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Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI)
was performed. Comparisons with experimental data showed a sensitivity of the current
prediction to the modeling of the sidewalls. This was found to be common among various
computational studies in the literature where periodic boundary conditions were used in
the spanwise direction, as was the case in the present work. Thus, although the experiment
was quasi-two-dimensional, the present simulation was determined to be two-dimensional.
Quantities present in the exact equation of the Reynolds-stress transport, i.e., production,
molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation,
and turbulent mass flux were calculated. Reynolds-stress budgets were compared with
past large-eddy simulation and direct numerical simulation datasets in the undisturbed
portion of the turbulent boundary layer to validate the current approach. The budgets in
SBLI showed the growth in the production term for the primary normal stress and energy
transfer mechanism was led by the pressure strain term in the secondary normal stresses.
The pressure diffusion term, commonly assumed as negligible by turbulence model devel-
opers, was shown to be small but non-zero in the normal stress budgets, however it played
a key role in the primary shear stress budget.

Nomenclature

δ99 boundary-layer thickness
δij Kronecker delta
ε isotropic dissipation
εij dissipation tensor
γ specific heat ratio
κ thermal conductivity constant or Kármán constant
F, G, H flux vectors
S source vector
U solution vector
Dνij molecular diffusion tensor

DPij pressure diffusion tensor

DTij turbulent diffusion tensor
Dij diffusion tensor (total)
Mij turbulent mass flux tensor
Pij production tensor
µ molecular viscosity
Πij pressure strain tensor
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ρ density
τij Reynolds-stress tensor
θ boundary-layer momentum thickness
ζ second viscosity
B law of the wall intercept constant
Cp specific heat at constant pressure
e internal energy
e0 total energy
Ix, Iy, Iz digital filter length scale in x, y, and z directions, respectively
k turbulent kinetic energy
L length scale
M Mach number
Ny, Nz digital filter size in y and z directions
p pressure
Pr Prandtl number
Re Reynolds number
s span
Sij mean strain-rate tensor
sij instantaneous strain-rate tensor
T temperature
t time
tij , t viscous stress tensor
u, v, w non-dimensional velocity in x, y, and z directions, respectively
V velocity magnitude
x, y, z non-dimensional coordinates

Subscripts

0 total condition
i, j, k index notation, equal to 1, 2, or 3
imp impingement location
int interaction
inv inviscid
ref , ∞ reference value same as freestream value
sep separation
vis viscous
w wall

Conventions

¯ Reynolds averaged
˜ Favre averaged

Superscripts
′ Reynolds decomposition
′′ Favre decomposition
∗ non-dimensional value
T transpose
tot total
tr trace

I. Introduction

Literature is replete with experimental, numerical, and modeling studies of shock wave/boundary-layer
interactions (SBLIs).1–3 This interest is warranted because SBLIs are ubiquitous in transonic, supersonic,
and hypersonic speed regimes and thus relevant to commercial, military, and space vehicles of the past,
present, and future. SBLIs are known to create excessive unsteady aerothermal loads that can compromise
structural integrity, cause component failure, and result in loss of control. In particular and of relevance to the
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present work is the adverse pressure gradient in the propulsion flowpath, which can cause flow separation,
distortion, and loss in engine efficiency. Because of this, SBLIs are one of the most actively researched
phenomena in high speed flows, yet far from being completely understood, and hence numerical simulation
and modeling of SBLIs are a continuing challenge.

The unsteady nature of SBLIs and the resulting three-dimensional (3D) separation, often including
corner separation (i.e., propulsion flowpaths are often rectangular), make their prediction extremely difficult.
Investigating the source of low-frequency unsteadiness of the reflected (or separation) shock in an SBLI,
which is typically one or two orders of magnitude lower than the frequencies within the incoming turbulent
boundary layer,1,4, 5 is important for flow control strategies. However, understanding the locally anisotropic
and inhomogeneous turbulence field is key to accurate prediction of separation via numerical simulations
and modeling of SBLIs.

While the corner influence is not inherent to the incident/reflected shock configuration, it is present in
practical situations where sidewalls exist, e.g. wind tunnels, inlets, isolators, etc. Also, it is important
to address the fact that the majority of experimental configurations involving compression ramp and inci-
dent/reflected shock exhibit some level of corner influence due to corner separation, which renders portions
of the flow near corners 3D, while the centerline remains two-dimensional (2D). Due to such a prevalence
and coupling, corner influence has become an area of active research as shown by the works of Babinsky et
al.,6 Benek et al.,7,8 and Eagle at al.,9 which includes experimental as well as numerical investigations.

An elementary understanding of separation and corner influence exists, however modeling improvements
from such understanding has yet to be realized. It is this uncertainty in the knowledge of SBLI physics
which make them extremely difficult to model and simulate. An example of a canonical two-dimensional
(2D) SBLI flowfield is shown in figure 1, where an incident oblique shock impinges on a turbulent boundary
layer. Depending on the strength of the incident shock, the flow may not separate, incipiently separate, or
completely separate. In figure 1, the flow is shown to separate. The streamwise length of the separation
bubble is Lsep. The interaction length obtained by extending the inviscid portions of the incident and
reflected shocks to the wall is Lint. The development of the separation results in the forward migration of
the reflected shock, of course this is in a steady sense. In reality, the separation bubble has been shown
to shrink and grow in size, which causes the reflected shock to oscillate aft (small separation) and forward
(large separation) with a characteristic low frequency. Numerous experimental and computational works
have shown this to be between Strouhal number 0.02− 0.05.10

Figure 1. Two-dimensional anatomy of an impinging shock wave/boundary-layer interaction.
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In most practical applications, Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics
(CFD) solvers coupled with turbulence models are used to calculate flowfields where SBLIs are present.
This is mainly due to their ease of use, and also because of the challenges presented by scale-resolving
methods like hybrid RANS/large-eddy simulations (LES), LES, and direct numerical simulations (DNS) in
the form of available computer resources and lengthy simulation times. However, scale-resolving methods
offer significant gains in accuracy.

A list of scale-resolving approaches is compiled by Georgiadis et al.11 in a paper that provides a summary
of current practices in LES. In LES, large-scale structures are resolved and a sub-grid scale model is employed
to model the scales which cannot be resolved by the mesh. A subset of LES is implicit LES (ILES). Like
LES, ILES calculates the large-scale turbulent structures, but it does not explicitly model the smallest scales.
Instead it uses a high-order low-pass Padé-type filter to dissipate energy in the high spatial wavenumber
range.12,13 So, the use of an explicit sub-grid scale model is completely avoided. Thus, ILES is an attractive
approach for this work as it is not as expensive as DNS, but does provide a seamless changeover to DNS as
the mesh resolution is refined.

