

A Reliability Comparison of Classical and Stochastic Thickness Margin Approaches to Address Material Property Uncertainties for the Orion Heat Shield

AIAA SciTech 2018

Steve Sepka
Jeremy Vander Kam
Kathy McGuire
January 10, 2018

Order of Presentation

- Background
- Motivation/purpose
- List input values and assumptions
- Procedure
- Example analysis for one body point
- Summary of results
- Conclusion

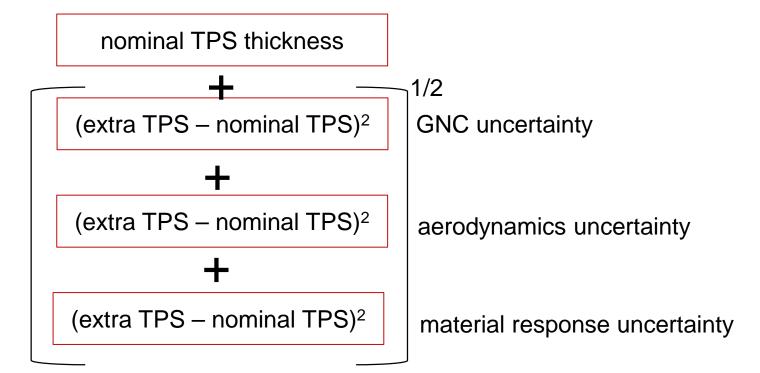
A spaceship's planetary Entry, Descent, and Landing (EDL) is comprised of three major components:

- Guidance, Navigation, and Control (GNC)
- Aerothermodynamics
- Heat Shield Thermal Protection System (TPS) material response

Each of these components is considered a "branch" of EDL

We can find the nominal TPS thickness by using nominal values in each branch

But what about uncertainties?


How much extra TPS – **Margins** – is needed?

To find the Margins, NASA currently uses an root-sum-square technique that has separate components for each branch of the EDL process

Baseline Margin =

How do we find TPS thickness?

- TPS material response codes are used they find the TPS thickness needed so that the adhesive bond temperature does not exceed its use temperature
- Some TPS response codes are FIAT (Fully Implicit Ablation and Thermal Response Code) and CHAR (Charring Ablating Thermal Protection Implicit System Solver)
- NASA Ames has developed monte carlo applications of these codes: mcFIAT and mcCHAR

- How do we find extra TPS thickness due to material uncertainty branch?
- The extra TPS due to material uncertainty is found by reducing the not to exceed the Avcoat/EA9394 interface temperature from 260°C to 200°C
- This 60°C reduction in NTE is called the Bondline Temperature Material Margin, BTMM, and is applied at each body point location on the forebody heat shield.
- Using the nominal sized thickness at a body point, 10,000 monte carlo CHAR runs find the maximum bond line temperature (mBLT) dispersion about the nominal 260°C
- We vary only material properties since this RSS "branch" considers only material property uncertainty
- Using Gaussian statistics, we take 60°C/SD to find the confidence interval of the 60°C BTMM: is it 1σ, 2σ, for this body point location?

Motivation/Purpose

What is the confidence (1σ , 2σ , etc.) of the 108°F (60°C) Bond Line Temperature Material Margin (BTMM) currently used in the Orion RSS sizing process?

Knowing the confidence interval will give NASA assurance on its margin sizing process

mcCHAR Setup

Monte Carlo Settings - TPS

Uncertainties expressed as 2 x CoV (standard deviation / mean) unless otherwise noted (pyrolysis gas enthalpy is scaled the same as char thermal conductivity)

