
Reducing the Software Risk in
Ground Systems

February 26, 2018
Brandon Bailey

brandon.t.bailey@nasa.gov
304-629-8992

Ground System Architectures Workshop
Tutorial I

NASA’s IV&V Program
Safety and Mission Assurance (SMA) Office

Information Assurance/Cybersecurity Support
http://www.nasa.gov/centers/ivv

Agenda/Outline

• Tutorial I Outline:
– Getting on the Same Page with Ground Systems
– Threat Landscape
– What is SW in a Ground System?
– SW Security is Required but Barriers Exist
– What about NIST?
– Approach for Secure and Resilient Software

• System Threat Modeling
• Sample Process for Developing Secure Software
• Software Threat Modeling
• Alphabet Soup - VA, SCA, OA, CWE, CVE, CWSS

– Ground Software Example: FEPs
– Near Team Goals and What to do Now?
– Trends and Lessons Learned

2

Defining “Ground Systems” @ NASA

3

Spacecraft Ground Systems encompasses the
entire system, beginning with issuing the
command from the MOC up until it emits from the
antenna to the reception of radio signals down at
the antenna to displaying telemetry on the MOC
computer

TLM
Archive

Defining “Ground Systems”
…in the Military World

4
http://www.cyberdefensereview.org/2015/12/10/mission-command-primer/

http://www.cyberdefensereview.org/2015/12/10/mission-command-primer/

Are the Threats Real?

5

It’s making the news….

Are the Threats Real?

6

Research Paper
David Livingstone and Patricia Lewis
International Security Department | September 2016

Space, the Final Frontier for Cybersecurity?

“Attacks on the ground infrastructure, such as satellite control
centres, the associated networks and data centres, leading to
potential global impacts (for example on weather forecasting

systems, which use large quantities of space-derived data).”

As a result, the technology installed in them and in some ground
systems can become obsolete, creating serious legacy problems.

The pace at which technology evolves makes it hard, or even
impossible, to devise a timely response to space cyberthreats.

The vulnerabilities of satellites to cyberattack include attacks
that are aimed at ground stations.
Most satellites launched in recent years rely on computers
that are installed in the satellite themselves and that require

regular upgrades through remote access.

Two US government satellites fell victim to cyber-attacks in 2007
and 2008, claims report highlighting control systems' vulnerability.
The report, warns: "Access to a satellite's controls could allow an
attacker to damage or destroy the satellite. " The Landsat 7
satellite saw 12 minutes of "interference" in October 2007; the
Terra then suffered two minutes in June 2008. In July 2008 the
Landsat 7 had another 12 minutes' interference. Finally in October
2008 the Terra was affected for nine minutes.

[ref: https://www.theguardian.com/technology/2011/oct/27/chinese-hacking-us-satellites-suspected]/

https://www.theguardian.com/technology/2011/oct/27/chinese-hacking-us-satellites-suspected%5D/

Evolving Threatscape for Space Missions

7

THREATS ARE BOTH
BECOMING MORE FREQUENT
AND MORE MALICIOUS

PAST:
• KNOWN VULNERABILITIES AND

ATTACK VECTORS
• OUT OF BOX SECURITY

CURRENT:
• EMERGING THREATS
• PHISHING
• INSIDER THREAT
• ADVANCED PERSISTENT

THREATS (APT)
• ZERO-DAY THREATS

CURRENT/FUTURE:
• UNKNOWN VULNERABILITY

AND/OR THREAT
• VULNERABILITY AT CREATION
• SUPPLY CHAIN
• OTHERS…

SATELLITE SYSTEM
VULNERABILITIES TO THREATS

• Custom software located throughout the
system present potential vulnerabilities
to software threats
- Spacecraft
- Mission Operations Center (MOC)
- Mission planning area
- Software development environment

• Software interfaces throughout the
system, present potential vulnerabilities –
both insider and external threats

• Software resiliency to vulnerabilities and
weaknesses
- Security architecture
- Software controls against credible

threats
- Common Weakness Enumerations

(CWEs)
- Common Vulnerabilities and Exposures

(CVEs)

Adversary Tiers

8

Tier Name Skills Maliciousness Motivation Methods

I
Script Kiddies Very low Low Boredom, thrill

seeking
Download and run already-
written hacking scripts known
as “toolkits”