A workshop was organized in 2011 by the American Institute of Aeronautics and Astronautics (AIAA)
with an intent to share, assess, and determine the most promising SBLI prediction methods. The results
obtained by the participants were compiled by DeBonis et al.14 in which comparisons with experimental data
and error metrics were presented. While the majority of solutions were obtained with RANS methods, some
were obtained with hybrid RANS/LES, LES, and DNS. It was concluded that the turbulence model played
a significant role in variations among different RANS solutions and the error in all solutions increased as
the adverse pressure gradient becomes stronger and the size of the separation increased. It was also found
that the scale-resolving methods provided some of the best and the worst solutions, clearly indicating that
scale-resolving methods are feasible and accurate but that more development is needed.

Perhaps the most interesting revelation DeBonis et al.14 presented was the fact that the relative accuracy
of a method was not consistent for different variables of interest within the same solution, i.e. high prediction
accuracy in ū velocity did not guarantee the same accuracy for v̄ velocity. This, combined with the other
observations above, shows shortfalls of the current one- and two-equation turbulence models. Common among
most turbulence models in use today is the Boussinesq eddy-viscosity approximation, which establishes
a linear relation between the Reynolds-stress tensor, τij , and the mean strain-rate tensor, Sij . Such a
relationship does not exist in shock-separated flows such as SBLI, flows where rapid changes in mean strain-
rate occur, and where secondary flows are present—all examples of flows which are inhomogeneous and
anisotropic.

Some efforts have been made to incorporate the above effects into existing turbulence models by modifying
the turbulent kinetic energy, k, and dissipation rate, ε, equations to account for inhomogeneity and anisotropy.
Hamlington and Dahm15 addressed this by replacing the mean strain-rate tensor in a standard two-equation
approach with a new mean strain-rate tensor that accounts for flow history, thus allowing the Reynolds-stress
tensor to adjust over a finite lag while retaining the simplicity of a two-equation formulation. Sinha et al.16

included additional terms representing shock unsteadiness in the k and ε equations. A linear analysis was
used to model the unsteadiness in the k − ε model by realizing that a positive fluctuation in the streamwise
velocity leads to the reflected/separation shock motion downstream, while a negative fluctuation in the
streamwise velocity causes the reflected/separation shock to move upstream. Numerous other improvements
have been suggested to the one- and two-equation turbulence model formulations, though discussing them is
beyond the scope of this paper. Another approach is to completely bypass the linear relationship between the
Reynolds-stress tensor and the mean strain-rate tensor in one- and two-equation formulations for nonlinear
constitutive relations. In some of the more advanced techniques, a direct prescription of the Reynolds-stress
tensor is sought using a nonlinear algebraic equation or by using a Reynolds-stress transport model. However,
among these approaches, none has emerged as clearly superior.

In the authors’ previous work, terms in the exact equation of turbulent kinetic energy were studied
for a developing turbulent boundary layer and an SBLI.17 However, due to increased interest in Reynolds-
stress models, here the focus is shifted on the exact equation of Reynolds stress transport. Understanding
of the various terms in the exact equation and their interactions with each other would shed light on the
fundamental mechanisms present in SBLI. This knowledge may be used to improve the current turbulence
models and/or propose new models. In the past, such efforts involved DNS studies of turbulent boundary
layers,18 channel flows,19 and square ducts.20 The present work is the first comprehensive examination of
the Reynolds-stress transport terms within an SBLI flowfield. Our objective is twofold:
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• Validate the simulation with an SBLI experimental database to ensure consistency of the computed
quantities.

• Study the budgets of Reynolds stress and other relevant turbulence quantities with an intent to inform
future model development.

II. Governing Equations

In this section the Reynolds stress transport equation will be discussed along with the equations pertinent
to the ILES formulation and the digital filter approach, which is used to obtain turbulent fluctuations at the
inflow.

A. Reynolds-stress Budget

The Reynolds stress is defined as

ρ̄τij = −ρu′′i u′′j (1)

The Reynolds stress transport is given by equation 2. The first term on the left-hand side represents
the unsteady term, while the second term represents the convection—together, the left-hand side is the
substantial derivative. The budget terms are on the right-hand side.

∂

∂t
(ρu′′i u

′′
j ) +

∂

∂xk
(ρu′′i u

′′
j ũk) = Pij +Dij − ρ̄εij + Πij +Mij (2)

Each term on the right-hand side of equation 2 is defined as

Pij =− ρu′′i u′′k
∂ũj
∂xk
− ρu′′j u′′k

∂ũi
∂xk

Production (3)

Dij = Dνij +DTij +DPij Diffusion (4)

Dνij =
∂

∂xk

[
u′′i tkj + u′′j tki

]
Molecular Diffusion (5)

DTij =− ∂

∂xk

[
ρu′′i u

′′
j u
′′
k

]
Turbulent Diffusion (6)

DPij =− ∂

∂xk

[
p′u′′i δjk + p′u′′j δik

]
Pressure Diffusion (7)

Πij = p′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
Pressure Strain (8)

ρ̄εij = tki
∂u′′j
∂xk

+ tkj
∂u′′i
∂xk

Dissipation (9)

Mij = u′′i

(
∂t̄kj
∂xk

− ∂p̄

∂xj

)
+ u′′j

(
∂t̄ki
∂xk

− ∂p̄

∂xi

)
Mass Flux (10)

Here tij is the viscous stress tensor based on the instantaneous strain-rate tensor sij , and δij is the
Kronecker delta.

tij = 2µsij + ζ
∂uk
∂xk

δij (11)

In equation 11, ζ is obtained by relating it to µ. Such an assumption is valid for monatomic gases and
widely used in computational fluid dynamics.