Material Properties		
nitial temperature [K]	280.928-307.594	uniform
nitial surface pressure	0	
op TPS (Avcoat)		
pecific heat capacity, virgin	0.04	
pecific heat capacity, char	0.04	
hermal conductivity, virgin	0.08	
hermal conductivity, char	0.18	
Density, virgin [kg/m³]	570.2573-629.5256	uniform
Density, char	0.07	
Absortivity, virgin	0	
Absortivity, char	0	
hickness, max additional [m]	0.000508	added
ermeability	0	
linkenberg slip parameter	0	
Porosity	0	
missivity, virgin	0	
missivity, char	0	
leat of formation, virgin	0	
leat of formation, char	0	
Decomposition (each component)		
re-exponential factor	0.109 0.179 0.188	
teaction order	0.263 0.388 0.236	
Activation temperature	0.060 0.061 0.033	

B'tables		
B'c	0.15	
Wall enthalpy	0.10	
Density	0.04	
Molecular weight	0.04	
Roughness		
Roughness height	0.487	not used
Height offset (constant)	-0.000223	
Substructure		
Thickness, adhesive [m]	0.000254-0.000762	uniform
Thickness, composite	+/-0.000127	5 mil tolerance
Density	0.02	
Specific heat capacity	0.02	
Thermal conductivity	0.02	

Red = parameters used in this study

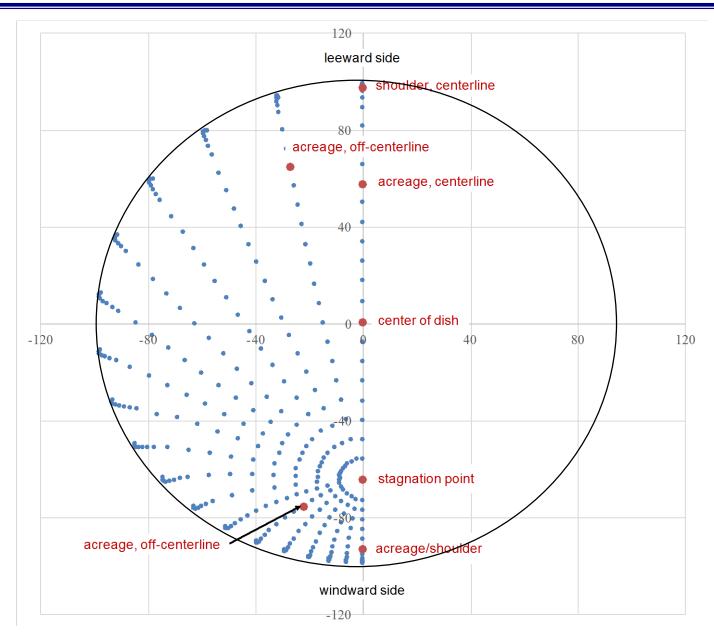
These values are found from "Determination of Uncertainties for Analytically Derived Material Properties to be used in Monte Carlo Based Orion Heatshield Sizing" SciTech 2018 Session TP-03 Monday AIAA-2018-0499 Scott Coughlin, Sixel William; Steven Sepka, Mary K. McGuire

CHAR Set-up

- Avcoat model
- Two Trajectories:
 - -guided
 - -ballistic/abort
- Stackup: Avcoat + 0.015" EA9394 + (bp dependent)" T300-EX1505
- Initial and re-radiation temperature: 21.1°C

Procedure

Procedure


Seven body points were selected. For each one:

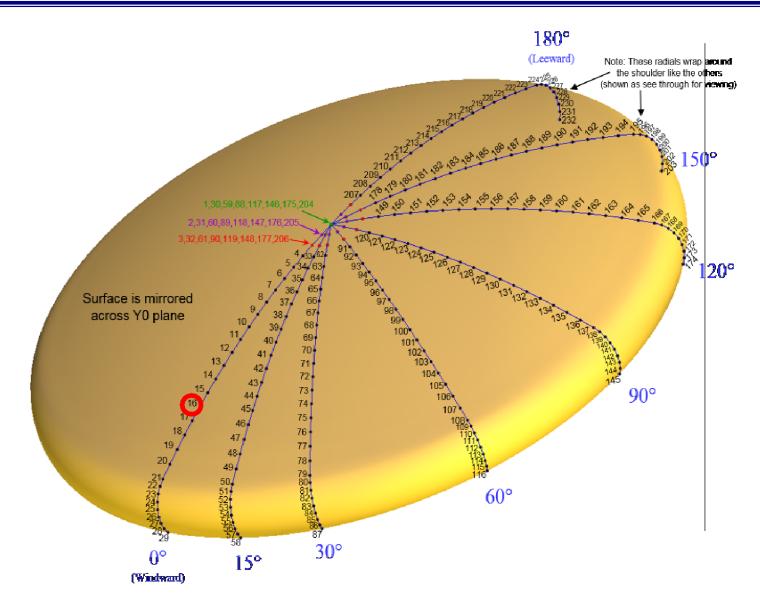
- 1. Choose the nominal guided or ballistic/abort trajectory.
- 2. Determine nominal Avcoat thickness using CHAR: 260°C peak Avcoat/EA9394 bond line temperature
- 3. 10,000 mcCHAR runs using nominal Avcoat thickness (analysis mode) and varying only material properties
- Data analysis includes bond line temperature and recession dispersions, correlation studies, and confidence level of 108°F (60°C) BTMM

Body Point Locations

How Are The Data Analyzed?

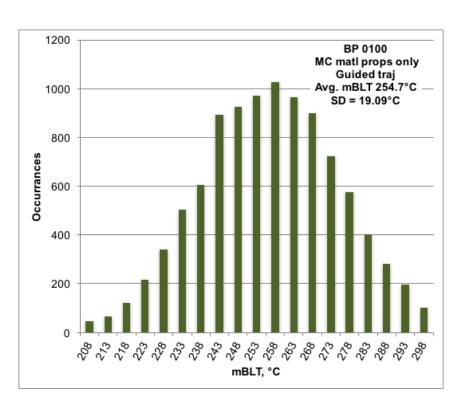
At each body point location:

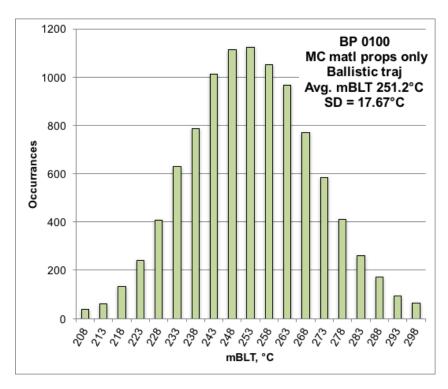
- Maximum bond line temperature (mBLT) and recession dispersions
- Gaussian statistics
- Correlation plots


Note: pyrolysis gas enthalpy is scaled the same as char thermal conductivity and for correlation studies is not included in the analysis

$$60^{\circ}$$
C/SD(°C) = Confidence Interval (σ)

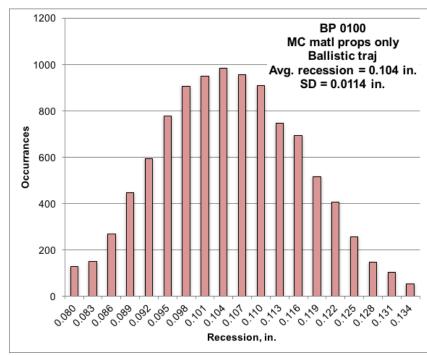
Example of the analysis – stagnation point





