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ü Increase predictive use of High-Fidelity Computational Aero-
Acoustics (CAA) capabilities for NASA’s next generation 
aviation concepts.
• CFD has been utilized substantially in analysis and design for 

steady-state problems (RANS).

• Computational resources are extremely challenged for high-

fidelity unsteady problems (e.g. unsteady loads, buffet boundary, 

jet and installation noise, fan noise, active flow control, airframe 

noise, etc)

ü Need novel techniques for reducing the computational 
resources consumed by current high-fidelity CAA
• Need routine acoustic analysis of aircraft components at full-scale 

Reynolds number from first principles

• Need an order of magnitude reduction in wall time to 
solution!

Objective
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Framework

Developing

Other Development Efforts
• Higher order methods

• Curvilinear grid generation

• Wall modeling

• LES/DES/ILES Turbulence

• HEC (optimizations, accelerators, 

etc) Kiris at al. AST-2016 and AIAA-2014-0070 
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• High quality body fitted grids 

• Low computational cost

• Reliable higher order 

methods

• Grid generation largely 

manual and time consuming

• Essentially no manual grid 

generation

• Highly efficient Structured 

Adaptive Mesh Refinement 

(AMR)

• Low computational cost

• Reliable higher order methods

• Non-body fitted -> Resolution 

of boundary layers inefficient

• Partially automated grid 

generation

• Body fitted grids 

• Grid quality can be challenging

• High computational cost

• Higher order methods yet to 

fully mature

Computational Grid Paradigms
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LAVA Cartesian Navier-Stokes Methods
• 5th and 6th order WENO spatial discretization

• Higher-order immersed boundary method

• 4th order explicit Runge-Kutta time stepping

• Structured Adaptive Mesh Refinement: Locally tracking 

gradients in flow field with finer mesh (shocks, shear layers, 

etc). Using Chombo for AMR data structures.

• The LAVA team has had many successful uses of this 

methodology for mission critical NASA applications.

• This approach has been a work-horse for quick turnaround 

projects with complex geometry and unsteady flow-fields.



Recent LAVA Cartesian Navier-Stokes Successes: 
Launch Environment at NASA’s Kennedy Space Center

• Pressure and thermal analysis of plume impingement on 

main flame deflector

• Containment analysis of plume in flame trench

• Numerous vehicles were analyzed on the pad, including 

SLS and commercial vehicles

• Drift analysis with plume impingement:

• unsteady CFD with fixed vehicle

• time-averaged SLS plume swept past pad and tower 

following 4000 trajectories
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Recent LAVA Cartesian Navier-Stokes Successes: 
Low Density Supersonic Decelerator: Parachute Simulations

Passive particle visualization: colored by Mach number

Colored by Mach
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Recent LAVA Cartesian Navier-Stokes Successes: 
Contra-Rotating Open Rotor

High Speed

Low Speed

Passive particle visualizations: colored by seed location EXP
CFD
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Recent LAVA Cartesian Navier-Stokes Successes: 
Launch Abort System for NASA’s Orion MPCV

Simulation of recent
QM-1 LAS experiment



10

Recent LAVA Cartesian Navier-Stokes Successes: 
Landing Gear for AIAA BANCIII Workshop



ü Computational Requirements
• Space-time resolution requirements for acoustics problems are demanding. 

• Resources used for Cartesian Navier-Stokes examples shown above:

• Launch Environment: ~200 million cells, ~7 days of wall time (1000 cores)

• Parachute: 200 million cells, 3 days of wall time (2000 cores)

• Contra-Rotating Open Rotor: 360 million cells, 14 days (1400 cores)

• Launch Abort System: 400 million cells, 28 days of wall time (2000 cores)

• Landing Gear: 298 million cells, 20 days of wall time (3000 cores)

• LAVA Cartesian infrastructure has been re-factored into Navier-Stokes (NS) and Lattice 

Boltzman Method (LBM).

• 10-50 times speed-up can be achieved with LBM vs NS-WENO.

• Existing LAVA Cartesian data structures and algorithms are utilized to reduce 

implementation effort.