ζ = −2

3
µ (12)
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B. Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations in non-dimensional form are given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (13)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij −

1

Re
tij) = 0 (14)

∂

∂t
(ρe0) +

∂

∂xi

[
ui(ρe0 + p)− 1

Re
(uitij) +

1

(γ − 1)PrM2Re
qi

]
= 0 (15)

The total energy and heat flux are defined as

e0 = e+
1

2
uiui qi = −µ ∂T

∂xi
(16)

The non-dimensionalization is performed using the following definitions where * (asterisk) represents
non-dimensional quantities. Except equations 17a and 17b, the * has been dropped for simplicity and all
quantities are non-dimensional in this paper, unless stated otherwise.

x∗i =
xi
L

u∗i =
ui
Vref

t∗ =
tVref
L

ρ∗ =
ρ

ρref
(17a)

p∗ =
p

ρrefV 2
ref

T ∗ =
T

Tref
µ∗ =

µ

µref
e∗ =

e

V 2
ref

(17b)

The reference conditions are the upstream freestream conditions and the length scale, L, is the same
as the boundary-layer thickness, both are discussed later in section III.B. The non-dimensional parameters
Reynolds number, Prandtl number, and Mach number are defined below. The specific heat at constant
pressure is Cp and κref is the thermal conductivity constant. The molecular viscosity, µref , is calculated
using Sutherland’s law and a perfect gas is assumed.

Re =
ρrefVrefL

µref
Pr =

µrefCp
κref

M =
Vref√
γpref
ρref

(18)

The above Navier-Stokes equations can be expressed in flux-vector form as

∂U

∂t
+
∂Finv
∂x

+
∂Ginv

∂y
+
∂Hinv

∂z
=
∂Fvis
∂x

+
∂Gvis

∂y
+
∂Hvis

∂z
+ S (19)

where U is the solution vector defined as U = [ρ, ρu, ρv, ρw, ρe0]T . The inviscid and viscous flux vectors are
defined as

Finv =



ρu

ρu+ p

ρuv

ρuw

(ρe0 + p)u


Fvis =

1

Re



0

txx

txy

txz

(utxx + vtxy + wtxz) + µ
(γ−1)PrM2

∂T
∂x


(20)

The above equations are transformed into curvilinear coordinates, and using the strong conservation form
the following is obtained21,22
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∂Û

∂t
+
∂F̂inv
∂ξ

+
∂Ĝinv

∂η
+
∂Ĥinv

∂ζ
=
∂F̂vis
∂ξ

+
∂Ĝvis

∂η
+
∂Ĥvis

∂ζ
+ Ŝ (21)

such that Û = U/J and Ŝ = S/J where J represents the Jacobian of the transformation. The transformed
flux vectors are defined as

F̂inv =
1

J
(ξxFinv + ξyGinv + ξzHinv) (22)

F̂vis =
1

J
(ξxFvis + ξyGvis + ξzHvis) (23)

and similarly Ĝinv, Ĥinv, Ĝvis, and Ĥvis.

C. Unsteady Inflow Boundary Method

In a previous study, budget of turbulent kinetic energy was investigated by Vyas et al.17 using a similar
approach to that taken here. However, in that work, the generation of the supersonic turbulent boundary
layer was achieved by using the counterflow force model.23–25 The approach, although functional, required
a large streamwise domain to facilitate a transition from the specified laminar boundary-layer inflow profile
to a turbulent boundary layer. Thus, an alternate approach where such laminar-to-turbulent transition can
be avoided by specifying an unsteady boundary-layer profile at the inflow is highly desired. This will also
allow for smaller mesh sizes or possibly transferring some of the mesh points into the area of interest, i.e.,
the shock wave/boundary-layer interaction region.

1. The Digital Filter Approach

The digital filter approach was originally proposed by Klein et al.,26 where the filtering operation was
performed in 3D space. Later, Veloudis et al.27 investigated specification of varying filter coefficients in
the wall-normal direction to allow for varying length scales. Xie and Castro28 simplified and sped up the
approach by performing the filtering operation on the 2D inflow plane and correlating the calculated 2D field
with the one at the previous timestep to account for the length scale in streamwise direction using Taylor’s
hypothesis.29 The approach was further improved by Touber and Sandham30 and the current work closely
follows their implementation of the digital filter.

Assume a set of p random numbers, {rk}1≤k≤p, such that the set has zero mean and unit variance.

rk =

p∑
k=1

rk/p = 0 rkrk =

p∑
k=1

r2
k/p = 1 (24)

A filter operator can be defined, where N is a positive integer related to the filter length scale and
{bj}−N≤j≤N , a set of real numbers, are the filter coefficients.

vk ≡ FN (rk) =

N∑
j=−N

bjrk+j (25)

The filter operator, equation 25, is linear and non-recursive. Thus the averaging and filtering operations
commute, and knowing the properties of {rk} in equation 24, the following is true.

rk = 0 rkrk+q =

N∑
j=−N+q

bjbj−q (26)

Following the approach of Xie and Castro28 and Touber and Sandham,30 the correlation function was
chosen to be exponential as opposed to Gaussian, assumed by Klein et al.26 in the original work. Xie
and Castro28 argued that the choice of exponential form will produce an energy-decay rate in the inertial
subrange which corresponds to slope of −2, rather than −5/3. However, the behavior of large-scale structures
is realistically modelled. Such an assumption is valid since the digital filter is operational at the inflow plane
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and the domain has enough length upstream of the region of interest to allow the flow to recover the correct
velocity spectra in the inertial subrange. The two-point correlation at the y − z inflow plane is defined as:

R(r, α, t) = exp
(
−πr

2I

)
(27)

In equation 27, r is the separation variable, α = y = z = 0 , t = 0 is the time, and I is the length scale
defined such that Iα = nIα∆α. So equation 28 follows such that q∆α represents separation distance and q
is the interval step.

Rvv(q∆α) =
vkvk+q

vkvk
= exp

(
−π|q|

2n

)
(28)

Using equations 26 and 28, filter coefficients can be computed by solving:

N∑
j=−N+q

bjbj−q

N∑
j=−N

b2j

= exp

(
−π|q|

2n

)
(29)

Xie and Castro28 obtained a solution for filter coefficient bk as:

bk =
b̃k N∑

j=−N
b̃2j

(1/2)
, where b̃k ' exp

(
−π|k|

n

)
(30)

In the above, N is defined as Nα ≥ 2nα. Thus, the above one-dimensional approach can be extended to
calculate a 2D filter coefficient at the y − z inflow plane as:

bjk = bjbk (31)

Thus, an approximation for a 2D filter coefficient becomes:

bjk =

exp

[
−π
(
|j|
ny

+
|k|
nz

)]


Nz∑
k=−Nz

Ny∑
j=−Ny

exp

[
−2π

(
|j|
ny

+
|k|
nz

)]
1/2

(32)

In general, the following steps are taken within the digital filter algorithm:

1. Generate a set of p random numbers with zero mean and unit variance corresponding to the 2D inflow
mesh. Here, the Box-Muller theorem is used to combine two independent and uniformly distributed
sets of numbers a and b in the range (0, 1) into c and d, which are independent and normally distributed,
and also satisfy zero mean and unit variance conditions. They can be calculated as below, however,
either one can be used.

c =
√
−2 ln(a) cos(2πb) d =

√
−2 ln(a) sin(2πb) (33)

2. Select the relevant length scales, Ix, Iy, and Iz. Since the current implementation is 2D, Iy and Iz are
converted into an equivalent number of grid points using the grid spacing, i.e., nIα = Iα/∆α.
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3. Now the filter coefficients can be calculated using equation 32. Filter bounds are calculated using
Nα = 2nIα .

