO 13514 has evolved into the EO 13693 “Planning for Federal Sustainability in the

Next Decade” which was signed by President Barak Obama on March 19th, 2015

(C.F.R., 2015).

A trend that should be explored for its viability in climate change adaptation plans for

NASA WFF are shipping container buildings. Shipping containers are made to

withstand harsh winds and storms aboard huge cargo ships. These structures are

known for their durability, versatility, and flexible configurability and could provide an

alternative means for WFF to prepare for more frequent high precipitation events, storm

surge, and SLR due to climate change. There are several examples of climate

adaptation plans NASA, other federal agencies, and cities have considered or

implemented, making it relevant for further investigation in this MRP. The author of this

MPR aims to distinguish between mitigation and adaptation efforts at NASA WFF Island

through the analysis of various policies and plans of NASA as an agency analysis of

research conducted by the NASA Engineering Constructions Innovations Committee

(ECIC) Climate Change Sub-Committee. Furthermore, NASA’S Kennedy Space Center



is presented by the author of this MRP due to some of its respective assets location

near the coast and similar topography. In addition, the author plans to investigate the

shipping container building trend to answer the following questions:

1. What are the benefits of incorporating shipping containers into the climate

adaptation plans for the Island at NASA Wallops Flight Facility?

2. What recommendations in NASA’s policies/guidelines should be

considered if shipping containers are utilized at NASA Wallops Flight

Facility to protect its assets?

Figure 1- 4: Research direction diagram.



CHAPTER 2:

LITERATURE REVIEW

Climate Adaptation and Resiliency

“Adaptation is a process through which societies make themselves better able to cope
with an uncertain future. Adapting to climate change entails taking the right measures to
reduce the negative effects of climate change (or exploit the positive ones) by making
the appropriate adjustments and changes. There are many options and opportunities
to adapt. These range from technological options such as increased sea defenses or
flood-proof houses on stilts, to behaviour change at the individual level, such as
reducing water use in times of drought and using insecticide-sprayed mosquito nets.
Other strategies include early warning systems for extreme events, better water
management, improved risk management, various insurance options and biodiversity
conservation.” (United Nations Framework Convention on Climate Change, 2007, p. 12)

NASA describes climate adaptation as, “adapting to life in a changing planet that

involves adjusting to actual or expected climate change.” (NASA, 2017). Essentially,

we must prepare and adjust to the anticipated changes predicted to occur to the climate

of our planet. Climate adaptation shares an interconnected relationship with climate risk

as mentioned in NASA’S 2015 Strategic Sustainability Performance Plan:

“Recognizing climate risks as a potential impediment to a sustainable NASA and the
importance of “walking the talk” to drive culture change, science and institutional
leaders have made adapting to climate risks a focus, participating actively in workshops,
advocating for applicable research, and advancing relevant policies.” (NASA , 2015)

The keywords in the descriptions above are adjust and change which is essential in

preparing for the effects of climate change. A 2009 report by the Government

Accountability Office critique of the federal governments emerging adaption activities

stated them as “…being carried out in an ad hoc manner and were not well coordinated

across federal agencies, let alone with state and local governments.” (United States

GAO, 2009). That statement suggests the federal agencies need a cohesive climate



change adaptation document for strategies that cover all geographical types, locations,

assets, etc. for better direction.

According to the NASA Facilities Design Guide, published in 2012, In

order to achieve the climate resiliency described above, it is recommended that the

following activities be carried out for design and planning projects (NASA, 2012):

• Identify current and future climate hazards (such as sea level rise, salt water

intrusion, coastal flooding, overall increased temperature, increased number

of high temperature days, precipitation changes, fire, wind, and air quality);

• Characterize risk of climate change on systems and assets (to result in a low,

medium, high risk rating through a vulnerability and risk assessment) to

identify facilities and locations at most risk;

• Develop potential adaptation strategies, such as:

a) Raising critical infrastructure which sits in basements or on ground floors;

b) Increasing cleaning of drains and gutters to reduce flooding;

c) Integrating green infrastructure to help reducing flood impacts;

d) Planting more heat and drought/flood tolerant trees, shrubs, and grasses

to replace less

e) tolerant species as the latter deteriorate;

f) Installing or increasing height of flood barriers such as revetments, levees

and sea walls;

g) Using construction materials resilient to increased temperatures, wind and

fire risk or

h) periodic inundation;



i) Maintaining wildlife corridors; and

j) Zoning changes

• Identify implementation approaches and funding for the adaptation strategies;

• Identify opportunities for partnership and coordination, particularly for sea

level rise impacts which can sometimes be more effectively dealt with at a

sub-regional level; Integrate into management and planning; and

• Monitor and reassess

Thus, the facilities design guide has recognized that formulating climate change

adaptation plans is key in protecting the various infrastructures and buildings at NASA’s

centers and facilities. Implementation of these plans, however, is not as well-defined as

the recommendations and taking the next step in climate adaptation implementation

could entail a similar approach as the following from the United Nations:

“Implementing adaptation plans and strategies is a vital next step for developing

countries. As highlighted in this chapter, many plans and strategies have been made

and a number of capacity-building projects have been undertaken. Now, it is important

to bridge the gap between adaption assessment and planning and adaption

implementation, and to build on knowledge from capacity building projects. Adaptation

options need to be matched to priority needs both in the context of community-based

action and in national and sectoral planning as well as disaster risk reduction.

Adaptation plans must be integrated into top-down and bottom up approaches for

planning to enable sustainable development and the efficient use of resources for

adaptation.” (United Nations Framework Convention on Climate Change, 2007)

Mitigation

Climate mitigation, according to NASA, is an effort to reduce the amount of heat

trapping greenhouse gases that are released into the atmosphere in hopes of

stabilizing humans influence on the climate (NASA, 2017) and is reiterated in the

following statement, “Mitigation is a human intervention to reduce the sources or



enhance the sinks of greenhouse gases.” (University of Cambridge, 2014). The key

term of the two definitions is reduce greenhouse gases. Thus, mitigation in the context

of climate change is focused on overall reducing the gases produced by humans that,

as mentioned in chapter 1, exasperate global warming.

Shipping Containers

Shipping containers are typically used to transport goods internationally and in

building application, shipping containers are referred to as Intermodal Steel Building

Units (ISBU’s) which are manufactured in various sizes (Home Tune Up, 2014). The

typical size for shipping containers are the 20’ and 40’ varieties that are 8’-6” in height

and 8’-0” wide (Figure 2-1 and Figure 2-2). A taller version, called the high-cube, is a

foot taller as listed on Table 2-1.