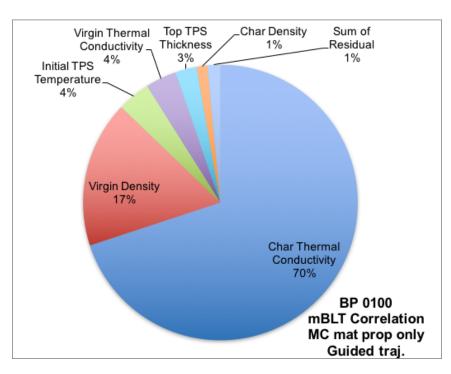
Stagnation Point mBLT Dispersion

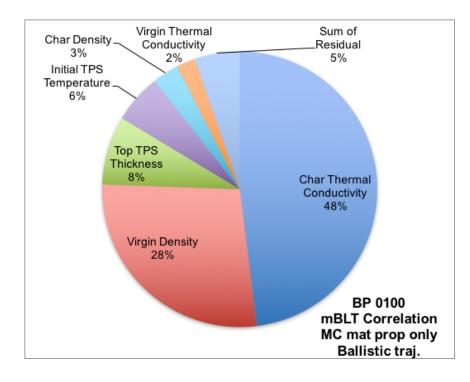
Guided



Stagnation Point Recession Dispersion

Guided

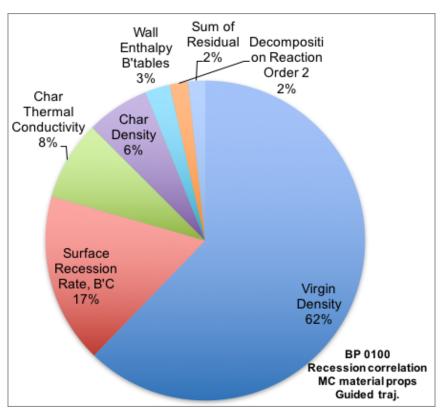


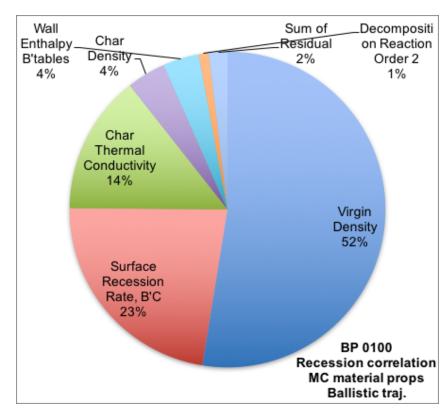

Stagnation Point mBLT Correlation

Guided

$$Correl(X,Y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

item	CorCoeff	CCsquared
Char Thermal Conductivity	0.836	0.699
Virgin Density	-0.415	0.172
Initial TPS Temperature	0.197	0.039
Virgin Thermal Conductivity	0.191	0.036
Top TPS Thickness	-0.159	0.025
Char Density	0.113	0.013


item	CorCoeff	CCsquared
Char Thermal Conductivity	0.693	0.480
Virgin Density	-0.525	0.275
Top TPS Thickness	-0.284	0.081
Initial TPS Temperature	0.240	0.057
Char Density	0.177	0.031
Virgin Thermal Conductivity	0.148	0.022


Stagnation Point Recession Correlation

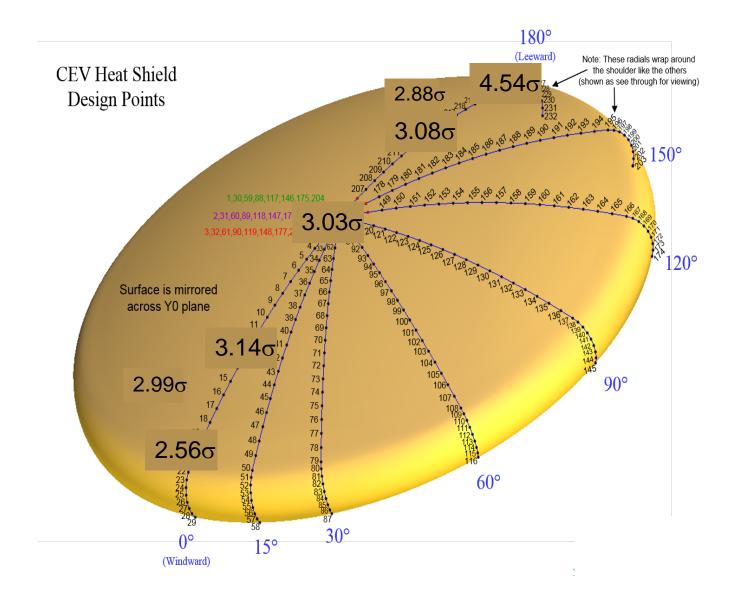
Guided

item	CorCoeff	CCsquared
Virgin Density	-0.754	0.568
Surface Recession Rate, B'C	0.396	0.157
Char Thermal Conductivity	-0.271	0.073
Char Density	0.242	0.058
Wall Enthalpy B'tables	-0.152	0.023
Decomposition Reaction Order 2	0.131	0.017