4. The filter coefficients calculated in equation 32 can now be used to filter the zero mean and unit
variance normally distributed random numbers calculated in equation 33. Thus, we impose relevant
y − z length scales on the field of these normally distributed random numbers using equation 25.

5. The length scale in the x direction is imposed by correlating the old time step (t−∆t) to the current
time step (t) as demonstrated by Xie and Castro28 to make filtering a 2D process in contrast to the
3D filtering originally proposed by Klein et al.26 In equation 34, ∆t is the time step and tL is the
Lagrangian time scale, such that tL = Ix/ū.

vtk = vt−∆t
k exp

(
−π∆t

2tL

)
+ vtk

√
1− exp

(
−π∆t

tL

)
(34)

6. The final step involves the transformation originally proposed by Lund et al.31 to obtain a time-
dependent inflow velocity field. Components of aij are defined by the Reynolds-stress tensor, τij ,
obtained from a previous RANS turbulent flat plate calculation performed on the same mesh as the
LES simulation, at identical Mach and Reynolds numbers, using the k−ε turbulence model as described
in Gerolymos.32

ui = ui + aijv
t
j (35)

aij =


√
τ11 0 0

τ21/a11

√
τ22 − a2

21 0

τ31/a11 (τ32 − a21a31)/a22

√
τ33 − a2

31 − a2
32

 (36)

7. Lastly, the calculation of thermodynamic fluctuations was addressed by Touber and Sandham30 by
invoking the Strong Reynolds Analogy (SRA). However, they noted that the validity of such an as-
sumption is debatable, since it holds true in a weak sense as shown by Guarini et al.33 in a DNS
simulation of Mach 2.5 supersonic turbulent boundary layer. Since the goal here is to provide an
approximate first guess at the inflow plane, this approach was determined to be sufficient and is shown
below:

T ′

T
= −(γ − 1)M2u

′

ū
where M2 =

ū2

γRT
(37)

8. Invoking SRA also means that the pressure fluctuations in the boundary layer are negligible, i.e., p′ = 0.
Thus, the following relation for the density fluctuations results:

ρ′

ρ̄
= −T

′

T
(38)

This concludes the procedure that produced the time-dependent fluctuating inflow plane. The filter
parameters are provided in table 1. The separation unit spacing (∆α) in the y direction was obtained by
picking an average spacing in the log-law region of the boundary layer, whereas grid spacing was picked in
the z direction.

III. Simulation Methodology

A. Numerical Schemes

Spatial derivatives are calculated using a sixth-order compact spectral-like finite-difference scheme of Lele34

and later adapted in the FDL3DI code by Visbal and Gaitonde.35 An eighth-order low-pass Padé-type
non-dispersive spatial filter is applied after each sub-iteration to maintain stability and dissipate energy
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Table 1. Digital filter parameters

Parameter x y z

Length Scale, Iα
a 0.5 0.5 0.5

∆α b - 0.01 0.0195

Equivalent Gridpoints, Mα = 2Iα/∆α - 50 25

aNon-dimensionalized by δ99
bα = x, y, z

in the high spatial wavenumber range where the turbulent energy spectrum is poorly resolved.12,13 The
filter coefficient, αf , which determines sharpness of the filter cutoff was set to 0.45 based on Bisek36 and
Garmann et al.37 The implicit time integration was performed with the second-order Beam-Warming38

scheme using two Newton-like sub-iterations and approximate factorization. The non-dimensional time step
for this problem was 0.002.

The use of an explicit sub-grid scale model is completely avoided in the present simulations since the
intent is to study the budget of the exact equation of the Reynolds-stress transport. Such an approach
was taken by Morgan et al.,39 where flow conditions similar to the present study were used for Reθ = 4800
and comparisons were made with the DNS of Pirozzoli and Bernardini40 which showed that at low to
moderate Reynolds number, omitting an explicit sub-grid scale model is suitable. Kawai et al.41 showed that
inclusion of an explicit sub-grid scale model in addition to the low-pass filtering, as done in the present study,
introduced excessive numerical dissipation of the resolved turbulence, which may underpredict turbulence
statistics sought here. A comparison of high-fidelity implicit and sub-grid scale model LES for airfoils at low
Reynolds number performed by Garmann et al.37 showed no benefit in using an explicit sub-grid model.
Thus, high-fidelity ILES, i.e., combination of high-order spatial scheme and high-order filter, is an attractive
approach for this work as it is paired with well-resolved meshes in the near-wall region.

B. Boundary Conditions and Mesh Parameters

The flow conditions represent the experiments5 performed at the Institut Universitaire des Systèmes Ther-
miques Industriel (IUSTI) in Marseille, France. Table 2 shows a comparison of experimental and simulated
flow conditions. It is noted that to resolve the scales of turbulence corresponding to the experimental
Reynolds number, a mesh several orders of magnitude larger than the fine mesh used here would be re-
quired. Thus, the simulated Reynolds number was varied, one matching that of the experiment and two
others obtained by reducing the experimental Reynolds number by half successively. Reducing the Reynolds
number allows the present work to be practical and achievable by ILES. Such an approach was also taken
by Mullenix and Gaitonde,42 Pirozzoli and Bernardini,40 and Visbal et al.43 In order to have consistent flow
relations, the pressure was reduced by a factor of half and one-quarter while maintaining the temperature,
when the Reynolds number was reduced. This assures that the Mach number and the velocity scales remain
the same between the experiment and the simulation.

