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Motivation

• Batteries increasingly used in more 
and more systems as a power source
– Electric cars
– Electric aircraft
– Space missions/small sats
– Other electric and utility vehicles

• Prediction of end-of-discharge (EOD) 
and end-of-life (EOL) are critical to 
system functions
– How much longer can the system be 

used, given expected usage conditions?
– How many more usage cycles until 

battery capacity is not sufficient for 
required system operations?

Sceptor

Edge

Rover

Solve using model-based prognostics 
approach.

Ref: www.nasa.gov
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Outline

• Goals
– Understand battery behavior through dynamic models
– Develop model-based algorithms for state estimation, end of 

discharge (EOD) prediction, and end of life (EOL) prediction
– Validate algorithms in the lab and fielded applications

• Algorithms
– Prognostic Architecture
– Dynamic state and state-of-charge estimation

• Modeling
– Electric circuit equivalent (for EOD prediction)
– Electrochemistry-based model (for EOD and EOL prediction)

• Applications
– Rover 
– Edge 540-T electric aircraft
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Integrated Prognostics Architecture

• System (battery) gets inputs (current) and produces outputs (voltage)
• State estimation computes estimate of state given estimates of age 

parameters
• EOD prediction computes prediction of time of EOD, given state and 

age parameter estimates
• Age parameter estimation computes estimates of age parameters
• Age rate parameter estimation computes parameters defining aging 

rate progression
• EOL prediction computes prediction of time of EOL, given age 

parameter and age rate parameter estimates
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State Estimation

• What is the current system state and its associated 
uncertainty?
– Input: system outputs y from k0 to k, y(k0:k)
– Output: p(x(k),θ(k)|y(k0:k))

• Battery models are nonlinear, so require nonlinear state 
estimator (e.g., extended Kalman filter, particle filter, 
unscented Kalman filter)

• Use unscented Kalman filter (UKF)
– Straight forward to implement and tune performance
– Computationally efficient (number of samples linear in size of state 

space)



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

Prediction

• Most algorithms operate by simulating samples forward in 
time until E

• Algorithms must account for several sources of uncertainty 
besides that in the initial state
– A representation of that uncertainty is required for the selected 

prediction algorithm
– A specific description of that uncertainty is required (e.g., mean, 

variance)
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Prediction Algorithm

• The P function takes an initial state, 
and a parameter, an input, and a 
process noise trajectory

– Simulates state forward using f until E is 
reached to computes kE for a single 
sample

• Top-level prediction algorithm calls P
– These algorithms differ by how they 

compute samples upon which to call P
• Monte Carlo algorithm (MC) takes as 

input
– Initial state-parameter estimate
– Probability distributions for the 

surrogate variables for the parameter, 
input, and process noise trajectories

– Number of samples, N
• MC samples from its input 

distributions, and computes kE
• The “construct” functions describe 

how to construct a trajectory given 
trajectory parameters



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

Battery Modeling

− Equivalent Circuit Empirical Models
§ Most common approach
§ Various model complexities used 
§ Difficulty in incorporating aging effects
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Battery Model– Tuned using laboratory data

§ An equivalent circuit battery model is used 
to represent the battery terminal voltage 
as a function of current and the charge 
stored in 3 capacitive elements

§ Two laboratory loading experiments are 
used to fit the following parameterization 
coefficients
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Electrochemical Li-ion Model

• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister
expansion

– Concentration overpotential à split electrodes into surface and bulk 
control volumes

– Surface overpotential à
Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances

− Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related changes in 

battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters
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Battery Aging

• Contributions from both decrease in mobile 
Li ions (lost due to side reactions related to 
aging) and increase in internal resistance

– Modeled with decrease in “qmax” parameter, 
used to compute mole fraction

– Modeled with increase in “Ro” parameter 
capturing lumped resistances

Simulated
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Fielded Applications

12

Edge 540T subscale electric aircraft: EOD, 
reaming flight time prediction, SOH

Rover testbed: EOD, SOH  and 
remaining driving distance 

prediction

Cryogenic valve 
testbed: EOD 

prediction

Orion EFT-1 mission: SOC estimation, EOD 
prediction, mission success probability 

computation
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Rover
• Planetary rover testbed at NASA Ames 