Figure 2- 1: Standard 20' shipping container. (Residential Shipping Container Primer, 2017)



Table 2- 1: Typical shipping containers specs. (Pouraghabagher, 2017)

SPECS

Shipping Containers

Exterior Internal
Door
Openings

Weight

L W H L W H W H Empty

20ft. 19’10½” 8′ 8’6″ 19’3″ 7’8″ 7’9⅞” 7’8″ 7’5″ 5050 lb

40ft. 40′ 8′ 8’6″ 39’5″ 7’8″ 7’9⅞” 7’8″ 7’5″ 8000 lb

40ft. HC 40’ 8′ 9’6″ 39’5″ 7’8″ 8’10” 7’8″ 8’5½” 8775 lb

45ft. HC 45’ 8′ 9’6″ 44’5″ 7’8″ 8’10” 7’8″ 8’5½” 9810 lb

20ft. Refrigerated 19’10½” 8′ 8’6″ 17’11” 7’6″ 7’6″ 7’5″ 7’3″ 6503 lb

40ft. Refrigerated 40′ 8′ 8’6″ 37’11” 7’6″ 7’6″ 7’6″ 7’6″ 9750 lb

40ft. HC Refrigerated 40′ 8′ 9’6″ 37’11” 7’6″ 8’4″ 7’6″ 8’4″ 9590 lb

Figure 2- 2: Standard 40' shipping container. (Residential Shipping Container Primer, 2017)



Primary Structural Components of a Shipping Container

Figure 2- 3: Diagram of shipping container components. (Residential Shipping Container Primer, 2017)



Secondary Structural Components of a Shipping Container

Typical Prices for New & Used ISBU’s

According to website of Container Homes Plans, shipping container costs are

determined by the size and condition of the shipping container. New and used

containers are typically priced as follows (Container Home Plans, 2016):

Typical Prices for New Shipping Containers

• 20′ Shipping Container: $3,000 

• 20′ High Cube Shipping Container: $3,200 

Figure 2- 4: Diagram of secondary structural components of a shipping container components. (Residential Shipping Container
Primer, 2017)



• 40′ Shipping Container: $5,600 

• 40′ High Cube Shipping Container: $5,800 

Typical Prices for Used Shipping Containers

• 20′ Shipping Container: $2,100 

• 20′ High Cube Shipping Container: $2,200 

• 40′ Shipping Container: $2,850 

• 40′ High Cube Shipping Container: $2,950 

Additional Costs

Delivery

According to the Shipping Container Plans website, delivery costs for shipping

container home designs are typically calculated for deliveries within 300 miles of the

site. A typical delivery cost for a 20’ and 40’ containers is approximately $400 & $780

respectively or about $1.33 per mile for a 20’ container and $2.60 per mile for a 40’

container (Container Home Plans, 2016).

Insulation

There are various methods to insulate shipping containers which have wide

range in cost: Spray foam insulation, panel insulation, and blanket insulation. The

costs for each method is listed below (Container Home Plans, 2016):

• Spray foam insulation (2” thick): approximately $1.75 to $3.00/sq. ft.

• Panel insulation (3” thick): required wood battens to be fitted into the

container first and will be approximately $0.75 to $1.45/sq. ft.



• Blanket insulation: cheapest means and will also require wood battens fitted

into the container first. The most popular blanket insulation is fiberglass and

mineral wool- you need to make sure you are wearing gloves when fitting it.

Approximately $0.30/sq. ft.

As listed above, in order to install spray foam or panel insulation in shipping

containers, wood battens must be fitted first. Thus, subtracting from the original square

footage which must be accounted for by the designer.

Foundations

Concrete piers are the typical foundations used to disperse weight from shipping

containers into the ground. The piers are placed at the corners of the shipping

container. The cost estimate for a 40’ containers is $550 (Container Home Plans,

2016). Another choice is a strip or trench foundations which entails laying a small strip

of concrete around the perimeter of the container and is usually 2 feet wide and 4 feet

deep (Container Home Plans, 2016). Strip foundations are used when the ground is too

soft for pier foundations (Container Home Plans, 2016). This method is more expensive

than piers because more concrete is used and more excavation is involved (Container

Home Plans, 2016). Thus, the cost to provide a strip foundation for a 40’ containers is

approximately $5,400. The one drawback of strip foundations is they are weak against

wind and earthquakes making them only suited for small and medium size builds

(Container Home Plans, 2016).



Advantages of ISBU’s

There are several advantages to utilizing shipping containers or ISBU’s in design

as listed below (Wisley Green, 2017):

1) Cost per unit: Approximately $1,200 for a used container and usually no

more than $6,000 for a new container.

2) Structural Benefits:

• Steel construction: strong enough to endure harsh elements and high

pressure from being stacked. The steel structure is ideal for a building

material and can be adapted to a number of building purposes.

• Simple foundation: Usually pier foundation to save money but is

dependent on the location.

3) Transportable: Their dimensions make them easy to transport from place to

place by various means of transportation.

4) Availability: Large volume of perfectly unused containers that can be

purchased at a low price.

5) Labor requirements: With the correct labor team that specialize in shipping

container construction, the costs for labor can be less that it would be for

wood frame construction.

6) Modular Design: Uniformity in height and length measurements make for a

variety of configuration arrangements.

7) Eco-friendly: Repurposing shipping containers saves steel and reduces the

amount of conventional building materials used such as cement, bricks, and

wood.



According to Aadhan Architecture, a firm that specializes in recycling shipping

containers state the following advantages with using the containers for building

(Aadhan, 2016) :

1) Green Building: Eco-friendly when containers are re-purposed. Reusing a

single 40’ containers upcycles about 3,500 kg of steel and saves about 8,000

kWh of energy that would be needed to melt it down. Repurposing containers

uses only 400kWh.

2) Cost Effective: At a minimum, 30% cheaper than a comparable sized home

built with brick and motor. The structural work is minimal which reduces cost

more.

3) Structural Stability: Designed for heavy loads, to withstand harsh climatic

conditions, and rough seas. Easily can be stacked for multiple stories. Safe

for areas prone to earthquakes and hurricanes.

4) Easy Speed of Construction: A shipping container home can be

constructed in 2-3 weeks compared to a brick and mortar structure which

typically takes 4-6 months to complete.

5) Off Site Construction: Buildings can be built off site then delivered to the

site. Reducing the amount of construction days lost due to inclement

weather.

6) Safety: In remote areas, shipping containers are too heavy to steal without

anyone noticing.



Disadvantages of ISBU’s

Shipping containers also have several disadvantages to consider when deciding

to use them in design which are listed below (Wisley Green, 2017):

1) Building Permits: Due to shipping containers are not a common building

design choice, obtaining the required building permits may be troublesome.

2) Indoor Climate Control: Since steel conducts heat very well, the container

will need to be insulated more than brick, wood, or block construction,

especially in regions of extreme temperature variations.

3) Flexibility: Designers must adhere to the 20’ and 40’ containers when

combining to make bigger spaces. Thus, cutting into the steel of the

containers involves time and is expensive.

4) Toxic Concerns: Multiple toxic exposures in shipping containers from the

timber floors which are treated with insecticides to the paint on the steel that

has may contain dangerous solvents. Therefore, the internal surfaces must

be sandblasted, sealed, and repainted which is time consuming.

5) Construction Placement: The containers require a crane or forklift to be

placed at its destined location.

6) Structural Weakness: The corners provide great strength, but the roof is not

as strong. Therefore, burying containers underground is not recommended

unless additional support is provided.