At the inflow of the computational domain, the digital filter was used to generate turbulent fluctuations
and provide a turbulent boundary layer. The interior of the flowfield was initialized with the same RANS
solution as the one used to impose the inflow boundary condition using the digital filter. The wall was treated
as no-slip and adiabatic. The outflow and farfield boundaries were obtained by extrapolating values from
the interior. A periodic boundary condition was applied in the z direction. The Rankine-Hugoniot relations
were used to impose the oblique shock generated by a wedge in the experiment. Such a simulated shock was
achieved by maintaining the farfield boundary condition for x < xshock at the pre-shock conditions identified
in table 2, while x > xshock were set to the post-shock conditions obtained via oblique shock relations at
Mach 2.29 and 8.0-degree angle of deflection.

In figure 2, the mesh schematic is presented where the coordinates are non-dimensionalized by the length
scale δ99. For the purpose of clarity, the coarse mesh is presented and every fourth point is shown. The mesh
can be divided into two distinct sections in the streamwise direction: 1) the constant x-spacing section is
where the SBLI occurs and 2) the coarsening to the outflow section. Both sections have the same hyperbolic
tangent grid clustering in the y direction and a constant spacing in the z direction. Table 3 shows a list of
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Table 2. Flow conditions upstream of the interac-
tion region at (x− ximp)/δ99 = −5.7

Property Experiment Simulation (nominal)

M∞ 2.29 2.29

U∞, m/s 545.0 545.0

P∞, Pa 50663 12600, 25300, 50663

T0, K 300 300

δ99, mm 10.0 11.0

θ, mm 0.87 0.87

δ∗, mm 3.0 3.1

Reδ 53420 14500, 29000, 58000

Reθ 4640 1150, 2300, 4600

Figure 2. Mesh topology for SBLI simulation. Coordinates non-dimensionalized by the experimental δ99.
Every 8th point in the x direction and 16th point in the y direction is shown for clarity.

Table 3. Mesh parameters

Coarse Medium Fine

Domain size

x× y × za 30× 4× 5 30× 4× 5 30× 4× 5

Computational points

Nx ×Ny ×Nz 1025× 257× 257 1537× 257× 257 2049× 257× 257

Ntotal 67.7× 106 101.5× 106 135.35× 106

Constant region

Nx 945 1417 1889

∆x 0.0212 0.0141 0.0105

At (x− ximp)/δ99 = −5.7

∆x+ 15 10 7

Ny,bl 187 187 187

∆yw 1× 10−3 1× 10−3 1× 10−3

∆y+ 0.68 0.68 0.68

∆z 0.0195 0.0195 0.0195

∆z+ 13 13 13

a x, y, z are non-dimensionalized by δ99

parameters for coarse, medium, and fine meshes.
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IV. Results

A. A Comparison with the Experiment

Normalized velocity, shown for various mesh levels in figure 3(a), is in agreement with the viscous sublayer.
Coarse, medium, and fine meshes at Reθ = 4600 lined on top of each other and showed a slope that matched
the expected logarithmic law (log law) of the wall (κ = 0.41 and B = 5.5), however an offset was present.
Garnier et al.44 also reported such a behavior where LES simulations were performed at Reθ = 4600 and
the offset was attributed to the underprediction of the friction velocity, which showed small improvement
with mesh refinement. Thus, this may indicate a lack of grid resolution in the log-law region. This is further
supported by the coarse mesh solution at Reθ = 2300, which is in agreement with the log law, DNS of
Pirozzoli and Bernardini,40 and LES of Eitel-Amor45 at Reθ = 4400. A comparison of skin friction profiles
for the three mesh levels (figure 3(b)) show good agreement in the region upstream of the SBLI and within
the SBLI, but some variation was present in the reattachment region. Thus, the current mesh resolution,
although not as refined as the DNS presented in figure 3, is deemed suitable for the present simulation at
experimental Reynolds number.

(a) van Driest transformed velocity profiles (b) Skin friction

Figure 3. Upstream boundary layer at (x− ximp)/δ99 = −5.7.

A comparison of interaction lengths, presented in table 4, show that the ILES and DNS simulations
consistently underpredict the interaction region, including the present work. All simulations were done
with periodic boundary conditions in the spanwise direction using an appropriate spanwise domain to avoid
artificial amplification of the separation bubble. Thus, the rather good agreement obtained by Touber and
Sandham30 can be attributed to the choice of the subgrid-scale model46 (Mixed-Time-scale). A separate
RANS study was performed to better understand the interaction behavior relative to the choice of domain
in the spanwise direction, i.e., periodic or half-span with one sidewall. Results, although omitted here
for brevity, showed that the periodic simulations underpredicted the interaction length. The tunnel where
the experiment was performed had an aspect ratio of 1.39 and the inverse viscous aspect ratio, δ99/s, of
5.88× 10−2, thus characterized as quasi-two-dimensional,6 but it is suggested by the authors of the present
work that the experimental data was still influenced by sidewalls. Such a relation was hypothesized by
Babinsky et al.6 between the separation length and inverse viscous aspect ratio. At large and moderate
inverse viscous aspect ratios, the corner separation and sidewall effects become critical in prediction of
the interaction region at the tunnel centerline. Agostini et al.47 noted that the interaction region can be
underpredicted by up to 20%. In the LES simulation of Larchevêque et al.,48 it was concluded that the
interaction region produced by a 9.5◦ deflection case matched experiments with 8◦ and 8.8◦ deflections when
performed by two different groups of researchers. Thus, only at sufficiently large span can such an experiment
become two-dimensional and then a choice of periodic boundary condition would be accurate. So it can be
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argued that the present ILES calculation simulates SBLI in such a large span wind tunnel and captures key
physics void of corner separation and sidewalls. Hence making it more attractive for studying turbulence
modeling.

Table 4. Comparison of previous and present simulations with the experimental data.