Research Center
– 24 lithium ion batteries, two parallel sets of 

12 in series
– Batteries power 4 motors, one for each 

wheel (skid steering)
• Rover operated in two driving modes

– Unstructured driving
• Rover is driven freely by an operator, 

without prior knowledge of actions
– Structured driving

• Rover has a given mission, to visit a 
set of waypoints

• Rover moves along, visiting waypoints
• End-of-discharge prediction is 

required in order to ensure the given 
set of waypoints can be visited, and if 
not, to replan the route to optimize 
mission value

Ref : A. Sweet et al “Demonstration of Prognostics-Enabled Decision Making Algorithms on a 
Hardware Mobile Robot Test Platform”, PHM 2013
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Results: Structured Driving

Predictions are very accurate since rover travels at a known fixed average speed, 
and waypoints are known. 
Uncertainty in predictions is significantly less than for unstructured driving, since 
more information about future inputs are known. 
Predictions are under at the start because power drawn for first 500 s is half the 
average.
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Edge 540-T

• Subscale electric 
aircraft operated 
at NASA Langley 
Research Center

• Powered by four 
sets of Li-
polymer batteries

• Estimate SOC 
online and 
provide EOD and 
remaining flight 
time predictions 
for ground-based 
pilots
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Predication over Flight Plan

• Measured and predicted 
battery current, voltage 
and SOC different time 
steps

• The min, max and median 
predictions are plotted 
from each sample time 
until the predicated SOC 
reaches 30%

• Predictions for remaining flight time for 
entire flight plan

• Overestimate till parasitic load is injected
• Once the parasitic load is detected the 

remaining flying time time prediction shifts 
down.

Ref : E. Hogge et al, “Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft”, PHM 2015
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Performance Requirements

• Accuracy requirements for the two minute warning were specified as:
– The prognostic algorithm shall raise an alarm no later than two minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– The prognostic algorithm shall raise an alarm no earlier than three minutes 
before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– Verification trial statistics must be computed using at least 20 experimental 
runs
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Edge-540 Flight - Demo
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Data Sets Available for Download

• https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

19
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Conclusions

• Focus on model-based approaches to battery state 
estimation and prediction

• Validate models and algorithms with data from lab 
experiments and fielded systems

• Defining operational requirements for different systems
• Future work in progress : 

– Temperature models
– Higher fidelity models
– More efficient algorithms
– Additional applications
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Thank you

Battery Prognostics Team
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NASA Langley Research Center
Edward Hogge, Quach ‘Patrick’ Cuong Chi 
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Edge UAV Use Case

• Electric aircraft operated at NASA 
Langley

• Piloted and autonomous missions, 
visiting waypoints

• Require 2-minute warning for EOD so 
pilot/autopilot has sufficient time to land 
safely
– This answer depends on battery age
– Need to track both current level of charge 

and current battery age
– Based on current battery state, current 

battery age, and expected future usage, 
can predict EOD and correctly issue 2-
minute warning

Runway

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft
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Online State of Charge Estimation
§ UKF is used to make corrective updates to 

the internal state estimates

− In this case charge stored in each 
capacitor  

§ Better accuracy than extended Kalman Filter, 
more computationally efficient than 
sampling-based filters
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Discharge
Reduction at pos. electrode:
Li1-nCoO2 + nLi+ + ne- à LiCoO2
Oxidation at neg. electrode:

LinC à nLi+ + ne- + C
Current flows + to –
Electrons flow – to +

Lithium ions flow – to +

Charge
Oxidation at pos. electrode:
LiCoO2 à Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:
nLi+ + ne- + C à LinC

Current flows – to +
Electrons flow + to –

Lithium ions flow + to –

− Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related changes in 

battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters

Battery Modeling
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Unscented Kalman Filter

• The UKF is an approximate nonlinear filter, and assumes additive, 
Gaussian process and sensor noise

• Handles nonlinearity by using the concept of sigma points
– Transform mean and covariance of state into set of samples, called 

sigma points, selected deterministically to preserve mean and 
covariance

– Sigma points are transformed through the nonlinear function and 
recover mean and covariance of transformed sigma points

• Number of sigma points is linear in the size of the state dimension

Unscented 
transform

x

x
Pxx

א

x
Pxx

Symmetric Unscented 
Transform
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Results: Unstructured Driving

• Accuracy of remaining driving time and distance predictions improves as 
EOD is approached. 

• True average power and average power for this scenario are different
• True predictions are captured within the considered uncertainty.