7) Container Damage: Containers often become damaged during transport by

collisions, heavy loads, and friction. Causing cracks, twisted frames, or holes

in the steel.



Aadhan Architecture, lists the following disadvantages with using the containers

in building design (Aadhan, 2016) :

1) Insulation and Heat Control: The steel absorb and transmit heat and cold

well which makes them problematic in controlling the interior temperature.

Insulation is required but will reduce the interior space. In order to increase

the space, multiple containers must be joined together on-site.

2) Refurbishing: Rust, scratches, and dents must be refurbished correctly by

the contractor. However, a container can last a minimum 20 years if

repainted every few years.

3) Ecological Footprint: Carbon emissions are needed to transport the

containers to the site. Before the container can be occupied, they must be

sandblasted bare, flooring must be replaced or sealed, and all openings need

to be cut with a torch resulting in carbon emissions as well.

4) Health Hazards: Contain elements such as chromate, phosphorus, and

lead-based paints used on walls. In addition, arsenic and chromium is used

to infuse the wooden floors to deter pest infestation.

As the aforementioned advantages and disadvantages suggest, there are many

factors to consider when shipping containers becomes an option for constructing a

building. The sources above are fairly consistent in their pros and cons. Leading to the

next section, if these containers were to be utilized for buildings at Wallops Island for

climate adaptation plans, what kinds of spaces could they potentially be made out of

them and could the advantages be maximized and disadvantages be minimized?



Opportunities for Shipping Containers Buildings at Wallops Island

Taking the pros and cons of shipping container buildings into consideration for

their potential for being incorporated into design options at Wallops Island, the types of

buildings they will be utilized for encompass opportunities for NASA to invoke the

agency’s reputation for innovation. There are over 30 buildings at Wallops Island and

shipping containers could be considered for new construction that replaces older

buildings. Since most of Wallops Island buildings are associated with rocket launches, it

is safe to assume if shipping containers are used on the island, they will likely require

spaces for launch control operations, telecommunications, administration, offices,

classrooms, testing, research, assembly, maintenance, storage of components, etc.

Thus, the opportunity to explore how these spaces can be arranged within shipping

containers is a relevant as it pertains to climate adaptation.



CHAPTER 3:

METHODOLOGY

Framework

The purpose of this research is to determine, in anticipation of the future

impacts of climate change, if NASA Wallops Flight Facility can benefit from the

implementation of shipping containers into its climate change adaptation plans. Thus,

adding another approach to protecting the various assets located at the Island of WFF.

To establish a basis for this MRP, a comprehensive literature review was utilized.

Data Collection and Analysis

The research will be formulated via cross-sectional, non-experimental research

case study design through secondary data. Secondary data will be drawn from journals

and reports pertaining to the following information about Wallops Island: topography,

geography, shoreline change, hurricanes, and climate change predictions. In addition,

the author will analyze information collected from a climate change sub-committee.

Processing some of the secondary data will entail transferring pertinent information into

tables and charts for quick reference and analysis.

Comparative Document Analysis

Additionally, NASA guidelines pertaining to climate change will be analyzed to

showcase the efforts within the agency to address climate change adaption into

strategies and to establish if any of those strategies have been implemented. In

addition, demonstrate the disparity between the NASA’s efforts of climate change

adaption strategies as opposed to climate change mitigation.
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Figure 3- 1: Research Framework.



CHAPTER 4:

RESULTS

Wallops Island Topography and Geography

Wallops Island is a barrier island comprised mostly of marshland that is flanked by the

Atlantic Ocean to the east and landward by wetlands. These wetlands also separate

Wallops Island from Wallops Mainland. The topography of the Island is generally low-

lying with elevations between 0 and 3 feet at the wetlands, 3-6 feet along the shoreline

and portions of the existing buildings, 6 feet and above around most existing buildings

as well as the roads as illustrated on Figure 2-4 (NASA , 2013).

Figure 4- 1: South Island elevation zones at Wallops near launch facilities.

Regarding the wetlands proximity to assets at the Island, in the report,

“Predicting the Future of Wetlands on NASA’s Wallops Island”, it states:

“Specifically to Wallops, wetlands neighbor infrastructure that is key to enabling
site wide missions. These infrastructures include small and medium class size rocket
launch pads, control centers, and design buildings such as the Horizontal Integration



Facility (HIF) where construction of the Antares vehicles, designed to resupply the
International Space Station (ISS), take place…The proximity of Wallops Flight Facility’s
built environment to natural ecosystems and wetlands highlights the consideration of
increasing SLR rates must be taken into account when considering future projects.”
(Massey, Moisan, Mitchell, & McAllen, 2014).

Shoreline Vulnerability at Wallops Island

In 1999, the barrier islands of the mid-Atlantic, including Wallops Island, ranked as

“very high” for coastal vulnerability to SLR (Thieler & Hammar-Klose, 1999).

Furthermore, the following statement reiterates the vulnerability of the Island’s

shoreline:

“Coastal areas are continuously threatened by storm events and long term
shoreline change…and are at increased risk for more intensive erosion and sustained
coastal flooding. WFF has been battling shoreline change and inundation by storms
since the facility’s inception.” (King Jr., Ward, Williams, & Hudgins, 2010).

Various measures have been employed to counter shoreline change at WFF;

from sheet piles to the current measure of a tall rock seawall as shown on table 4-1

(King Jr., Ward, Williams, & Hudgins, 2010). The shoreline of Wallops Island has

transformed fairly through the years as evident in Figures 4-8 through 4-19. The

southern portion has receded landward from the 1940 through the 1990’s, but with the

addition of the rock seawall in the 1990’s, remains intact. Especially with the periodic

beach replenishment projects to counter beach erosion and the pounding of storm

surge. The northern and seaside portion of Wallops Island shows a dramatic change

with nearly 300 yards of beach built since the 1940’s. However, with the uncertainty of

storms and the inevitably of sea level rise, measures for shoreline protection at the

Island will likely continue well into the foreseeable future especially if SLR becomes



compounded with storm surge resulting in a gradual increase beach erosion and

flooding.

TIMEFRAME INFO AND MEASURES TAKEN

1940’s – 1950’s

• First sea wall erected in 1945 via interlocking 18 ft.
sections of sheet pile driven 12 ft. into the ground

• United States Army Corps of Engineers recommended
the installation of groin field when the high-water line
came within 50 ft. of the seawall

• In 1956, the Beach Erosion Board recommended that 8
groins be installed at 400 ft. intervals along 2,800 feet of
beach which were built (Figure 2-5)

1960’s – 1980’s

• In 1960, the seawall was extended further north
• Mechanically closed breach following the Ash

Wednesday storm of March 6-8, 1962
• A total of 47 groins had been built along the shoreline by

1972.
• Groins functioned well in the 1960’s and early 1970’s and

considered a success
• Groins showed signs of deterioration by the 1980’s
• Two experimental beach barrier projects were initiated in

the mid 1980’s and both failed

1990’s – present

• Current rock sea wall was built in the mid 1990’s (Figure
2-9)

• Wooden groins removed at the same time
• Rock seawall halted the shoreline retreat substantially but

sub-aerial beach disappeared, excepted at the northern
end

• The sub-aqueous beach seaward of the sea wall has
continued to erode

• Because rock seawall is porous, storm waves frequently
penetrate it, causing flooding and eroding sand on the
landward side.