Authors Nominal Reθ Interaction Length a Simulation

Experiment5 4600 4.60 -

Touber and Sandham30 4600 4.80 Periodic/LES-SGS

Agostini et al.47 4600 3.45 Periodic/LES-SGS

Morgan et al.39 4800 2.90 Periodic/ILES

Morgan et al.39 2300 2.90 Periodic/ILES

Pirozzoli and Bernardini40 2300 2.89 Periodic/DNS

Present work 4600 2.94 Periodic/ILES

Present work 2300 3.06 Periodic/ILES

aNon-dimensionalized by δ99, i.e., Lint/δ99

A qualitative comparison with the experiment is presented in figure 4, where the coordinates have been
scaled by the respective interaction lengths. Key features like the undisturbed boundary-layer, turning
of the flow over the separation bubble, and the boundary-layer recovery can be observed in figures 4(a)
and 4(b). Locations of high stress also coincide, however the magnitudes differ due to the aforementioned
underprediction of the interaction length. Undisturbed boundary-layer stress profiles, figure 5, show that the
streamwise stress is in good agreement with the data and the near-wall peak is captured, but disagreement
exists in the outer part of the boundary layer. The discrepancy begins at y/δ99 = 0.3, which happens to be
the boundary-layer displacement thickness. An opposite trend was observed with the wall-normal stress, i.e.,
better agreement was obtained in the outer part of the boundary layer. Touber and Sandham49 reported
similar behavior in their work, even though they used a zonal digital filter approach in the wall-normal
direction. A separate study, results not included here, examined the impact of digital filter length scales
(cf. table 1) and possible improvements in generation of fluctuations at the inflow plane. Among items
under further consideration are zonal implementation to impose the relevant length scales in the wall-normal
direction and in situ calculation of relevant length scales in the streamwise direction.

B. Reynolds-stress Budgets

1. Validation of Budgets

The budget of the Reynolds-stress transport and the imbalance in the budget was calculated at the undis-
turbed upstream location (x − ximp)/δ99 = −5.7 for Reθ = 2300 and 4600. The imbalance highlights the
relative magnitude of each term and should be zero if production, transfer, and dissipation mechanisms that
govern the energy cascade are appropriately captured. A non-zero value is an indication of the error in the
solution. To calculate the imbalance, unsteady term was assumed to be negligible in equation 2 and the
convective term was subtracted from the right-hand side to yield equation 39.

Imbalance = Pij +Dij − ρ̄εij + Πij +Mij −
∂

∂xk
(ρu′′i u

′′
j ũk) = 0 (39)

The turbulent kinetic energy (TKE) budget was calculated by taking one-half of the trace of the Reynolds-
stress budget. The present TKE budget is similar to the Mach 2.5 DNS of Guarini et al.33 and the Mach
4 DNS of Sinha et al.50 Both examined a turbulent boundary layer and are thus relevant to the current
work. A comparison of TKE budget with the finely-resolved incompressible LES of Eitel-Amor45 (figure 6) at
Reθ = 4400 shows good agreement, especially in the viscous sublayer and log-law regions. Differences in the
peak of production and troughs of molecular and turbulent diffusion within the buffer region (10 ≤ y+ ≤ 30)
can be attributed to the vast difference in mesh resolution. The terms related to compressibility, i.e., pressure
strain and turbulent mass flux were small and thus omitted from figure 6. The imbalance reached a peak in
the buffer region with a value of 0.056, approximately four times larger than the LES of Eitel-Amor.45
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k =
1

2
tr(ρu′′i u

′′
j ) (40)

Budgets are plotted for the normal stresses and the primary shear stress in figure 7. To lend confidence
to the present calculations, the results are plotted alongside a turbulent boundary layer spectral DNS of
Schlatter and Örlü.51 The present results also look similar to the turbulent channel flow DNS of Mansour
et al.,19 Spalart’s18 DNS of a turbulent boundary layer, and turbulent square duct DNS of Huser et al.20

It is noted however that these works examining the budget relied on the incompressible form of equation 2.
Moreover, the pressure-velocity correlation was expressed by combining the pressure diffusion (equation 7)
and pressure strain (equation 8) terms as shown in equation 41, so some discrepancy in figure 7 is due to
the fact that the available Schlatter and Örlü51 data is of the total velocity-pressure correlation.

Πtot
ij = DPij + Πij = −u′′i

∂p′

∂xj
− u′′j

∂p′

∂xi
(41)

Since the following comparison is presented in the undisturbed part of the upstream boundary layer at
(x− ximp)/δ99 = −5.7, ρu′′w′′ and ρv′′w′′ were negligible as expected. The ρu′′u′′ budget shows molecular
diffusion in balance with dissipation at the wall, however, away from the wall and in the buffer region, peak
production is balanced by dissipation, pressure strain, and diffusion terms. In the log-law region, molecular
and turbulent diffusion become less dominant, thus production is balanced by dissipation and pressure strain
terms. In the ρv′′v′′ and ρw′′w′′ budgets, figures 7(b) and 7(c), the pressure strain term assumed a dominant
role and governed the transfer of energy to these normal stresses. Huser et al.20 concluded that near the
wall pressure strain and pressure diffusion are of opposite value and thus cancel, so the pressure-velocity
should be modeled using equation 41, however that is only true for off-diagonal components of these two
terms. While off-diagonal terms do not vanish at the wall, the diagonal pressure strain naturally goes to zero
and pressure diffusion is negligible at the wall as shown by the present calculation. Knowing this behavior
Mansour et al.19 suggested that a possible model for pressure-velocity correlation should be based on the
trace of equation 41. However, the role of the pressure strain term as an energy transfer mechanism is the
reason that the term (equation 8) is directly modeled in recent contemporary Reynolds-stress turbulence
models.52

For both ρv′′v′′ and ρw′′w′′, the pressure strain term is balanced by dissipation in the region away from
the wall. In the case of ρv′′v′′ the peak in the pressure strain occured at the beginning of the log-law
region, indicating wall-normal ejection of energy packets, while the peak in ρw′′w′′ occurs at the end of the
viscous sublayer. Finally, the budget of ρu′′v′′, examined in figure 7(d), shows that in the viscous sublayer
region a positive dissipation is balanced by a negative molecular diffusion and away from the wall a negative
production is balanced by positive turbulent diffusion, pressure diffusion, and pressure strain. This may
seem counterintutive but because shear stress can either be positive or negative, a negative value of larger
magnitude means higher shear stress and vice versa.