II
Hackers for Hire Low Moderate Prestige,

personal gain,
thrill seeking

Write own scripts, engage in
malicious acts, brag about
exploits

III

Small Hacker Teams,
Non-State Actors OR
Disorganized/Non-
Advanced State
Actors

Moderate Moderate Power,
prestige,
intellectual
gain, respect

Write scripts and automated
tools

IV

Large, Well-
Organized Teams,
Criminal, Non-State,
or State Actors

High High Personal gain,
greed, revenge

Sophisticated attacks by
criminal/thieves, may be
“guns for hire” or involved in
organized crime

V Highly-Capable State
Actors

Very high Very high Ideology,
politics,
espionage

State sponsored, well-funded
cyber-attacks against enemy
nations

VI
Most Capable State
Actors

Space Systems ARE Vulnerable!

9

Space communication ALSO
depends on “traditional” IT assets

=
Vulnerable to common software

based attacks

Tier V-VI

Tier I-VI

Tier III-VI

Tier III-VI

Back to the Basics

A. Custom developed?
B. Commercial-off-the-Shelf

(COTS) Software?
C. Government-off-the-Shelf

(GOTS) Software?
D. Free and Open Source

Software (FOSS) ?
E. Industrial Control System

(ICS) Software

10

• In Ground Systems….What is Software?

• In Ground Systems….Where is Software Used?

Answer: All of the Above

Scope for this Discussion…

11

TLM

CMD

Command and Control (C2)

Modem

CMD

TLM

CMD

TLM

FEP

CMD

TLM

CM
D

TL
M

ECHO

Interacts with ground
software (combo of
COTS/GOTS/FOSS)

Operating System
(Windows, Linux, etc.)

FEPs (RT Logic,
Amergint, Avtec etc.)

Software Security

• Why
– SW controls mission critical activities such as

command sequencing, scheduling, satellite tracking,
launch control and payload operations

• What
– With any system or system of systems, the software

is a critical component and the security of said
software is equally important

• How
– Designing in security (e.g. threat modeling) and using

secure coding practices (e.g. coding standards and
tools)

12

But Where are the Requirements?

13

• OMB-130 -- “Security of Federal Automated Information Systems”
• Executive Order 13800, Strengthening the Cybersecurity of Federal Networks and Critical

Infrastructure,
• Federal agency directives (DoD 8510.01, NASA NPR 2810, etc.)
• DoDI 5000.02 and DoDI 5200.39
• …

FISMA requires each agency to use a risk-based approach to develop, document,
and implement an agency wide security program for the information and

information systems that support the operations and assets of the agency, including
those provided or managed by another agency, contractor, or other source.

https://www.whitehouse.gov/the-press-office/2017/05/11/presidential-executive-order-strengthening-cybersecurity-federal

Flowing Down…

• How do these directives, EOs, policies, etc.
prevent software weaknesses and vulnerabilities
(e.g. buffer overflows and unsanitized input)?
– SW developers do not develop to these requirements

which is a barrier

14

Other Barriers to Reducing SW Risk

15

Barrier Detail
Security as a Technical
(Systems Engineering)
function

Programs/Systems may choose to comply with baseline controls
in the NIST 800 series compared to performing the mission
security analysis using risks and threats

Evolving Threatscape The evolving threatscape entails full understanding of current
and future threats that can exploit system vulnerabilities

Security is more than IT The perception that Information Technology (IT) protects (e.g.
border firewalls) a mission environment is no longer adequate
in the evolving threatscape

Complex Supply Chains System complexity leads to large supply chains, including
delivery of various products using varying processes

Belief “This will not
happen to me”

Given the history of success of NASA/DoD missions, a cavalier
attitude is possible. This is not secure, given the evolving
threatscape. Hope is not the security strategy, any more than it
is for Safety.

Other Barriers to Reducing SW Risk

16

Barrier Detail
Culture of Openness Security control of information is counter to some cultures of

openness and sharing with International Partners and the Public
(e.g. NASA).

Traditional Systems
Engineering approach
led to stovepipe
elements

The top-down elaboration and allocation process has
successfully led to complex systems being developed, including
infrastructure and legacy systems. The advent of security has a
unique architecture view to traditional systems engineering
approaches

Security as a Priority The priority of security must be emphasized at an Agency,
Program, Center/Installation, and Project level.