item	CorCoeff	CCsquared
Virgin Density	-0.722	0.521
Surface Recession Rate, B'C	0.473	0.224
Char Thermal Conductivity	-0.376	0.141
Char Density	0.199	0.039
Wall Enthalpy B'tables	-0.191	0.037
Decomposition Reaction Order 2	0.102	0.010

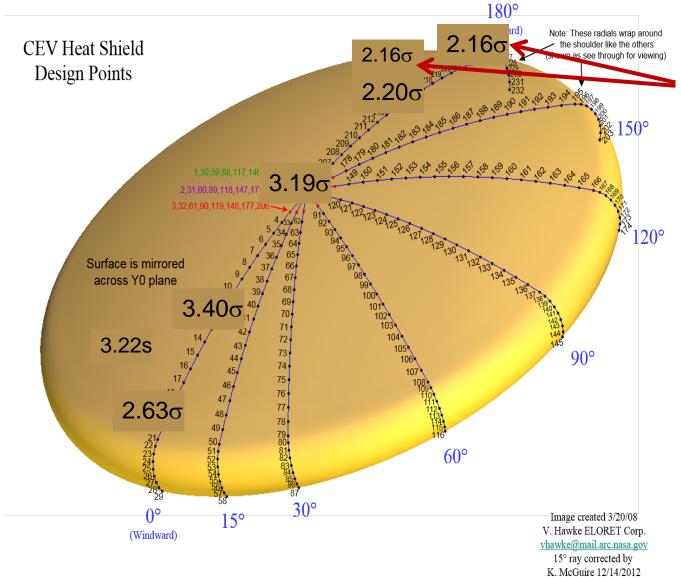
Summary of Results

Confidence Level 108°F (60°C) BTMM

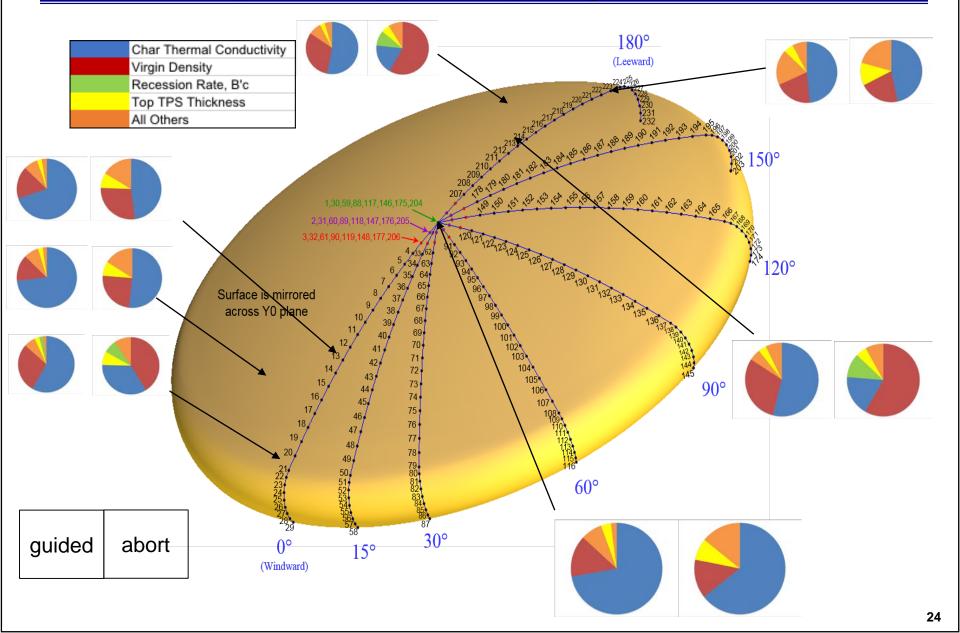

Guided Trajectory		
BP	SD mBLT, °C	60/SD
stagnation point	19.09	3.14
windside, acreage, off-centerline	20.07	2.99
acreage at windward shoulder, centerline	23.40	2.56
center of dish	19.78	3.03
leeward side, centerline, acreage	19.48	3.08
leeward side, acreage, off-centerline	20.81	2.88
leeward side, shoulder, centerline	13.22	4.54

Ballistic/Abort Trajectory		
ВР	SD mBLT, °C	60/SD
stagnation point	17.67	3.40
windside, acreage, off-centerline	18.61	3.22
acreage at windward shoulder, centerline	22.80	2.63
center of dish	18.83	3.19
leeward side, centerline, acreage	27.30	2.20
leeward side, acreage, off-centerline	27.78	2.16