• Major shoreline projection project completed August 2012
prior to Hurricane Sandy which removed 700 feet of
protective berm and about 20% of the beach
* (Gutro, 2013)

Table 4- 1: Timeframe and measures taken for shoreline protection at Wallops Island. (King Jr., Ward, Williams, & Hudgins,
2010) & (Gutro, 2013)



Figure 4- 2 Wallops Island seawall in 1956. (King Jr., Ward, Williams, & Hudgins, 2010)

Figure 4- 3: Wooden groins at Wallops Island 1959. (King Jr., Ward, Williams, & Hudgins, 2010)



Figure 4- 5: Wallops Island groin wooden groins and
diagram in 1964. (King Jr., Ward, Williams, & Hudgins,
2010)

Figure 4- 4: Wallops Island groin field in 1969. (King Jr.,
Ward, Williams, & Hudgins, 2010)



Figure 4- 6: Rock seawall at Wallops Island. Photo taken by author June 2017.

Figure 4- 7: Rock seawall at Wallops Island. Photo taken by author June 2017.



Figure 4- 8: Wallops Island Shoreline, 1949. (Coastal Resilience, n.d.)

Figure 4- 9: Wallops Island Shoreline, 1962. (Coastal Resilience, n.d.)



Figure 4- 10: Wallops Island Shoreline, 1975. (Coastal Resilience, n.d.)

Figure 4- 11: Wallops Island Shoreline, 1985. (Coastal Resilience, n.d.)



Figure 4- 12: Wallops Island Shoreline, 1994. (Coastal Resilience, n.d.)

Figure 4- 13: Wallops Island Shoreline, 2002. (Coastal Resilience, n.d.)



Figure 4- 14: Wallops Island Shoreline, 2004. (Coastal Resilience, n.d.)

Figure 4- 15: Wallops Island Shoreline, 2006. (Coastal Resilience, n.d.)



Figure 4- 16: Wallops Island Shoreline, 2009. (Coastal Resilience, n.d.)

Figure 4- 17: Wallops Island Shoreline, 2011. (Coastal Resilience, n.d.)



Figure 4- 18: Wallops Island Shoreline, 2013. (Coastal Resilience, n.d.)

Figure 4- 19: Wallops Island Shoreline, 2014. (Coastal Resilience, n.d.)



As Figures 4-8 through 4-19 show, the central and southern shoreline sections at

Wallops Island have gradually receded while the shoreline at the northern section has

gradually increased seaward.

Increase of Hurricanes impacting Wallops Island

According to the National Oceanic and Atmospheric Administration (NOAA)

Office for Coastal Management, since 1970, a total of twenty-one hurricanes, tropical

storms, tropical depressions, and extra tropical have come within 65 nautical miles of

Wallops Island as shown on the table 4-2. Hurricane Sandy, a 2012 storm that removed

700 feet of beach at the protective berm at Wallops Island and 20 percent of the beach

(Gutro, 2013), was well out of the 65-nautical mile radius but within 100 nautical mile

range of the island (NOAA, 2017). Close enough to cause tremendous beach erosion

and damage to the beach replenishment project at the Island which was completed just

months prior to Hurricane Sandy wreaking havoc on the east coast of the United States

(Massey, Moisan, Mitchell, & McAllen, 2014). Thus since 1970, with the 65-nautical

mile threshold in mind, there has been a steady increase of storms that have affected

Wallops Island with 2004 being the busiest year to date and the remaining years of the

2010’s is still to be determined.

YEAR
NAME OF

HURRICANE
DURATION OF STORM

INTENSITY OF STORM (WITHIN 65
NAUTICAL MILES OF WALLOPS

ISLAND)

1971 DORIA
August 20, 1971 to
August 29, 1971

TROPICAL STORM

1971 GINGER
September 6, 1971 to

October 5, 1971
TROPICAL DEPRESSION

1981 BRET
June 29, 1981 to

July 1, 1981
TROPICAL DEPRESSION

1983 DEAN
September 26, 1983 to
September 30, 1981

TROPICAL STORM

1985 DANNY
August 12, 1985 to
August 20, 1985

EXTRA TROPICAL



1985 GLORIA
September 16, 1985 to

October 2, 1985
CATERGORY 3 HURRICANE

1986 CHARLEY
August 13, 1986 to
August 30, 1986

CATEGORY 1 HURRICANE

1992 DANIELLE
September 22, 1992 to

September
TROPICAL STORM

1996 BERTHA
July 5, 1996 to
July 17, 1996

TROPICAL STORM

1999 FLOYD
September 7, 1999 to
September 19, 1999

CATEGORY 1 HURRICANE

2000 GORDON
September 14, 2000 to
September 21, 2000

EXTRA TROPICAL

2001 ALLISON
June 5, 2001 to
June 19, 2001

TROPICAL DEPRESSION

2004 BONNIE
August 3, 2004 to August

14, 2004
TROPICAL DEPRESSION

2004 CHARLEY
August 9, 2004 to August

15, 2004
EXTRA TROPICAL

2004 GASTON
August 27, 2004 to
September 3, 2004 TROPICAL STORM

2004 IVAN
September 2, 2004 to
September 24, 2004

EXTRA TROPICAL

2004 JEANNE
September 13, 2004 to
September 29, 2004

EXTRA TROPICAL

2008 HANNA
August 28, 2008 to
September 8, 2008 TROPICAL STORM

2011 IRENE
August 21, 2011 to
August 30, 2011

CATEGORY 1 HURRICANE

2013 ANDREA
June 5, 2013 to
June 8, 2013

EXTRA TROPICAL

2015 ANA
May 6, 2015 to May 12,

2015
TROPICAL DEPRESSION



Table 4- 2: Historical List of Hurricanes that came within 65 nautical miles of Wallops Island since 1970. (NOAA, 2017)

Climate Projections for Wallops Flight Facility

CASI conducted climate project research findings for the NASA centers/facilities

based on 33 Global Climate Models (GCM’s) and 2 Representative Concentration

Pathways (RCP 8.5 and RCP 4.5) that incorporate assumptions about future

greenhouse gas levels (CASI, 2015). Those projections were originally published in

2012 and later updated in 2015. The baseline data are from 1971 to 2000 and was

acquired from the NOAA National Climatic Data Center (NCDC) (CASI, 2015). In

reference to the RCP 8.5 and RCP 4.5, here are how both pathways are broken down

(CASI, 2015):

Figure 4- 20: Shoreline of Wallops Island August 2012 (left), post Hurricane Sandy in November 2012
(right). (Gutro, 2013)



• The RCP 8.5 pathway most closely represents “Business as Usual” and follows a

steadily rising trend of greenhouse gas emissions over this century.

