

Multidecadal changes in the UTLS ozone from the MERRA-2 reanalysis and the GMI chemistry model

Krzysztof Wargan, Clara Orbe, Steven Pawson, Jerald Ziemke, Luke Oman, Mark Olsen, Lawrence Coy, Emma Knowland

Introduction

- Historically, reanalyses were not considered suitable for trend studies because of step-changes in their observing systems
- But that's no different than looking at trends using diverse observations: one needs to account for the discontinuities

Here, we are using the MERRA-2 reanalysis to study lower stratospheric ozone trends between 1998 and 2016

Introduction

- Historically, reanalyses were not considered suitable for trend studies because of step-changes in their observing systems
- But that's no different than looking at trends using diverse observations: one needs to account for the discontinuities

Here, we are using the MERRA-2 reanalysis to study lower stratospheric ozone trends between

1998 and 2016

Motivation

Ball et al., 2018 found a negative ozone trend in the lower stratosphere in observations.

What can we say about this using models and reanalyses?

- Can we confirm it?
- Mechanisms...?

Global

147-1 hPo

Introduction

م

• Historically, reanalyses were not

≡ Forbes

People living in this time F had to contend with shorter growing seasons and reduced food stores

YOUR READING LIST

Sorry, Earth, The Ozone Layer Isn't Healing Itself After All

Forbes<mark>Insights:</mark> 3 Ways Automation And AI Amplify The Role Of Firstline Workers

Science / #WhoaScience

Get more from your applications in the cloud. Download the free Enterprise SD-WAN buyers guide.

-[147-1 hPo 13-48 km]-

Total and Stratospheric Column Ozone

FEB 6, 2018 @ 01:00 AM 51,432 @

2 Free

interout

EREE Downlor

Sorry, Earth, The Ozone Layer Isn't Healing Itself After All

Motivation

100-1 hPa 17-48 km

🛛 🗗 💟 🗓 🚱

Starts With A Bang

The Universe is out there, waiting for you to discover it FULL BIO \backsim

Opinions expressed by Forbes Contributors are their own.

Bis zu 20% Rat auf Hotels*

- Can we confirm it?
- Mechanisms...?

"Data sets"

- MERRA-2 (The Modern-Era Retrospective Analysis for Research and Applications)
 - GEOS atmospheric general circulation model
 - Meteorology is constrained by radiance and conventional observations
 - Ozone assimilated from SBUV sensors (1980-2004) followed by OMI total ozone and MLS stratospheric profiles (2004–present)

"Data sets"

- MERRA-2 (The Modern-Era Retrospective Analysis for Research and Applications)
 - GEOS atmospheric general circulation model
 - Meteorology is constrained by radiance and conventional observations
 - Ozone assimilated from SBUV sensors (1980-2004) followed by OMI total ozone and MLS stratospheric profiles (2004–present)
- GEOS-RPIT (Reprocessing for Instrument Teams)
 - The same system as MERRA-2 but does not use MLS ozone profiles; SBUV data are used for the entire period; OMI assimilated 2004–present

"Data sets"

- MERRA-2 (The Modern-Era Retrospective Analysis for Research and Applications)
 - GEOS atmospheric general circulation model
 - Meteorology is constrained by radiance and conventional observations
 - Ozone assimilated from SBUV sensors (1980-2004) followed by OMI total ozone and MLS stratospheric profiles (2004–present)
- **GEOS-RPIT** (Reprocessing for Instrument Teams)
 - The same system as MERRA-2 but does not use MLS ozone profiles; SBUV data are used for the entire period; OMI assimilated 2004–present
- M2-GMI (MERRA-2 Global Modeling Initiative) simulation
 - \circ GEOS Replay simulation for the 1980-2016 constrained by MERRA-2 U, V, T, P
 - full Stratospheric and Tropospheric chemistry from the Global Modeling Initiative (GMI) chemical mechanism; <u>ozone is NOT assimilated</u>
 - Also includes a suite of idealized tracers for transport studies

All three are run at 0.625° x 0.5° resolution, have well-resolved ozone consistent with assimilated meteorology. A full set of meteorological fields can help interpret the behavior of tracers

Dealing with discontinuities

Bias correction is applied to all major step changes in MERRA-2 and GEOS-RPIT

Comparison with selected ozonesondes

Annual mean anomalies: ozonesondes, MERRA-2, M2-GMI and GEOS-RPIT

The sonde data are reprocessed with the Skysonde algorithm [*Sterling et al., 2017*] to account for changes affecting long-term records

<u>ftp://aftp.cmdl.noaa.gov/data/ozw</u> v/Ozonesonde/

Good overall agreement between MERRA-2, M2-GMI, GEOS-RPIT and the sondes.

