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NASA Workshop on Battery Technologies for Future Aerospace 

Applications, Cleveland, OH, August 16-17, 2017

Key Objectives of the workshop:

• Assess the battery needs for future aerospace missions

• Assess the state of battery technology and projected technology advances

• Assess  the need for additional investments for future aerospace missions. 

Participants:

• 109 participants, 85 non-NASA

• Leaders from DOE, DOE labs (ANL, PNNL, ORNL), Aerospace companies (Boeing, 

Airbus, Bell Helicopters, GE, P&W, Honeywell), Automotive companies (GM, Chrysler), 

Battery manufacturers (cell and pack manufacturers), academia, small businesses 

(many funded by venture capitalists)

Sessions:

• First day – 19 short (~20 min) overview presentations

• Second day morning – 3 breakout sessions – (1) requirements, (2) chemistry and 

materials, (3) packing and integration

Primary focus was on batteries for Electrified Aircraft Applications
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• Findings from the workshop

• Additional facts gathered from multiple sources after the workshop 

– System analysis

– Recent reviews of battery technology
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What is Included in This Presentation
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State-of-the-art:  Li-Ion Battery
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decrease
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• Cell: 250 Wh/kg

• Pack: 150 – 170 

Wh/kg

Potential:

• Cell: 300 Wh/kg

• Pack: ~200 

Wh/kg
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Complex oxide
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• 2-3 passenger, CTOL, 

200 miles, all electric

• 2 – 3 passenger, 

VTOL, 40-50 miles, all 

electric

• 6 – 10 passenger, 

CTOL, 300 – 600 

miles, all electric

• 4 – 10 passenger, 

VTOL, 60 – 200 miles, 

all electric

• 30 passenger, CTOL, 

300 miles, all electric

• 50-70 passenger, 

CTOL, 300 miles, 

hybrid electric

• Light utility helicopter, 

100 miles, hybrid 

electric

• Extended range for 

everything in Box 1

• 50 – 70 passenger, 

CTOL, > 300 miles, all 

electric ??

• 100 -150 passenger, 

CTOL, 300 miles, 

hybrid electric ??

• VTOL - Multi-mission 

helicopter, hybrid 

electric, 100  miles ?

• Extended range for 

everything in Box 2

• 737 type hybrid 

electric aircraft with at 

least 900 mile range, 

CTOL

• Extended range for 

everything in Box 3

1 2 3 4

Current capability, 

150 – 170 Wh/kg 300 Wh/kg 400 - 500 Wh/kg > 750  Wh/kgPack 

level

Cell 

level 250 Wh/kg ~400 Wh/kg ~600 Wh/kg ~1000 Wh/kg

Notional Battery Requirements for Different Classes of Aircraft
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Other Requirements in Addition to High Specific Energy

• Specific power (1 kW/kg for most 

applications, although some applications 

might require 2- 3 kW/kg)

• Cycle life (1000 - 2000 ??)

• Discharge rate (C rating)

• Speed of charging

• Calendar life
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System analysis 

required to identify 

detailed requirements
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Maximum cell:

~300 Wh/kg

Maximum cell:

~500 Wh/kg ?

Maximum cell:

~600 – 700  Wh/kg ?

Maximum cell:

~900 – 1000 Wh/kg ?

Beyond Li - Ion
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Current Collector

C, C-Si Anode

Cathode

Current Collector

Separator

Li Metal Anode
Separator

Cathode

Current Collector

Conventional Li-Ion 

Li Metal

Except for Li metal anode, everything else  

very similar to SOA Li-ion battery

• Claims of 400 – 450 

Wh/kg at cell level by 

startup companies

• Probably low cycle 

and long-term life (no 

publicly available 

data)

• Optimistic claim for 

commercial 

introduction in 

electric vehicles in 

2020 (????) – might 

need serious interest 

from a major 

manufacturer

• Focus of DOE BAT-

500 program

Pack Level

300 Wh/kg achievable 

at pack level

Li Metal With Liquid Electrolyte and Conventional cathode

ANL study
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Progress to date:

• 300 – 400 Wh/kg achieved at cell level, low cycle life

• 250 Wh/kg at pack level, low cycle life

• 180 Wh/kg at cell level with high cycle life

Challenges:

• Limited cycle life  (< 300 cycles)

• High self discharge rate

• Reactions not well understood

Liquid electrolyte

Li – S Batteery

Maximum achievable specific energy at 

pack level is < 500 Wh/kg

ANL study
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• Limited cycle life

• Complex mechanical system for introduction of 

oxygen

• Maximum achievable specific energy at pack 

level no better than Li metal with liquid 

electrolyte and conventional cathode

Li – Air Battery

ANL study

http://theelectricenergy.com/wp-content/uploads/2013/11/Metallic-Lithium-Batter-Circuit-Diagram.png
http://theelectricenergy.com/wp-content/uploads/2013/11/Metallic-Lithium-Batter-Circuit-Diagram.png
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Current Status:

• Significant world-wide interest (Strong belief that solid state 

is the future)  - Eliminates safety challenges associated with 

liquids,  provides better packing and stack designs

• Significant progress made in development of solid ceramic 

electrolytes with high ionic conductivity 

• Solid state battery with solid state polymer electrolyte – 250 

Wh/kg at cell level, potential for 400 Wh/kg at cell level 

(required 180oC operating temperature)

Challenges:

• Interfacial instability and lack of 

understanding of various interfacial 

phenomena

• Mechanical stability

• Low cycle life contributed by 

interfacial and mechanical 

instability

• Commercially scalable process for 

manufacturing of thin films

• Development of full cell

Significant Promise

Solid State Lithium Metal Battery

~3.7V ~11V

Liquid electrolyte forces 

repeating units to be 

connected in parallel

Solid  electrolyte allows 

repeating units to be 

connected in series (increase 

in packing density)
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300 Wh/kg