The effect of the Reynolds number scaling is investigated by comparing ρu′′u′′ at three simulated Reynolds
numbers (figure 8) for the coarse mesh. The lowest peak imbalance in the sum of the budget for the smallest
Reynolds number was indicative of the fact that the coarse mesh was sufficiently resolved. But for the higher
Reynolds numbers, small increases in the peak imbalance were observed, which corresponded to the smaller
dissipation term. Thus, suggesting that the simulations at higher Reynolds numbers were approaching the
limit where ILES would still be valid and may potentially benefit from an increase in the mesh resolution.
The largest Reynolds number had a peak in the budget imbalance of 0.09 for the coarse mesh. The peak
in the imbalance dropped to 0.08 for the fine mesh, implying that the meshes used in the present work are
sufficient for ILES and significantly large numbers of grid points would be necessary to drive the imbalance
to zero. This was further supported by the similarity in wall properties between the present fine mesh and
Poggie’s53 Grid 2 and Grid 3. Poggie53 performed a detailed mesh resolution study for a turbulent boundary
layer at similar flow conditions, where Reθ ranged from approximately 1300 − 2000 and mesh sizes ranged
from 1.1× 107 to 3.3× 1010. Although budgets were not computed in his work, the Reynolds stress profiles
showed no change beyond Grid 3. Thus, from this point onward, the fine mesh results will be presented for
the budgets.
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2. Budgets in Shock wave/Boundary-layer Interaction

The budgets of Reynolds stress within the SBLI region are presented next. Figures 9 to 11 show compar-
isons at the pre-reflected-shock, post-reflected-shock, separation bubble, and post-impinging-shock locations.
Since the friction velocity becomes small in the SBLI region, normalizing the budgets by ρwu

4
τ/νw becomes

ineffective. In the absence of a new means of normalization, this section omitted the aforementioned nor-
malization in favor of the non-dimensionalization employed in equations (17a) and (17b), i.e., freestream
conditions ρ∞U

4
∞/ν∞. The ordinate axis still utilizes the inner scaling since the friction velocity only has a

first-order effect on y+.
Budgets in figure 7 are replotted in figure 9 with the freestream normalization (left panel) and compared

with the post-reflected-shock budgets (right panel). The ρu′′u′′ component in figures 9(a) and 9(b) showed a
threefold increase in the peak production, which was balanced by the turbulent diffusion and an amplification
in the pressure strain term. The increased dissipation at the wall was balanced by the molecular diffusion
and pressure strain terms. Previously inactive terms like turbulent mass flux and convection also showed a
significant increase. This resulted in a net gain in the budget imbalance for the component, however this
was expected. The unsteady term in equation 2 was assumed to be zero in order to calculate the imbalance,
while such an approach was valid for the undisturbed boundary layer, the assumption wouldn’t be accurate
in the presence of characteristically low-frequency oscillations of the reflected shock/separation region. The
abrupt increase in the production leads to a lag in the energy transfer mechanisms, followed by the increased
anisotropy and the budget imbalance. In other words, the budget imbalance could be thought of as the
unsteady contribution, which becomes significant in the interaction region.

The secondary normal stresses, ρv′′v′′ and ρw′′w′′, are shown in figures 9(c) to 9(f). Notice that the
post-reflected-shock budgets have ordinate axes an order of magnitude larger than the pre-reflected-shock
budgets. The proportional behavior of pressure diffusion and pressure strain terms remained the same for
ρv′′v′′ in the near wall region, while away from the wall, convection, turbulent diffusion, and production
terms came to prominence. For ρw′′w′′, the near-wall dissipation was balanced by molecular diffusion and
pressure strain terms, a relationship that remained proportional. Here, however, only the convection term
became important away from the wall. It is important to point out that the role pressure strain and pressure
diffusion terms play, as agents of energy transfer, remained unchanged and became amplified in the presence
of the shock. The artifact present at y+ ∼ 250 was due to the profiles crossing the reflected shock, thus
significant for ρv′′v′′ and absent for ρw′′w′′ due to the 2D nature of the shock.

Figure 10 shows budgets in the separation bubble (left panel) and the post-impinging-shock recovery
region (right panel). Examining ρu′′u′′ in figures 10(a) and 10(b), it was clear that in the near-wall region
molecular diffusion and pressure strain terms balanced dissipation, which established the key role pressure
strain played in the interaction region and it’s residual importance in the post-impinging-shock recovery
region. The peak production at y+ ∼ 50 corresponds to the high stress region (figure 4(c)) above the
separation bubble. This high rate of production was balanced by pressure strain, turbulent transport, and
convection terms. Further away from the wall at y+ ∼ 100, another area of activity corresponds to the
impinging shock, where pressure diffusion and pressure strain terms become prominent and balanced by
production and turbulent mass flux terms. Lastly, the fluctuation at y+ ∼ 250 was due to the reflected
shock. Similarly in the recovery region a two-peak behavior was observed for the production term. The
first peak at y+ ∼ 10 was representative of a typical turbulent boundary layer, but lower in magnitude since
the boundary layer was not fully recovered. While the second peak at y+ ∼ 300 was due to the high stress
region that continued past the interaction region. The secondary normal stresses showed a similar behavior
as (x− ximp)/δ99 = −2.0, however the terms in the recovery region had lower magnitudes as expected.

Finally, the primary shear stress, ρu′′v′′, is presented in figure 11 for all four locations. Notice that the
ordinate axis is an order of magnitude higher for budgets in the interaction region. It was also clipped to
highlight terms with smaller magnitudes, however the near-wall peak values of pressure strain and pressure
diffusion terms are stated on the plots. Both terms maintain proportionality at the wall and cancel each
other, but a large increase in the magnitude was observed. Away from the wall and in the undisturbed
boundary layer, pressure strain and pressure diffusion terms jointly balanced the negative production term,
whereas in the interaction and recovery regions a new layer of high pressure strain and pressure diffusion
developed, albeit with reversed signs compared to the wall. This behavior was most prominent in the post-
reflected-shock region and diminished at aft locations. Previously benign terms like turbulent transport
and turbulent mass flux also played a role to balance the negative production term, especially in the region
confined between the separation bubble and the crossing of the impinging and reflected shocks.
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V. Conclusions

Implicit large-eddy simulations (ILES) of a two-dimensional shock wave/boundary-layer interaction
(SBLI) were performed. Comparisons with the experiment showed that the interaction region was underpre-
dicted. This was attributed to the role sidewalls and corner influences played on the tunnel centerline, despite
the fact that the experiment was claimed to be void of three-dimensional effects. This conclusion was sup-
ported by contemporary studies of other authors and could be validated by performing a three-dimensional,
full-span, two-sidewall simulation, currently under consideration. Thus, the present simulation, which em-
ployed periodic boundary conditions in the spanwise direction was truly two-dimensional and valuable for
turbulence model development and validation.

Budgets were computed for the Reynolds-stress transport equation and validated against previous highly-
resolved LES and DNS simulations of a turbulent boundary layer, channel flow, and a square duct. Grid
resolution in the y and z directions was deemed sufficient for ILES, thus grid resolution in only the x direction
was studied. It was shown that the coarse mesh was adequate for the current flow conditions. However,
an investigation to assess the ability of the coarse mesh to resolve the scale of turbulence by reducing the
Reynolds number of the simulation by half and one-quarter showed that the budget imbalance dropped as the
Reynolds number was reduced. This indicated that the imbalance in the budget shown for the undisturbed
boundary layer, at the largest Reynolds number, was due to the mesh not supporting the smallest of the
scales to dissipate the energy. Interestingly, this also meant that the approach of using a high-order low-pass
filter in lieu of a subgrid-scale model was valid as it added minimal numerical dissipation, but this was not
quantified here.