Challenges in Computational Aero-Acoustics
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• Physics:
• Governs space time evolution of Density Distribution Functions

• Equilibrium distribution functions are truncated Maxwell-Boltzmann distributions

• Relaxation time related to kinematic viscosity

• Pressure related to density through the isothermal ideal gas law

• Lattice Boltzmann Equations (LBE) recover the Navier-Stokes equations in the 

low Mach number limit

• Numerics:
• Extremely efficient ‘collide at nodes and stream along links’ discrete analog to the 

Boltzmann equation 

• Particles bound to a regularly spaced lattice collide at nodes relaxing towards the 

local equilibrium (RHS) 

• Post-collision distribution functions hop on to neighboring nodes along the lattice 

links (LHS) – Exact, dissipation-free advection from simple ‘copy’ operation   

• Macroscopic quantities such as density and momentum are moments of the 

density distribution functions in the discrete velocity space 

LAVA LBM: Governing Equations
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• Boundary conditions in LBM are simple rules that relate ‘incoming’ populations to 

‘outgoing’ populations for lattice links intercepted by an embedded surface

• Standard Bounce Back (SBB): ‘Bounce-back’ rule realizes the no-slip boundary 

condition, but approximates the curved geometry by a series of small steps. 

• Linear Bounce Back (LBB): Interpolated no-slip bounce-back rules (cf. Bouzidi et 

al. (POF, 01)) capture the curvature in geometry more accurately. Improved 

prediction of surface pressure fluctuations, critical for accurate acoustic predictions.

• Halfway Bounce Back (HBB) rule of A. C. Ladd (JFM, 94) generalized to be 

second-order accurate for arbitrary geometry (stationary and moving) and adapted 

for wall models using a generalized slip algorithm for realizing the appropriate 

momentum exchange.

LAVA LBM: Embedded Geometry
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In evolution, the distribution functions at boundaries
need to be specified according to boundary conditions for the
macroscopic variables. Here we consider velocity boundary
condition for curved walls. As shown in Fig. 1, the link be-
tween the fluid node xf and the wall node xw intersects the
physical boundary at xb , and xf!xw"ei! . The fraction of
the intersected link in the fluid region is "!(!xf#xb!)/(!xf
#xw!).

Note that the evolution of ID2Q9 consists of two com-
putational steps, i.e., the collision step f i

"(x,t)! f i(x,t)
###1( f i(x,t)# f i

(eq)(x,t)), and the streaming step, f i(x
"ei! ,t"!)! f i

"(x,t). Obviously, f i
"(xw) is needed to finish

the streaming step for the fluid node xf . To specify
f i

"(xw ,t), just as usually done in the Chapman–Enskog pro-
cedure, we decompose f i(xw ,t) into two parts: f i(xw ,t)
! f i

(eq)(xw ,t)" f i
(ne)(xw ,t), where f i

(eq)(xw ,t) and f i
(ne)(xw ,t)

are the equilibrium and the nonequilibrium part of f i(xw ,t),
respectively. Instead of using the original definition Eq. $2%,
the equilibrium part is approximated by a fictitious one de-
fined by

f̄ i
(eq)$xw%

!& i" '̄w"'0# ei•ūwcs
2 "

$ei•ūw%2

2cs
4 #

ūw
2

2cs
2$ % , $3%

where '̄w('(xf) is an approximation of 'w('(xw), and ūw
is an approximation of uw!u(xw) to be chosen. Note that the
LBM can be viewed as a special finite-difference scheme for
the Boltzmann equation on a discrete lattice.10 Therefore, it
is reasonable to determined ūw by a linear extrapolation us-
ing either ūw!uw1((ub"("#1)uf)/" or ūw!uw2((2ub
"("#1)uf f)/(1""), where uf!u(xf) and uf f!u(xf f)
with xf f!xf"ei! . Obviously, the difference between either
uw1 or uw2 and uw is O(!2). It is usually more accurate using
uw1 than using uw2 to approximate ūwf since xf is closer to
xw than xf f . However, if " is small, the denominator in the

expression of uw1 will be too large, and will lead to numeri-
cal instability in the computation. Therefore, we propose to
use ūw!uw1 for ")0.75, and use a linear interpolation be-
tween uw1 and uw2 with weight " for "$0.75, i.e., ūw
!"uw1"(1#")uw2. Either way gives that ūw!uw
"O(!2).