• The RCP 4.5 pathway presumes some decrease in greenhouse gas emissions

With those pathways in mind, the CASI team were able to pursue the climate projection

research with the following time variables: Baseline (1971-2000), the 2020’s, the 2050’s,

& the 2080’s. The projections were the shown in the following percentile ranges: low

estimate (10th percentile), middle range (25th and 75th percentile), and high estimate

(90th percentile). Climate predictions published by CASI revealed the following climate

variables were researched (CASI, 2015):

• Annual Temperature

• Annual Precipitation

• Annual Sea Level Rise

• Extreme Events

• Seasonal Changes

This MRP focused on the annual temperatures, annual precipitation, annual sea level

rise, and extreme events by showcasing those predictions into tables for visual

reference and analysis (Figures 4-21 through 4-29). In addition, the following tables,

the averages between the 25th and 75th percentiles are shown for the middle range

results.
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Case Study: NASA Kennedy Space Center, Florida

Relevancy of KSC to the Research

Like WFF, KSC is also a NASA center located on the east coast of the United

States. In addition, the low-lying topography of KSC (Figure 4-31) makes it susceptible

to flooding, intense storms, as well as share similar assets and geography as WFF

(NASA KSC, 2017). Comprised

of 41,425 acres of wetlands,

KSC also has issues with

shoreline change and has

periodic shoreline restoration

projects crucial in protecting the

assets located there with the last

restoration complete in 2015

(Granath & Frank, 2014). The

main assets at KSC are:

A. Central Campus

Headquarters Building

B. Launch Abort System Facility

C. Commercial Crew Cargo Processing Facility

D. Launch Complex 39A

E. Launch Complex 39B (Figure 4-32)

F. Vehicle Assembly Building

G. Space Life laboratory

H. Shuttle Landing Facility

Figure 4- 30: Map of NASA Kennedy Space Center, Florida. (NASA KSC, 2017)



Figure 4- 31: Topography map of NASA Kennedy Space Center, Florida.
(NASA KSC, 2017)



Similar to the shoreline of Wallops Flight Facility, Kennedy Space Center’s

shoreline is also susceptible to beach erosion from the impact of intense storms like

hurricanes. In 2012, Hurricane Sandy churned 200 miles off the coast of Florida as it

slowly made its way up the east coast causing a dune to as much as 65 feet along a

two mile stretch near Launch Pad 39B (Carlowicz, 2015). In addition, storm surge

damaged 650 of railroad track and the high-tide line moved closer to a service road

which has critical infrastructures under it such as natural gas, rocket fuel, and

communications (Carlowicz, 2015). Overall, Hurricane Sandy caused much more

damage at Kennedy Space Center compared to Wallops Flight Facility but when

comparing shoreline damage, both locations suffered very similar outcomes. Both

locations had to have beach restoration projects fulfilled to protect their respective

Figure 4- 32: Proximity of Launch Pad 39-B to the ocean. (Carlowicz, 2015)



assets near the shore, with KSC’s dune replenishment project completed in 2014

(Granath & Frank, 2014).

In the Kennedy Space Center: Master Plan Executive Summary it states:

“Much of KSC land areas are low-lying, poorly drained, and vulnerable to inundation by
periodic storm events. These low-lying areas are also most at risk to be affected by
global climate change in future decades. Areas of existing facilities or structures that are
in 0-1.20 meters NAVD (North American Vertical Datum) should be assessed relative to
anticipated future climate and weather conditions. Where practical, the function within
existing facilities should be relocated to ground 1.82 meters (approximately 6 feet) or
above where required. Future critical facilities shall be constructed outside the 500-year
flood plain. Where practical, existing critical facilities should be hardened to withstand a
500 year flood event, or their functions moved to an area outside the 500- year flood
plain.” (NASA KSC, 2017)

Thus, the directors at KSC have acknowledged the need for climate change adaption

strategies targeted at flood inundation and weather conditions in general. Strategies

such as relocating assets to locations 6 feet above sea level or constructing new

facilities outside the flood plain are obvious approaches but land is limited due to

conservation efforts by NASA as evident in the KSC Development Suitability Map

shown in Figure 4-33. 95 percent of the approximately 141,829 acres of land at KSC

remain undisturbed, leaving about 7,500 acres of land to support space mission

operations (NASA KSC, 2017). Land available for development at KSC is limited due to

those conservations efforts, vast wetlands, and low-lying topography. Therefore, with

the variables for climate change inevitably on the rise, climate change adaptation

strategies to protect current and future assets at KSC provide a means to investigate

how incorporating shipping containers buildings into asset protection can be a viable

solution for both WFF and KSC.



KSC is currently in the process of implementing a 20-year master plan via a

series of planning development stages. The stages, listed below, are accompanied by

one stage that includes climate change adaptation in the mix (NASA KSC, 2017) and

although “climate change adaptation” is not included in the verbiage of the strategy, it

certainly fits into the parameters of actions needed to put that strategy into action. The

master plan for KSC includes the following stages/tasks (NASA KSC, 2017):

• Incorporates themes and concepts developed by KSC employees and
stakeholders, identified in KSC’s Future Development Concept (FDC)

Figure 4- 33: Development Suitability Map of NASA Kennedy Space
Center, Florida.



• Combines written and graphical documentation to describe KSC’s current state
with implementation strategies for achieving the desired vision and future state

• Repositions resources to accommodate both NASA operations and the
integration of the emerging commercial space market.

• Integrates development alternatives and corresponding operating models to
support NASA programmatic needs as well as commercial space market
opportunities

• Identifies the most suitable areas of KSC for future development, taking
factors including development capacity, the environment, and sea level rise
into account.

• Supports KSC’s long-term end state with an asset consolidation and
infrastructure divestiture strategy, enabled by implementation stages.

As aforementioned, compared to WFF, KSC has similar assets, has a low-lying

topography, is prone to shoreline change, and is susceptible to flooding, storm surge,

sea level rise and intense storms. Thus, KSC is a relevant location to apply as a case

study for comparative assessment purposes.

Climate Projections for KSC

To find further correlations between the locations of KSC and WFF in

reference to climate change adaptation, the same climate projection research

conducted and published by CASI for WFF was produced for KSC as well. The

following tables showcasing KSC climate projections reveal gradual increases in annual

temperature, precipitation, SLR, and extreme weather events through the end of the

century (CASI, 2015) almost parallel to the climate projections for WFF (Figures 4-34

through 4-42). The projections were conducted by CASI utilizing the same the same

GCM’s and RCP’s used for WFF’s projections.
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Figure 4- 35: Annual temperature change projections for Kennedy Space Center. (CASI, 2015)

Figure 4- 34: Annual precipitation change projections for Kennedy Space Center. (CASI, 2015)
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Figure 4- 36: Projections for no. of days/year with maximum temperature at or above 90°F at
Kennedy Space Center. (CASI, 2015)



12

9

5

14.5

11
9.5

14 14 14

0

5

10

15

20

2020's 2050's 2080's

D
ay

s
P

er
Ye

ar

No. of Days Per Year with
Maximum Temperature at or below 40°F (KSC)

Baseline: 1971-2000 (20 days)

Low Estimate (10th Percentile)

Middle Range (25th to 75th Percentile) *Average Shown*

High estimate (90th Percentile)

Figure 4- 39: Projections for no. of days/year with rainfall at or above 1 inch at Kennedy Space
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Figure 4- 38: Projections for no. of days/year with a minimum temperature at or below 40°F at
Kennedy Space Center. (CASI, 2015)
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Figure 4- 41: Projected no. of heatwaves/year at Kennedy Space Center. (CASI, 2015)
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(CASI, 2015)



As evident in the climate projections for both WFF and KSC, there will be

increases in almost all categories with the exception of the number of days with a

minimum temperature of 32F and 40F respectfully, which are projected to decrease.