leeward side, shoulder, centerline	27.72	2.16

Guided Trajectory, Confidence

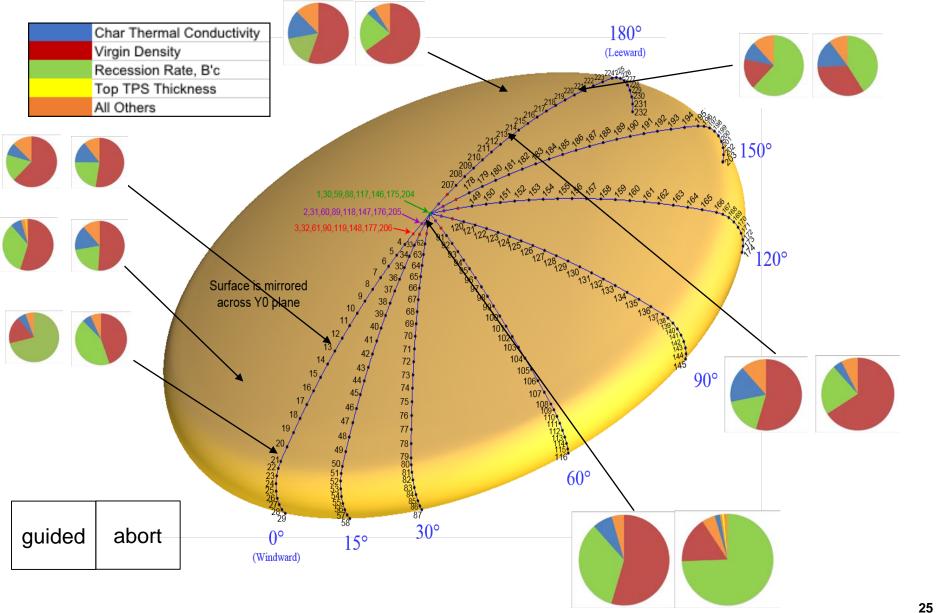


Ballistic Trajectory, Confidence



leeward points have the lowest confidence

mBLT Correlations [Guided] [Abort] Trajectories



Recession Correlations [Guided] [Abort] Trajectories

Conclusion

Conclusion

- The confidence interval for the 60°C BTMM has been determined at seven forebody bodypoint locations for the nominal guided and abort (ballistic) trajectories
- 2. Values range from 2.16σ to 4.54σ and are body point and trajectory specific
- 3. NASA is OK with these values
- 4. mBLT: Uncertainty in virgin density and char thermal conductivity account for 70 90% of the relative sensitivity in mBLT. Lowering the uncertainty in these parameters would be the easiest way to improve confidence intervals.
- 5. Recession: Uncertainty in B'c and virgin density account for 70 90% of the relative sensitivity in surface recession. Recall, the uncertainty in B'c is found from the uncertainty in Avcoat material composition.