Governance and
Organizations

To achieve an appropriate security posture, organizations such
as the Protection Programs, Chief Information Officers, System
Engineers, Operators, Institutional Systems, Programs, and SMA
need to work together.

Terminology An outcome of the multiple organizations is that each may have
slightly unique vernacular. Arriving at a common terminology
enables a shared strategy, implementation and operation.

NIST Can Help….

• If implemented and governed properly NIST can help but
usually NIST is thought to be “compliance” only

• The security control structure is made up of the following
sections:

– Control section
– Supplemental guidance section
– Control enhancements section
– References section
– Priority and baseline allocation section

• Remember! NIST provides guidance not requirements
• NIST intentionally presents controls written at a very high

level of abstraction
– System Specification Requirements:

• Developed by translating the abstract controls into specific requirements
– These would be further decomposed from the system level

17

Example: SI-10 (NIST 800-53 Rev 4)

18

NIST Security Controls that
Apply to Software
• Compiled an initial selection of NIST 800-53r4 controls that relate to software or

software control
• 113 of 343 “High” Baseline controls and enhancements implemented by software

• Note: Additional controls or enhancements may be brought into focus while
following the evidence in support of an analysis finding

19

ID FAMILY Relates to
software

Total

AC Access Control 24 43

AU Audit and Accountability 19 28

CM Configuration Management 8 31

IA Identification and Authentication 20 24

MP Media Protection 1 12

RA Risk Assessment 3 8

SC System and Communications Protection 22 30

SI System and Information Integrity 16 27

		Control Family

		Control ID

		Control Name

		Access Control

		AC-02 (01)

		account management | automated system account management

		

		AC-02 (02)

		account management | removal of temporary / emergency accounts

		

		AC-02 (03)

		account management | disable inactive accounts

		

		AC-02 (04)

		account management | automated audit actions

		

		AC-02 (11)

		account management | usage conditions

		

		AC-02 (12)

		account management | account monitoring / atypical usage

		

		AC-02 (13)

		account management | disable accounts for high-risk individuals

		

		AC-03

		Access Enforcement

		

		AC-04

		Information Flow Enforcement

		

		AC-06 (09)

		least privilege | auditing use of privileged functions

		

		AC-06 (10)

		least privilege | prohibit non-privileged users from executing privileged functions

		

		AC-07

		Unsuccessful Logon Attempts

		

		AC-08

		System Use Notification

		

		AC-10

		Concurrent Session Control

		

		AC-11

		Session Lock

		

		AC-11 (01)

		session lock | pattern-hiding displays

		

		AC-12

		Session Termination

		

		AC-17 (01)

		remote access | automated monitoring / control

		

		AC-17 (02)

		remote access | protection of confidentiality / integrity using encryption

		

		AC-17 (03)

		remote access | managed access control points

		

		AC-18 (01)

		wireless access | authentication and encryption

		

		AC-18 (04)

		wireless access | restrict configurations by users

		

		AC-19 (05)

		access control for mobile devices | full device / container-based encryption

		

		AC-21

		Information Sharing

		Audit and Accountability

		AU-02

		Audit Events

		

		AU-03

		Content of Audit Records

		

		AU-03 (01)

		content of audit records | additional audit information

		

		AU-03 (02)

		content of audit records | centralized management of planned audit record content

		

		AU-05

		Response to Audit Processing Failures

		

		AU-05 (01)

		response to audit processing failures | audit storage capacity

		

		AU-05 (02)

		response to audit processing failures | real-time alerts

		

		AU-06 (01)

		audit review, analysis, and reporting | process integration

		

		AU-07

		Audit Reduction and Report Generation

		

		AU-08

		Time Stamps

		

		AU-08 (01)

		time stamps | synchronization with authoritative time source

		

		AU-09

		Protection of Audit Information

		

		AU-09 (02)

		protection of audit information | audit backup on separate physical systems / components

		

		AU-09 (03)

		protection of audit information | cryptographic protection

		

		AU-10

		Non-repudiation

		

		AU-11

		Audit Record Retention

		

		AU-12

		Audit Generation

		

		AU-12 (01)

		audit generation | system-wide / time-correlated audit trail

		

		AU-12 (03)

		audit generation | changes by authorized individuals

		Configuration Management

		CM-02 (02)

		baseline configuration | automation support for accuracy / currency

		

		CM-05 (01)

		access restrictions for change | automated access enforcement / auditing

		