The parallel results

Mitigation Efforts at NASA

Various NASA policies and guidelines do contribute to addressing climate change

at its centers and facilities through risk analysis and sustainable means. Reducing

gases is the biggest strategy for mitigation. In particular, building design and

performance. For instance, in NASA’s 2016 Strategic Sustainability Performance Plan, it

highlights the following ten goals (NASA , 2015):

1. Greenhouse Gas (GHG) reduction

2. Sustainable Buildings

3. Clean & Renewable Energy
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Figure 4- 42: Projection duration of heatwaves at Kennedy Space Center.



4. Water Use Efficiency & Management

5. Fleet Management

6. Sustainable Acquisition

7. Pollution Prevention & Waste Reduction

8. Energy Performance Contracts

9. Electronic Stewardship & Data Centers

10.Climate Change Resilience

Mitigation is literally the number 1 goal of the performance plan, while the goal

most associated with climate adaptation is last. Goal number 1 is a great goal to have

but seems to undermine the importance of climate adaptation. Furthermore, the goals

of reducing GHG’s in NASA buildings in direct correlation with earning points toward a

Leadership in Energy Efficient Design (LEED) certification. The agency currently has 19

total (4 platinum, 9 gold, 5 silver, and 1 certified) LEED certified buildings at nine of its

centers (NASA Facilities and Real Estate Division, n.d.). Wallops Flight Facility

currently has two building slated for LEED silver pending certification. Goals 2, 3, 6,

and 8 are directly related to goal 1 because of how each one assists in reducing energy,

thus producing less GHG’s. For instance, Goal 6, Sustainable Acquisition, could be

utilized to acquire LED bulbs for a particular building that will reduce energy costs by “x”

amount of dollars and in turn produce less GHG’s in the long run. In this report, the

overall goal for the agency is to reduce direct GHG emission by 18.3% by 2020, onsite

or office and reduce indirect GHG emissions, for example commuting, by 12.3% by

2020 (NASA , 2015).



In Kennedy Space Center’s Sustainability Plan 2016-2020, which covers the

goals of the NASA’s 2016 Strategic Sustainability Performance Plan, Goal 2

(Sustainable Buildings) is driven by energy conservation with objectives for

implementing energy conservation projects and striving for Net Zero Buildings (NASA

KSC, 2015). These objectives will help the agency reduce its GHG output and promote

climate change mitigation.

Under the Architecture and Interior Design Philosophy section of the NASA

Facilities Design Guide, much importance is given to having high performance buildings

but there is no mention of how architects and designers account for climate change. In

addition, the document includes several standard regulations but there are no sources

solely devoted to climate projections for NASA’s centers and facilities. Which leads to

the next section, climate adaptation efforts at NASA.

Adaptation Efforts at NASA

In 2011, Former NASA Senior Sustainability Officer, Olga M. Dominguez, stated

in her NASA Policy Statement for Adapting to a Changing Climate that in order to

implement this policy NASA commits to the following (Dominguez, 2011):

• Undertake climate adaptation planning and apply the best science expertise and

information available.

• Apply the "guiding principles" and planning "flexible framework" for climate

change adaptation developed by the Interagency Climate Change Adaptation

Task Force.

• Integrate climate adaptation planning and actions into agency programs, policies

and operations.



• Consider potential climate impacts in long-term planning, setting priorities for

scientific research and investigations, and making decisions affecting the agency

resources, programs, policies, and operations.

• Develop an agency-wide adaptation plan.

• Coordinate with other agencies and interagency efforts, nationally and

internationally, on climate change adaptation issues, and share climate change

adaptation planning information with the world.

These policy commitments are slowly taking shape at NASA centers and facilities as

evident with the ECIC sub-committee which will be discussed later in this chapter.

As mentioned earlier, in 2012, CASI published its “Adapting to a Changing

Climate” reports on climate projections for several NASA centers and facilities. Those

reports were then updated in 2015. Although the reports detail a plethora of climate

projections, they do not offer any strategies for climate adaptation for any of the centers

or facilities. They do however, suggests that the agency needs to develop short-term

and long-term climate adaptation (CASI, 2015). To infuse the dialogue of climate

adaptation into future and current buildings and infrastructure at NASA’s centers and

accompanying facilities, workgroups were established to develop climate adaptation

strategies. One of those workgroups is the NASA Engineering Constructions

Innovations Committee (ECIC) Climate Change Sub-Committee which is led by Keith

Britton of NASA Kennedy Space Center and has members representing other NASA

centers and facilities. The members meet periodically via telephone conference call to

discuss climate change adaption and mitigation concerns at their respective locations.



Utilizing info Goddard Space Center and the CASI climate projection reports, the

representatives conducted further research to determine the effects that various climate

variables will have on a select few buildings at their locations. Similar to the CASI

climate projection reports, climate variables were separated into two categories:

Gradual and Extreme Events. The “gradual” category was subdivided into three

variables: sea level rise, precipitation variability, and higher average temperature. The

“extreme events” category was subdivided into seven variables: sea level rise + storm

surge, drought, heat waves, extreme cold, wildfire, and wind. Mr. Ron Simko, a

mechanical engineer for the facilities management branch and ECIC sub-committee

representative for WFF conducted this research and allowed the author of this MRP to

participate in documenting portions of the research.

For Wallops Island, the selected building was Building Y-30, a one-story structure

that is primarily used to as an observation location for sound rockets. In collaboration

with various engineers from the Facilities Management Branch at WFF, applying the

climate change projections from CASI directed the discussions on what impacts they

would have on Building Y-30’s in relation to structure, building envelope, HVAC,

plumbing, and telecom. The research found that the building envelope of Y-30 would

incur the biggest impact due to a significant storm surge event in conjunction to SLR

resulting in temporary facility closure, molding, work activity loss, significant damage to

walls and insulation, and loss of furniture. Electrical, Telecom, and plumbing systems

would also be inundated by a storm surge event and SLR. Thus, suggested adaptation

responses to the likelihood of storm surge and SLR inundating Building Y-30 range from

relocating services elsewhere, constructing a new building elevated to 11 to 13 feet



above sea level, or raising the electrical, telecom, and pumping infrastructures to higher

elevations.