It is well understood that in the incompressible limit, the
density fluctuation is of order O(M 2), where M!u/cs%1 is
the Mach number. Therefore, '̄w!'w"!ei•*'!'w
"O(!M 2). Based on the expression of the shear viscosity v ,
we can obtain that M+u0 /cs!csRe(##0.5)!/L , where u0
and L are the characteristic velocity and length, respectively,
Re is the Reynolds number of the flow. Therefore, if # is
chosen such that csRe(##0.5)/L!O(1), the Mach number
M will be of the same order of the lattice spacing ! . We will
concentrate on this case next. Based on these arguments, the
difference between the fictitious equilibrium function
f̄ i
(eq)(xw) and the original one f i

(eq)(xw) may be estimated that

f̄ i
(eq)$xw%# f i

(eq)$xw%!O$!2%. $4%

The next task is to determine the nonequilibrium part
f i
(ne)(xw ,t). In the Chapman–Enskog analysis, f i

(ne)(xw ,t)
can be expressed as f i

(ne)!! f i
(1) , where f i

(1) is of the same
order of f i

(eq) . Note that f i
(1)(xw ,t)# f i

(1)(xf ,t)!O(!),
f i
(1)(xw ,t)# f i

(1)(xf f ,t)!O(!), thus f i
(ne)(xw ,t) can be ap-

proximated by the nonequilibrium part of the distribution
function at the fluid node xf or xf f with second-order accu-
racy. In order to be consistent with the definition of ūw , we
propose to use f i

(n)(xw ,t)! f i
(ne)(xf ,t) for ")0.75 and

f i
(ne)(xw ,t)!" f i

(ne)(xf ,t)"(1#") f i
(ne)(xf f ,t) for "$0.75.

Finally, we obtain the following boundary treatment to
specify the post-collision distribution function f i

"(xw ,t),

f i
"$xw ,t %! f̄ i

(eq)$xw ,t %"$1###1% f i
(ne)$xw ,t %. $5%

We can conclude from the above discussions that the present
boundary treatment is of second order accuracy in both time
and space.

Note that the present treatment is different from the
method proposed by Fillipova and Hänel7 $refered to as FH%
and the improved version proposed by Mei et al.8 $referred
to as MLS%. First, the FH $MLS% treatments can be viewed as
improvements of the bounce-back rule, but the present treat-
ment is an extension of the extrapolation scheme by Chen
et al.,6 and shares the advantages such as the self-consistency
and the easiness to be extended for other boundary condi-
tions including a combination of density, velocity, tempera-
ture, and their derivatives. Second, the basic assumptions of
the present and the FH $MLS% schemes are different. The FH
$MLS% scheme is under the assumption that the flow is
‘‘slow,’’ so they are only suitable for steady flows intrinsi-
cally. The basic requirement of the present scheme, however,
is that the Mach number and the lattice spacing are of the
same order. It is not a special condition for the present
scheme in that this is usually a common requirement in LBM
applications. Therefore, the present scheme needs no addi-
tional conditions in practice, and can be used for both steady
and unsteady flow in theory.

FIG. 1. Curved boundary and lattice nodes.

2008 Phys. Fluids, Vol. 14, No. 6, June 2002 Guo, Zheng, and Shi

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.99.134.152 On: Tue, 02 Aug
2016 21:25:32

Incoming Population: Unknown

Outgoing Population: Known



LAVA LBM: Progress
IMPLEMENTATION TO DATE:

• Lattices: including D2Q9, D3Q15, D3Q19, D3Q27, D3Q39 …

• Collision Models:  

• Bhatnagar-Gross-Krook (BGK) 

• Multi-Relaxation Time (MRT)

• Entropic and positivity preserving variants of BGK

• Entropic Multi-Relaxation Time (EMRT)

• Regularized BGK

• LES Model: Smagorinsky sub-grid-scale

• Wall Models: Tamm-Mott-Smith boundary condition, filter-based slip wall model, or 

traditional equilibrium wall stress model

• Parallelization:

• Structured adaptive mesh refinement (SAMR) based LBM requires parallel ghost cell 

exchanges: 

• Fine-fine for communication within levels

• Coarse-fine for communication across levels

• Efficient parallel I/O

• Multi-Resolution with Recursive Sub-Cycling 
• Boundary Conditions:

• No-slip and slip bounce back walls

• Accurate and robust curved walls

• Inflow/outflow, and periodic

D3Q19D2Q9

D2Q9 = 2D w/ 9-velocities…

Level=1Level=0 Level=2

t=dt0

t=dt2

t=0

t=dt =2*dt21

(coarse) (medium) (fine)

T
I
M
E

RESOLUTION



LAVA LBM: Verification and Validation
TURBULENT TAYLOR GREEN 
VORTEX BREAKDOWN TEST CASE:
• Motivation:

• Simple low speed workshop case for 

testing high-order solvers

• Illustrates ability of solver to simulate 

turbulent energy cascade

• Periodic boundary conditions

• Setup:

• Analytic initial condition

• Mach = 0.1

• Reynolds Number = 1600

• Triply periodic flow in a box

• Comparisons:
• LAVA’s Lattice Boltzmann (LB) solver 

captures the turbulent kinetic energy 

cascade from large scales to small 

scales extremely well.

• Performance compared to LAVA’s 

Cartesian grid Navier-Stokes WENO 

solver showed a factor of 50 speedup.
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LAVA LBM: Verification and Validation
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LES OF FLOW PAST A CYLINDER
• Well documented prototypical turbulent separated 

flow

• Detailed comparisons made with measurements and 

benchmark simulations

• Setup: Reynolds number = 3900

• Comparisons:
• LBM at 1M and 8M compares well with DNS @ 

400M (M = million points)

• 20x speedup even with embedded geometry:

• Excellent comparison with benchmark datasets (PIV, 

LES, DNS). DNS reference used Re=3300.

• More accurate than high-order upwind biased NS 

schemes for identical resolution
Navier-Stokes

Lattice BoltzmannLattice Boltzmann (passive particles for visualization)



Cavity-Closed Nose Landing Gear
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Grid Topology and Computational Setup

Mach = 0.166

Re = 66423 (D=Dstrut)

Uref = 58.32 m/s

Tref = 307.05 K

Pref = 98605 Pa

No-slip BC 

on landing gear

Far-field BC

Setup follows the partially-dressed, cavity-closed nose landing gear (PDCC-

NLG) noise problem from AIAA’s Benchmark problems for Airframe Noise 

Computations (BANC) series of workshops. (Problem 4. Nose landing gear)

https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN_files_/BANCIII.htm

LAVA Cartesian options:

• LBM uses EMRT with 

D3Q27

• NS uses WENO5 or 

WENO6 (as noted)



Cartesian Grid Resolution
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9 Levels (56M) 10 Levels (91 M)

11 Levels (260M) 12 Levels (1.6B)

Δx = 3.91e-3m Δx = 1.95e-3m 

Δx = 9.77e-4m Δx = 4.88e-4m 



Grid Sensitivity: Vorticity @ 10000 [1/s]
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9 Levels (56M) 10 Levels (91 M)

11 Levels (260M) 12 Levels (1.6B)



Grid Sensitivity: Vorticity Colored by Mach
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9 Levels (56M) 10 Levels (91 M)

11 Levels (260M) 12 Levels (1.6B)



Vorticity Colored by Mach Number
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LBM @ 1.6 billion: expense = 7.9 normalized wall time units (relative to 260M calc)



Velocity Magnitude (Center-plane)
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LBM @ 1.6 billion: expense = 7.9 normalized wall time units (relative to 260M calc)



Passive Particle Colored by Mach
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LBM @ 1.6 billion



Grid Sensitivity - PSD
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Channel 5: Upper Drag Link
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Grid Sensitivity - PSD
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Channel 13: Outer Wheel
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Grid Sensitivity - PSD
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Channel 4: Upper Door
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LBM vs NS - PSD
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Channel 5: Upper Drag Link
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LBM vs NS - PSD
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Channel 13: Outer Wheel
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Grid and Performance Statistics
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Method
CPU Cores

(type)

Cells 

(million)

Wall Days

to 0.19 sec

Core Days 

to 0.19 sec

Relative 

SBU 

Expense

NS-GCM 3000 (ivy) 298 20.5 61352 12.1

NS-IIM 9600 (has) 222 6.1 58490 15.3

LBM 1400 (bro) 260 2.25 3156 1

• For a comparable mesh size, LBM is 12-15 times faster (in CPU utilization) than Navier-Stokes with 

immersed boundaries, and is equally accurate. “Apples-to-apples” comparison with the exact same mesh 

& CPU-type is ongoing. Note: LBM code is not yet optimized, and we output volume data every 50 steps!