		CM-05 (03)

		access restrictions for change | signed components

		

		CM-06 (01)

		configuration settings | automated central management / application / verification

		

		CM-06 (02)

		configuration settings | respond to unauthorized changes

		

		CM-07

		Least Functionality

		

		CM-07 (02)

		least functionality | prevent program execution

		

		CM-07 (05)

		least functionality | authorized software / whitelisting

		Identification and Authentication

		IA-02

		Identification and Authentication (Organizational Users)

		

		IA-02 (01)

		identification and authentication (organizational users) | network access to privileged accounts

		

		IA-02 (02)

		identification and authentication (organizational users) | network access to non-privileged accounts

		

		IA-02 (03)

		identification and authentication (organizational users) | local access to privileged accounts

		

		IA-02 (04)

		identification and authentication (organizational users) | local access to non-privileged accounts

		

		IA-02 (08)

		identification and authentication (organizational users) | network access to privileged accounts - replay resistant

		

		IA-02 (09)

		identification and authentication (organizational users) | network access to non-privileged accounts - replay resistant

		

		IA-02 (11)

		identification and authentication (organizational users) | remote access - separate device

		

		IA-02 (12)

		identification and authentication (organizational users) | acceptance of piv credentials

		

		IA-03

		Device Identification and Authentication

		

		IA-04

		Identifier Management

		

		IA-05 (01)

		authenticator management | password-based authentication

		

		IA-05 (02)

		authenticator management | pki-based authentication

		

		IA-06

		Authenticator Feedback

		

		IA-07

		Cryptographic Module Authentication

		

		IA-08

		Identification and Authentication (Non-Organizational Users)

		

		IA-08 (01)

		identification and authentication (non-organizational users) | acceptance of piv credentials from other agencies

		

		IA-08 (02)

		identification and authentication (non-organizational users) | acceptance of third-party credentials

		

		IA-08 (03)

		identification and authentication (non-organizational users) | use of ficam-approved products

		

		IA-08 (04)

		identification and authentication (non-organizational users) | use of ficam-issued profiles

		Media Protection

		MP-05 (04)

		media transport | cryptographic protection

		Risk Assessment

		RA-05 (01)

		vulnerability scanning | update tool capability

		

		RA-05 (02)

		vulnerability scanning | update by frequency / prior to new scan / when identified

		

		RA-05 (05)

		vulnerability scanning | privileged access

		System and Communication Protection

		SC-02

		Application Partitioning

		

		SC-03

		Security Function Isolation

		

		SC-04

		Information in Shared Resources

		

		SC-05

		Denial of Service Protection

		

		SC-07

		Boundary Protection

		

		SC-07 (05)

		boundary protection | deny by default / allow by exception

		

		SC-07 (07)

		boundary protection | prevent split tunneling for remote devices

		

		SC-07 (08)

		boundary protection | route traffic to authenticated proxy servers

		

		SC-07 (18)

		boundary protection | fail secure

		

		SC-07 (21)

		boundary protection | isolation of information system components

		

		SC-08

		Transmission Confidentiality and Integrity

		

		SC-08 (01)

		transmission confidentiality and integrity | cryptographic or alternate physical protection

		

		SC-10

		Network Disconnect

		

		SC-13

		Cryptographic Protection

		

		SC-15

		Collaborative Computing Devices

		

		SC-20

		"Secure Name /Address Resolution Service

		

		SC-21

		"Secure Name /Address Resolution Service

		

		SC-22

		"Architecture and Provisioning for

		

		SC-23

		Session Authenticity

		

		SC-24

		Fail in Known State

		

		SC-28

		Protection of Information at Rest

		

		SC-39

		Process Isolation

		System and Information Integrity

		SI-02 (02)

		flaw remediation | automated flaw remediation status

		

		SI-03

		Malicious Code Protection

		

		SI-03 (02)

		malicious code protection | automatic updates

		

		SI-04 (02)

		information system monitoring | automated tools for real-time analysis

		

		SI-04 (04)

		information system monitoring | inbound and outbound communications traffic

		

		SI-04 (05)

		information system monitoring | system-generated alerts

		

		SI-05 (01)

		security alerts, advisories, and directives | automated alerts and advisories

		

		SI-06

		Security Function Verification

		

		SI-07

		Software, Firmware, and Information Integrity

		

		SI-07 (01)

		software, firmware, and information integrity | integrity checks

		

		SI-07 (02)

		software, firmware, and information integrity | automated notifications of integrity violations

		

		SI-07 (05)

		software, firmware, and information integrity | automated response to integrity violations

		

		SI-07 (07)

		software, firmware, and information integrity | integration of detection and response

		

		SI-10

		Information Input Validation

		

		SI-11

		Error Handling

		

		SI-16

		Memory Protection

NIST Too High Level?