Currently at Wallops Island, there are a few other climate adaptation strategies

that have been implemented. For instance, along Island Road, many of the utility boxes

have been raised 3-5 feet onto mounds to adjust to higher instances of flooding (Figure

4-43 & Figure 4-44). Also, due to flooding along Island Road, a 1-mile portion of that

road was raised 18 inches and widened by 4 feet for “pavement performance

maintenance” was completed in June 2017. In addition, the first floor of the new Island

Firehouse is 12 feet above sea level while the engine bays are at 8 feet above sea

level.

Figure 4- 44: Raised electricity utility boxes at Wallops
Island. Photo taken by author June 2017.

Figure 4- 43: Raised electricity utility boxes at Wallops
Island. Photo taken by author June 2017.



Shipping Container Space Versatility

One of the benefits of utilizing shipping containers for buildings is their versatility.

Aside from storage, shipping containers or ISBU’s are used to create spaces for homes,

offices, and retail to name a few. For this section, the author chose one shipping

container project from each of the following categories to analyze what attributes each

could offer for shipping containers buildings at Wallops Island: residential, office, and

retail.

The residential shipping container project chosen is Cité A Docks, a student-

housing project in Le Havre, France comprised of 100 apartments (Figure 4-45). The

shipping containers are stacked and staggered four stories high and two units wide.

The side of the shipping container apartment units show minimal openings for light,

however, the large doors at

the end of the shipping

containers have been

replaced with floor to ceiling

windows to allow light to

infiltrate into the

apartments. The span

between the building

sections serve multiple

purposes: apartment

access, patio, balcony, and various views of the area (Figure 4-46). The exterior of the

Figure 4- 45: Cité A Docks, Student Housing in Le Havre, France.
(Contemporist, 2010)



containers have been coated

with a firewall of reinforced

concrete for thermal and

sound insulation

(Contemporist, 2010). Some

of the first floor shipping

containers are perpendicular

to the top three floors

creating cantilevers leaving

an open space below. What could be useful for this open space, if applied at Wallops

Island, is this space could allow storm surge and flooding to occur without affecting the

main spaces located on upper floors. The first floor shipping container could be used

only for egress with stairs and if needed, elevators. In addition, the first floor shipping

containers could be sealed off from the outside to house infrastructures such as

electrical, telecom, waste management, etc. If so, access to the first floor would be from

the second story shipping containers via stairs. The first floor could offer additional

structural support to the upper floor(s) as well.

The office shipping container building chosen is “The Box Office” located in

Providence Rhode Island (Figure 4-47). Thirty-two shipping containers make up the

twelve offices spaces for The Box Office (Distill Studio, 2009). Similar to Cité A Docks,

the typical arrangement of shipping containers is two-wide with the exception of the first

floor. The middle section of the first floor offers a roof terrace for workers to gather

during break or meetings. There are exterior stairs that lead from the ground to the

Figure 4- 46: Site Plan for the Cité A Docks in Le Havre, France.



upper floors and could be

useful for shipping container

buildings at Wallops Island

since the recommended

elevation for the first floor of

new buildings is 12 feet above

sea level. Thus one option for

egress could either be through

an exterior stair, landing, and

door that leads into the second floor, third floor, etc. Another option would be for egress

to take place within the shipping containers or an alternative structure made out of

reinforced concrete.

The Foghound Coffee Shop in Midran, South Africa was chosen as the retail

shipping container project (Figure 4-48). Made of five shipping containers, storefront

windows and doors, the coffee shop is two-stories high with the second floor arranged

with two shipping containers that are

separated by a short set of clerestory

windows which allow more natural light

into the spaces. The shipping containers

wall panels sprayed with a polyurethane

foam 8mm thick for insulated (Earthwood

Architects, 2017). Minimal alterations

have been made to the containers which

Figure 4- 47: The Box Office in Providence, Rhode Island. (Distill Studio, 2009)

Figure 4- 48: The Foghound Coffee Shop in Midran, South
Africa. (Earthwood Architects, 2017)



is a strategy that can be taken into consideration for shipping container buildings at

Wallops Island. In particular for spaces that will be used for spaces that house data

centers, electrical, and mechanical equipment.

For NASA centers and facilities on the coast, shipping containers buildings can

be a long-term strategy for climate change adaptation as it pertains to flooding,

increases in extreme weather, and sea level rise. Shipping containers are versatile,

durable, modular, strong, and when upcycled are eco-friendly. NASA’s climate

adaptation efforts have not included shipping containers into the new building design

choices. However, there is an opportunity to explore incorporating this building trend

into the replacement of older buildings located at Wallops Island. Although a NASA wide

comprehensive climate adaptation plan that encompasses all of its centers and facilities

is in the development, there is optimism that the work of the various climate adaptation

workgroups across the centers such as ECIC proves there is a building momentum

towards an overlapping of efforts between both mitigation and adaptation efforts for the

agency.



CHAPTER 5:

RECOMMENDATIONS

Climate workgroups and committees, such as the ECIC, are already using the

CASI climate projections to access the potential impacts on buildings and

infrastructures at several NASA centers/facilities. Despite being available to the public,

the projections are not required for current design decisions at NASA. In addition,

climate adaptation plans are unclear and do not actually offer distinct plans for the

agency to carry out across its centers and facilities. Furthermore, in order to

incorporate shipping containers into NASA’s future climate adaptation plans, the author

offers the recommendations below and answers the second question the author of this

MRP has strove to answer: What recommendations should be considered into

NASA’s policies/guidelines if shipping containers are utilized at NASA Wallops

Flight Facility to protect its assets?

1. Include CASI’s Climate Projections

a) Include CASI’s climate projections (last updated in 2015) into a section of the

NASA Sustainable Policy Handbook for Facilities, NASA Facilities Design

Guide as they are updated where those involved in the design of a new

building or design for an existing building rehabilitation can access their

respective center or facility.

b) At a minimum, include CASI’s climate projections (last updated in 2015) into

the standard and required reference list in the updated NASA Sustainable

Policy Handbook for Facilities and NASA Facilities Design Guide.



2. More Depth into Climate Adaptation Plans

a) Develop a standalone climate adaptation plan publication by the agency that

is comprehensive and site specific; similar to the U.S. Army Corps of

Engineers. (U.S. Army Corps of Engineers, 2014)

b) Develop a class with audio visual materials for the facilities management

branch of NASA to foster dialogue solely about climate adaptation, the CASI

projections, and how workers need to incorporate climate adaption into

design decisions in a similar fashion as climate mitigation is virtually required

in new construction of NASA buildings.

c) Include a new construction section on the plans, specifically building types

where shipping containers or ISBU’s will be listed. Pros and cons to be

included as well as typical configurations for various types of spaces

associated with NASA.