Large interannual variability dominates but simple linear fit has negative slopes at Trinidad Head and Boulder.

MERRA-2 ozone compares well with independent data in the LS [*Wargan et al., 2017*]

Ozone trends

 $y(t) = \alpha_0(t) + \alpha_1(t)t + \alpha_2(t)QBO_1(t) + \alpha_3(t)QBO_2(t) + \alpha_4(t)TSI(t) + \alpha_5(t)MEI(t) + \alpha_6(t)AERO(t) + \epsilon(t)$ $\alpha(t) = c + \sum_{k=1}^{2} a_k \cos \frac{2k\pi t}{12} + b_k \sin \frac{2k\pi t}{12}$ Seasonal cycle included in all coefficients

- MERRA-2 and GEOS-RPIT have similar trend patterns:
 - Positive in the middle and upper stratosphere
 - Negative in the 0-10 km layer (above the tropopause) at midlatitudes
 - Alternating (positive/negative) in the tropics
- -0.66 DU/decade in the SH and -1.25 DU/decade in the NH midlatitudes
- The trends are small compared to interannual variability
- The MLR (blue) is doing a good job reproducing the ozone evolution (black)

Ozone trends in Dobson units/km/decade in tropopause-relative coordinates

This is what we have so far

After correcting for step-changes in the observing system, MERRA-2 and GEOS-RPIT show negative ozone trends in the lower stratosphere (LS) at midlatitudes in agreement with Ball et al., 2018

So what's going on here?

Idealized tracers in M2-GMI

Idealized tracers in M2-GMI

Can this trend pattern arise from changes in the tropopause height?

Zonal mean in pressure coordinates

In tropopause-relative coordinates: The effect of tropopause shifts is removed in tropopause-relative coordinates.

The remaining trends must be due to changes in the LS circulation

Putting it all together

Putting it all together

LS transport is controlled by the shallow branch of the BDC:

- Advection by the residual circulation
- Two-way quasi-isentropic transport

Both driven by synoptic wave breaking

NASA

Putting it all together

LS transport is controlled by the shallow branch of the BDC:

- Advection by the residual circulation
- Two-way quasi-isentropic transport

Both driven by synoptic wave breaking

Evidence (*Bönisch et al.* 2011; *Diallo et al.* 2012; *Ray et al.,* 2014, *Ploeger et al.,* 2015) points to intensification of the shallow branch but which component dominates?

NASA

Putting it all together

LS transport is controlled by the shallow branch of the BDC:

- Advection by the residual circulation
- Two-way quasi-isentropic transport

Both driven by synoptic wave breaking

Evidence (*Bönisch et al.* 2011; *Diallo et al.* 2012; *Ray et al.*, 2014, *Ploeger et al.*, 2015) points to intensification of the shallow branch but which component dominates?

The e90 trend pattern implies an intensification of two-way transport as the dominant mechanism for this tracer

The same mechanism would lead to the observed lower stratospheric ozone trends between 1998-2016

Conclusions

- After correcting for step-changes in the observing system, MERRA-2 shows negative ozone trends in the lower stratosphere (LS) at midlatitudes in agreement with Ball et al., 2018
- The evolution of idealized tracers in the specified dynamics M2-GMI simulation strongly suggests an intensification of two-way transport in the LS as the likely mechanism
- This is the first step towards a comprehensive use of modern reanalyses to ozone trend studies; much more work to be done

Wargan et al., 2018, Recent decline in lower stratospheric ozone attributed to circulation changes, submitted to GRL

backup

Some items to think about

- To make the argument more quantitative we need to find a good way to calculate tracer budgets from simulations/reanalysis with assimilated meteorology (an elusive goal so far)
- What are the effects of step-changes in radiance observations in MERRA-2 on tracer transport?
 - Extending the analysis back to 1980: how to deal with the major discontinuity in 1998 (introduction of microwave observations from AMSU)?
 - Can these step-changes have an impact on transport that lasts for several years? What is the magnitude of that effect?
- We may be able to confirm (or disprove) an intensification of two-way mixing in further analyses of tracer observations in the LS seen in the M2-GMI simulation
- Beyond the zonal mean: 3-D analysis

Bias-correcting (homogenizing) the reanalysis