• LBM at 1.6 billion cells is ~2 times faster than NS at 298 million. This is a key enabler for unprecedented 

high resolution simulations.

• Performance details:

• Both Cartesian Navier-Stokes and LBM are memory-bound (not compute-bound) algorithms, the 

latter much more so than the former. Because of this, FLOPS are essentially “free”.

• Non-linear, LBM collision operation where all the work happens is entirely local!! Data locality is 

critical to the computational efficiency of LBM relative to high-order Cartesian NS codes.



Velocity Magnitude (Center-plane)
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NS-GCM @ 298 million: expense = 12.1NS-IIM @ 222 million: : expense = 15.3 

LBM @ 260 million: expense = 1.0 LBM @ 90 million: expense = 0.182



Summary
• Cartesian methods are very 

successful for the right problems

• Demonstrated the LBM 

approach on the AIAA BANC III 

Workshop Landing Gear 

problem IV.

• Computed results compare 

well with the experimental 

data

• 12-15 times speed-up was 

observed between LBM 

and NS calculations.

• LBM has better memory access 

and significantly lower floating 

point operations relative to 

WENO+RK4

• LBM has minimal numerical 

dissipation



Next Steps

LAVA LBM moving geometry formulation (in progress)

• Continue Verification & Validation efforts

• Improve wall modeling for arbitrarily complex geometry at high Reynolds 

numbers

• Moving geometry capability, including non-trivial motions (e.g. relative body, 

deformations, etc)

• Extend Mach number range to transonic and high speed flows

• Performance optimizations: serial and parallel

LAVA LBM full aircraft (in progress)

HLPW3, JSM, Case 2c, ! = 20.59°
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Questions ?
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• Accurate wall models are critical for Cartesian-grid approaches such as LBM

• Filter-based slip wall model: Follows the approach of Bose and Moin (POF, 2014). 

Adapted for LAVA LBM through a generalized slip algorithm. Traditional wall models 

based on law-of-the-wall hard to justify for the BANCIII landing gear noise simulation. 

Reynolds number is too low. Subcritical separation from wheels expected. 

• Traditional equilibrium and non-equilibrium wall models (In progress): Follows the 

approach of Kawai and Larsson (POF, 2012) and Yang et al. (POF, 2015). Rules that 

express unknown incoming populations in terms of known outgoing populations 

modified to enforce momentum flux computed by the wall model.

LAVA LBM: Wall Model
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In evolution, the distribution functions at boundaries
need to be specified according to boundary conditions for the
macroscopic variables. Here we consider velocity boundary
condition for curved walls. As shown in Fig. 1, the link be-
tween the fluid node xf and the wall node xw intersects the
physical boundary at xb , and xf!xw"ei! . The fraction of
the intersected link in the fluid region is "!(!xf#xb!)/(!xf
#xw!).

Note that the evolution of ID2Q9 consists of two com-
putational steps, i.e., the collision step f i

"(x,t)! f i(x,t)
###1( f i(x,t)# f i

(eq)(x,t)), and the streaming step, f i(x
"ei! ,t"!)! f i

"(x,t). Obviously, f i
"(xw) is needed to finish

the streaming step for the fluid node xf . To specify
f i

"(xw ,t), just as usually done in the Chapman–Enskog pro-
cedure, we decompose f i(xw ,t) into two parts: f i(xw ,t)
! f i

(eq)(xw ,t)" f i
(ne)(xw ,t), where f i

(eq)(xw ,t) and f i
(ne)(xw ,t)

are the equilibrium and the nonequilibrium part of f i(xw ,t),
respectively. Instead of using the original definition Eq. $2%,
the equilibrium part is approximated by a fictitious one de-
fined by

f̄ i
(eq)$xw%

!& i" '̄w"'0# ei•ūwcs
2 "