Budgets within the SBLI showed an advantage in studying the pressure strain and pressure diffusion
terms separately. They cancelled each other at the wall but their behavior was different away from the wall.
While the pressure diffusion term remained small but non-zero for the normal stress budgets, it assumed an
important role in the primary shear stress budgets and in one instance it was the same order of magnitude
as the pressure strain term near the wall. Thus, Reynolds stress turbulence models could show improvement
by accounting for the pressure diffusion term rather than the current practice of some model developers to
assume it negligible or include it into the model for turbulent diffusion. Moreover, the pressure strain term
continued to play a key role in the transfer of energy from the primary normal stress to the secondary normal
stresses, which makes it an important term to model, as is the case with Reynolds stress turbulence models
in use today.
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(a) u

(b) v

(c)
√
u′u′

(d)
√
v′v′

(e) −u′v′

Figure 4. Mean velocity, normal stress, and shear stress comparisons at Reθ = 4600. Simulation is shown with
labeled lines and overlaid on experimental data contours. Both share the same legend.
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(a)
√
u′2 and

√
v′2 (b) −u′v′

Figure 5. Stress profiles comparison at (x − ximp)/δ99 = −5.7 for Reθ = 4600. Markers without lines represent
experimental data.

Figure 6. Budget of the turbulent kinetic energy at (x − ximp)/δ99 = −5.7. Present results (solid lines) at
Reθ = 4600 compared with LES of Eitel-Amor45 (dashed lines) at Reθ = 4400. �: Production, 4: Molecular
diffusion, O: Turbulent diffusion, ♦: dissipation, and Σ: Sum. Budgets have been normalized by ρwu4τ/νw.

20 of 25

American Institute of Aeronautics and Astronautics



(a) ρu′′u′′ (b) ρv′′v′′

(c) ρw′′w′′ (d) ρu′′v′′

Figure 7. Reynolds-stress budget at (x− ximp)/δ99 = −5.7. Present results (solid lines) at Reθ = 4600 compared

with DNS of Schlatter and Örlü51 (dashed lines) at Reθ = 4000. �: Production, 4: Molecular diffusion, O:
Turbulent diffusion, .: Pressure diffusion, /: Pressure strain, ♦: dissipation, ©: Turbulent mass flux, X:
Convection, and Σ: Sum. Terms smaller than three orders of magnitude are omitted from the plots for clarity.
Budgets have been normalized by ρwu4τ/νw.
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(a) ρu′′u′′ at Reθ = 1150 (b) ρu′′u′′ at Reθ = 2300

(c) ρu′′u′′ at Reθ = 4600

Figure 8. Reynolds-stress budget at (x − ximp)/δ99 = −5.7 for the coarse mesh. ρu′′u′′ for present results
compared at Reθ = 1150, 2300, and 4600. �: Production, 4: Molecular diffusion, O: Turbulent diffusion, .:
Pressure diffusion, /: Pressure strain, ♦: dissipation, ©: Turbulent mass flux, X: Convection, and Σ: Sum.
Terms smaller than three orders of magnitude are omitted from the plots for clarity. Budgets have been
normalized by ρwu4τ/νw.
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(a) ρu′′u′′ at (x− ximp)/δ99 = −5.7 (b) ρu′′u′′ at (x− ximp)/δ99 = −2.0

(c) ρv′′v′′ at (x− ximp)/δ99 = −5.7 (d) ρv′′v′′ at (x− ximp)/δ99 = −2.0

(e) ρw′′w′′ at (x− ximp)/δ99 = −5.7 (f) ρw′′w′′ at (x− ximp)/δ99 = −2.0

Figure 9. Reynolds normal stress budget for pre-reflected-shock (left panel) and post-reflected-shock (right
panel). Coarse mesh at Reθ = 4600. �: Production, 4: Molecular diffusion, O: Turbulent diffusion, .: Pressure
diffusion, /: Pressure strain, ♦: dissipation,©: Turbulent mass flux, X: Convection, and Σ: Sum. Terms smaller
than three orders of magnitude are omitted from the plots for clarity. Budgets are non-dimensionalized by
the freestream (ρ∞U4

∞/ν∞), so inner scaling is not applied.
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(a) ρu′′u′′ at (x− ximp)/δ99 = −0.90 (b) ρu′′u′′ at (x− ximp)/δ99 = 1.44

(c) ρv′′v′′ at (x− ximp)/δ99 = −0.90 (d) ρv′′v′′ at (x− ximp)/δ99 = 1.44

(e) ρw′′w′′ at (x− ximp)/δ99 = −0.90 (f) ρw′′w′′ at (x− ximp)/δ99 = 1.44

Figure 10. Reynolds normal stress budget for separation (left panel) and post-impinging-shock (right panel).
Coarse mesh at Reθ = 4600. �: Production, 4: Molecular diffusion, O: Turbulent diffusion, .: Pressure diffusion,
/: Pressure strain, ♦: dissipation, ©: Turbulent mass flux, X: Convection, and Σ: Sum. Terms smaller than
three orders of magnitude are omitted from the plots for clarity. Budgets are non-dimensionalized by the
freestream (ρ∞U4

∞/ν∞), so inner scaling is not applied.
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(a) ρu′′v′′ at (x− ximp)/δ99 = −5.7 (b) ρu′′v′′ at (x− ximp)/δ99 = −2.0

(c) ρu′′v′′ at (x− ximp)/δ99 = −0.9 (d) ρu′′v′′ at (x− ximp)/δ99 = 1.44

Figure 11. Reynolds shear stress budget for all locations in figures 9 and 10. Coarse mesh at Reθ = 4600.
�: Production, 4: Molecular diffusion, O: Turbulent diffusion, .: Pressure diffusion, /: Pressure strain, ♦:
dissipation,©: Turbulent mass flux, X: Convection, and Σ: Sum. Terms smaller than three orders of magnitude
are omitted from the plots for clarity. Budgets are non-dimensionalized by the freestream (ρ∞U4

∞/ν∞), so inner
scaling is not applied.
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