3. Consider the Following for Shipping Container Buildings at Wallops Island

a) Main functionalities of the building should be at a minimum 12 feet above sea

level in anticipation of SLR, storm surge, and flooding. (Offices, restrooms,

kitchens, IT spaces, telecommunication spaces, storage, etc.) Thus, the first-

floor shipping containers may be used for extra structural support for

containers placed on top of them.

b) Use first floor containers for stairways and if needed elevators.

c) Although the first-floor containers are not for primary spaces, they can be

used to route wires, cables, and pipes from the underground into the main

spaces above. There must be sealant redundancies to the containers to



assure the space doesn’t flood from the outside and causing damage to those

infrastructures.

d) Spaces for data centers, electrical, HVAC, telecom will be located on the top

floors to assure safe elevation from flood inundation.

e) If the first-floor containers are not used for egress up/down the building, then

space must be allotted for either an exterior stairwell or an enclosed stairwell.

f) Type of foundations to choose from for the bottom floor containers: concrete

slab (not the best in flood situations), concrete piers, or a combination of both.

g) Use a mixture of 20’ and 40’ high-cube ISBU’S to form the spaces needed in

the building. High cubes offer an extra foot of height in the spaces and could

offer space across the ceiling to run vents for HVAC, conduit for electricity and

telecom cables, and piping for potable and non-potable water.

h) Two wide shipping container sets to give office spaces, breakrooms, lounges,

conference rooms ample natural lighting when windows are applied.

i) When possible, add clerestory windows for added natural lighting.

4. Create a Partnership with the Port of Virginia

a) To establish a network with its nine facilities to inquire about abandoned

ISBU’s

b) To acquire and upcycle abandoned ISBU’s

c) To determine which of its facilities have warehouse space to prefabricate

ISBU’s for building application at NASA Wallops

d) To integrate its system of truckers for work to transport ISBU’s to Wallops

Island.



Replace Older Buildings with Shipping Container Units

In the near future, an opportunity to replace older buildings with shipping

containers units at Wallops Island will present itself due to aging buildings. For

example, Buildings Y-30 (Figure 5-3) and W-20 (Figure 5-2) were built in 1945 and 1960

respectively. Y-30 is one story building with approximately 2,700 of space, is currently

used as a sound rocket launch observation, and is located on the “Central Island” of

Wallops (Figure 5-1). It sits at an elevation of 6 feet above sea level. As determined

earlier in chapter four with findings by the ECIC, Building Y-30 has a high likelihood of

having many of its building envelope and various infrastructures negatively impacted by

sea level rise in conjunction with storm surge. Thus, if and when replaced, the new

building must take into account the climate projections for sea level rise and higher

instances of flooding. Therefore, a shipping container building could replace the old

building with innovative spaces that are well above sea level and any predicted sea

level rise or storm surge. Building W-20 is the current launch command center for

Wallops Island and is located on the “South Island” of Wallops (Figure 5-1). The area

surrounding W-20 is prone to flooding. Although W-20 has a replacement near

completion on the Main Base, sounding rocket launches are still going to be operated

out of W-20. Therefore, to accommodate the sounding rocket launch team in a

replacement building, shipping containers units will function very similar to the units for

the Y-30 replacement building. Placing the main spaces well above sea level.



Figure 5- 1: Locations of Buildings W-20 and Y-30 at Wallops Island. Provided by staff at WFF.



The scheme for the replacement for Building W-20 utilizes cantilevers to allow

flooding to occur around the building (Figure 5-4). The first floor is comprised of

shipping containers double wide to provide extra support for the upper floors and

houses infrastructures such as electrical, telecom, plumbing for water/waste, etc. The

first floor also contains means of egress to the upper floors. An option would be to have

exterior stairs on opposite sides of the building that go up to the top floor. The scheme

includes about 5,325 square feet of space for a launch control room, offices, restrooms,

Figure 5- 3: Building W-20 at Wallops Island. Photo taken by author May 2017.

Figure 5- 2: Building Y-30 at Wallops Island. Photo taken by author May 2017.



breakroom, spaces for HVAC, mechanical, electrical, storage, and data. Where

possible, it is recommended to install clerestory windows for additional natural lighting.

Next is a concept to replace Building Y-30.

Figure 5- 4: Scheme diagram for shipping container building and Building W-20 replacement.



The replacement scheme for Building Y-30, also has its main spaces on the top

two floors with the ground floor being used for means of egress and housing

infrastructure (Figure 5-5). The configuration calls for balconies on the third floor so

launch observers can watch the launches of small rockets as well as enjoy the view of

the Atlantic Ocean. This scheme is comprised of about 2,660 square feet of space that

includes offices, a classroom, launch observation room, and first floor spaces to route

conduits for wires and or cables into the upper floors of the building and plumbing for

incoming and outgoing water and waste. Where possible, it is recommended to install

clerestory windows for additional natural lighting.

Figure 5- 5: Scheme diagram for shipping container building and replacement for Building Y-30.



The following images demonstrate what the spaces of these replacement

buildings comprised of shipping containers could potentially look like.

Figure 5- 6: Classroom in a shipping container. (Royal
Wolf, 2014)

Figure 5- 8: Conference room in a shipping container.
(tumblr. container space, 2014)

Figure 5- 7: Data Center inside shipping container. (The
Royal Blog, 2008)

Figure 5- 9: Office Space inside a shipping container. (e-
bay, 2017)

Figure 5-10: Launch center. (Space X, 2012)



CHAPTER 6: CONCLUSIONS

Although there are many benefits to shipping containers, the disadvantages of

them were quite surprising. However, the benefits seem to outweigh those

disadvantages and as more of shipping container buildings are built, more can be

learned from them. Referencing back to the 1st question the author of this MRP has

attempted to answer: What are the benefits of incorporating shipping

containers into the climate adaptation plans for the Island at NASA Wallops

Flight Facility?

1. Durability. I believe NASA in general can benefit from shipping container

buildings because of their proven durability. They are made to withstand

hurricanes an as the MRP research suggest, hurricanes are expected to

increase throughout the rest of the century.

2. Versatility. In the kinds of spaces that can be configured out of shipping

containers: offices, launch control rooms, data centers, classrooms, etc.

3. Innovation. They can highlight NASA’s emphasis on how buildings need to

adapt to impending climate change and transforming standard items known

for toughness into well designed structures

4. Eco-Friendly: Shipping containers have eco-friendly, thus qualify as another

building option for NASA to lead in what the agency is known for, fighting for

the planet and innovation.

5. Off-Site Construction: The shipping containers can be prefabricated at a

warehouse with careful collaboration with the NASA facilities management

branch and contractors. When the units are complete with fabrication, they



can be transported to the site for construction. Prefabrication at an off-site

location will result in less days lost to inclement weather and a faster

construction time.

Furthermore, the Facilities Management Branch at Wallops Island is already

implementing their own climate adaptation plans despite an unclear direction to do so.

However, as the ECIC’s research among many other climate workgroups are further

analyzed and combined with CASI’s climate projections, it is hopeful that NASA will be

producing a standalone comprehensive climate adaptation plan with center or facility

specific policies and criteria to take implement and adhere to. To further the direction of

this MRP, I believe I will need to delve into shipping containers further. For instance,

investigate roofing, building envelopes, insulation, energy, to name a few. Additional

discussions needed are: 1. the dynamics of transferability in reference to shipping

containers requirements that pertain to both Kennedy Space Center and Wallops Flight

Facility; and 2. Fitting shipping containers into NASA’s post disaster recovery plans?
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