$ei•ūw%2

2cs
4 #

ūw
2

2cs
2$ % , $3%

where '̄w('(xf) is an approximation of 'w('(xw), and ūw
is an approximation of uw!u(xw) to be chosen. Note that the
LBM can be viewed as a special finite-difference scheme for
the Boltzmann equation on a discrete lattice.10 Therefore, it
is reasonable to determined ūw by a linear extrapolation us-
ing either ūw!uw1((ub"("#1)uf)/" or ūw!uw2((2ub
"("#1)uf f)/(1""), where uf!u(xf) and uf f!u(xf f)
with xf f!xf"ei! . Obviously, the difference between either
uw1 or uw2 and uw is O(!2). It is usually more accurate using
uw1 than using uw2 to approximate ūwf since xf is closer to
xw than xf f . However, if " is small, the denominator in the

expression of uw1 will be too large, and will lead to numeri-
cal instability in the computation. Therefore, we propose to
use ūw!uw1 for ")0.75, and use a linear interpolation be-
tween uw1 and uw2 with weight " for "$0.75, i.e., ūw
!"uw1"(1#")uw2. Either way gives that ūw!uw
"O(!2).

It is well understood that in the incompressible limit, the
density fluctuation is of order O(M 2), where M!u/cs%1 is
the Mach number. Therefore, '̄w!'w"!ei•*'!'w
"O(!M 2). Based on the expression of the shear viscosity v ,
we can obtain that M+u0 /cs!csRe(##0.5)!/L , where u0
and L are the characteristic velocity and length, respectively,
Re is the Reynolds number of the flow. Therefore, if # is
chosen such that csRe(##0.5)/L!O(1), the Mach number
M will be of the same order of the lattice spacing ! . We will
concentrate on this case next. Based on these arguments, the
difference between the fictitious equilibrium function
f̄ i
(eq)(xw) and the original one f i

(eq)(xw) may be estimated that

f̄ i
(eq)$xw%# f i

(eq)$xw%!O$!2%. $4%

The next task is to determine the nonequilibrium part
f i
(ne)(xw ,t). In the Chapman–Enskog analysis, f i

(ne)(xw ,t)
can be expressed as f i

(ne)!! f i
(1) , where f i

(1) is of the same
order of f i

(eq) . Note that f i
(1)(xw ,t)# f i

(1)(xf ,t)!O(!),
f i
(1)(xw ,t)# f i

(1)(xf f ,t)!O(!), thus f i
(ne)(xw ,t) can be ap-

proximated by the nonequilibrium part of the distribution
function at the fluid node xf or xf f with second-order accu-
racy. In order to be consistent with the definition of ūw , we
propose to use f i

(n)(xw ,t)! f i
(ne)(xf ,t) for ")0.75 and

f i
(ne)(xw ,t)!" f i

(ne)(xf ,t)"(1#") f i
(ne)(xf f ,t) for "$0.75.

Finally, we obtain the following boundary treatment to
specify the post-collision distribution function f i

"(xw ,t),

f i
"$xw ,t %! f̄ i

(eq)$xw ,t %"$1###1% f i
(ne)$xw ,t %. $5%

We can conclude from the above discussions that the present
boundary treatment is of second order accuracy in both time
and space.

Note that the present treatment is different from the
method proposed by Fillipova and Hänel7 $refered to as FH%
and the improved version proposed by Mei et al.8 $referred
to as MLS%. First, the FH $MLS% treatments can be viewed as
improvements of the bounce-back rule, but the present treat-
ment is an extension of the extrapolation scheme by Chen
et al.,6 and shares the advantages such as the self-consistency
and the easiness to be extended for other boundary condi-
tions including a combination of density, velocity, tempera-
ture, and their derivatives. Second, the basic assumptions of
the present and the FH $MLS% schemes are different. The FH
$MLS% scheme is under the assumption that the flow is
‘‘slow,’’ so they are only suitable for steady flows intrinsi-
cally. The basic requirement of the present scheme, however,
is that the Mach number and the lattice spacing are of the
same order. It is not a special condition for the present
scheme in that this is usually a common requirement in LBM
applications. Therefore, the present scheme needs no addi-
tional conditions in practice, and can be used for both steady
and unsteady flow in theory.

FIG. 1. Curved boundary and lattice nodes.
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