300 – 400 Wh/kg

400 – 500 Wh/kg

300 - >500 Wh/kg

Si anode, advanced cathode (e.g., High Ni), liquid electrolyte

• Li metal  anode, advanced cathode (High Ni 

- NMC or sulfur), Liquid electrolyte 

• Li metal anode + high temperature polymer 

electrolyte

Li metal  anode, sulfur cathode, 

liquid or solid electrolyte 

Li metal, all solid state

Li ion

Li Metal 

SOA – 250 Wh/kg at cell level

Notional Progression of Battery Capability at Cell Level
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Cell

15 % loss from cell to 

pack

32 % loss from cell to 

pack (current)

Assuming 8% increase per year at cell level

Innovation required in:

• New chemistries and 

materials for cells

• Pack design and 

integration

Rate of increase in specific energy is typically on the order of 5 – 8% per year

Specific energy loss from cell to pack is typically 50 to 60%

Projected Advances in Battery Technology

Pack



NASA GRC •  RESEARCH AND ENGINEERING DIRECTORATE

Key Takeaways

• DOE, battery industry, academia, National Labs will drive to 300 Wh/kg at pack 

level (~400 Wh/kg at cell level) for automotive and industrial applications, but will 

not be focused on electric aircraft  applications

– 2022 – 2025 timeframe likely (optimistic ??)

– Need to demonstrate applicability to aircraft through verification of performance, 

safety, and integration

• Beyond the 400 Wh/kg capability at cell level, aeronautics community can focus 

on developing batteries with 600 Wh/kg specific energy at cell level (400 – 500 

Wh/kg at pack level), which is achievable and not impossible  

– Not current focus for DOE, battery industry, and national labs

• Specific energy on the order of > 700 Wh/kg at pack level is extremely difficult to 

achieve with the current knowledge, almost impossible at this time

• Need detailed system level analysis for different classes of aircraft and different 

missions

14

Aeronautics community  lead is necessary to champion development 

of aircraft materials, cells and packs 
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• 2-3 passenger, CTOL, 

200 miles, all electric

• 2 – 3 passenger, VTOL, 

40-50 miles, all electric

• 6 – 10 passenger, 

CTOL, 300 – 600 miles, 

all electric

• 4 – 10 passenger, VTOL, 

60 – 200 miles, all 

electric

• 30 passenger, CTOL, 

300 miles, all electric

• 50-70 passenger, CTOL, 

300 miles, hybrid electric

• Light utility helicopter, 

100 miles, hybrid electric

• Extended range for 

everything in Box 1

• 50 – 70 passenger, 

CTOL, > 300 miles, all 

electric ??

• 100 -150 passenger, 

CTOL, 300 miles, hybrid 

electric ??

• VTOL - Multi-mission 

helicopter, hybrid 

electric, 100  miles ?

• Extended range for 

everything in Box 2

• 737 type hybrid electric 

aircraft with at least 900 

mile range, CTOL

• Extended range for 

everything in Box 3

1 2 3 4

Current capability, 

150 – 170 Wh/kg 300 Wh/kg 400 - 500 Wh/kg > 750  Wh/kg
Pack 

level

Cell 

level 250 Wh/kg ~400 Wh/kg ~600 Wh/kg ~1000 Wh/kg

• Potentially achievable in 

2022-25 timeframe with 

non-NASA investment

• Need validation for 

aircraft application

Challenging, but 

achievable in 2030 

timeframe, will need 

leadership from 

aeronautics community, 

Extremely challenging, 

may be impossible with 

current knowledge

Potential Scenario  for Electrified Aircraft
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Potential for Innovation in Packing and Integration

• Specific energy loss from cell to pack is typically on the order of 30 – 40 %, could be as 

high as 50% for some applications - opportunity to increase specific energy  at pack 

level through innovation in packing and integration

• Potential concepts:

– Lightweight container structure (e.g., cellular, lattice block)

– Multifunctional structures with load carrying capability for packaging materials

– Advanced thermal management techniques (e.g., phase change materials if cost is not a factor, high 

conductivity materials)

– Integrated thermal management – system approach to cool battery packs

– Polymer heat exchangers

– Larger cells

• Innovation in battery health management – improved techniques/models (including 

move to software-based system) for state-of-charge and state-of-health estimation

16

Aeronautics community  needs to lead innovation in packing and 

integration specific to aircraft applications
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Non-Li Battery System to Watch

• Al – air

• Mg – air

• Zn-air

• Flow batteries

17

Schematic of Flow Battery

http://www.solarchoice.net.au/blog/wp-content/uploads/Flow-battery-schematic.png
http://www.solarchoice.net.au/blog/wp-content/uploads/Flow-battery-schematic.png


NASA GRC •  RESEARCH AND ENGINEERING DIRECTORATE

Role of Aeronautics Community in Battery Development

• Accelerate development of 300 Wh/kg battery pack (400 Wh/kg cell) for 

electrified aircraft application by

– Developing innovative packing technologies

– Studying safety of battery system and optimizing battery system for safety

– Generating performance data under aircraft operating conditions and optimizing 

battery system for balancing performance and safety

– Developing and validating battery performance and durability models

• Provide leadership for development of 400 – 500 Wh/kg battery pack 

(600 Wh/kg cell) system leveraging resources in Dept. of Energy, 

National Labs, battery industry, and academia

• Conduct system analysis to identify battery requirements for various 

classes of aircraft and various missions
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