• NIST can be too high level and abstract for SW
developers

• Common Weakness Enumeration (CWE) prevention is a
more implementable “requirement”

• For the same SI-10 NIST Control the following CWEs
apply
– 77, 134, 22, 23, 20, 73, 79, 78, 119, 787, 805, 131, 170

• Whatever your method, requirements need to be clear
and understood
– Requirement to have “secure code” is not good enough
– Requirement to implement and be compliant with NIST is

not good enough without thorough technical governance

20

An Approach for Secure & Resilient SW

• Not “the” approach but “an” approach to help
solve this problem
– We do agree a problem exists, right?

• Need secure designs and secure code
– Is their a difference?
– CWE prevention != Secure Design & vice versa

• “An” approach to secure design = Threat
Modeling (system and code level)

• “An” approach to secure code = CWE prevention
(oh….and don’t forget CVE prevention either)

21

System Level Threat Modeling

22

Generalized Process to Develop
Secure Software
• Systems Engineering Process to design out security risk
• Establish credible threats and vulnerabilities, and designs in software controls, following NIST guidelines
• Once security implementation approach is established (System Security Plan), development proceeds

23

Part 2: Develop Security Strategy
- Develop security architecture and ConOps
- Capture in Project Protection Plan
- Preliminary @ SDR; Baseline @ PDR

Part 3: Select and Tailor Security
Controls
- Many controls software based
- Preliminary @ SDR, Baseline @ PDR

Part 1: Assess Mission for Credible Threats, and Vulnerabilities
-Credible threats based on situational environment
-Vulnerabilities assessed by establishing security risk to system
- Preliminary @ KDP 0 (~SRR); Baseline @ KDP 1 (~SDR)

Part 4: Implement and Test Security Strategy and Controls

Products: Verified and Validated Secure Software

• Defined controls become basis for system and software requirements
• Implement in accordance with traditional lifecycle development
• System level tests consider threat scenarios

Part 3: The Security Plan
is a Pivotal artifact that

captures security
strategy, presents

controls and sets the
basis for implementation

Lifecycle development occurs based on
the SSP and secure coding practices

• Development of the Project Protection Plans (PPP)
require an understanding of credible threats

• Developing credible threats for identified mission
– General information in CCSDS green book
– Leverage all intel sources at all levels
– Threat Summary can be classified Top Secret

• The key project inputs for the threat summary
process are:

– Mission overview
– Lifecycle phase

• Evolving Threat Summary process – work with all
stakeholders and other agencies to identify credible
threats in order to develop the PPP.

Threat Summary:
Documents the threat

environment that a
space

system/constellation
or aircraft is most likely

to encounter as it
reaches operational

capability

Part 1: System Security Threat
Understanding

24

– CONOPS
– Communication links

https://public.ccsds.org/Pubs/350x1g2.pdf

The key elements of the Project Protection Plan (PPP):
• Vulnerabilities Analysis

– What will prevent the system from reaching mission
requirements due to threats causing vulnerabilities?

• Risk Analysis
– Sufficient detail must be documented in the risk analysis for senior decision makers to

approve the project at key decision points (KDPs). The risk analysis must answer all
the vulnerabilities driven by the threat and potential countermeasures and mitigations.

– Also in the risk analysis, document what risks will not be addressed and the rationale
behind that decision.

– Consider Defense in Depth,
Evolving Threatscape

• Likely a classified document
and should have information

Part 2: Develop Security Strategy

25

• Mission Overview
• Mission Support Elements

• e.g., Comm networks, ground systems,
navigations and tracking systems, enterprise
security

• Threat Overview
• System Criticality and Susceptibilities

• Architecture – critical elements and nodes
• CONOPS – critical processes

• Mission Vulnerabilities and Risks
• Protection Strategies

• Countermeasures

PPP

Part 3: The System Security Plan
• In order to select controls, begin by specifying and

documenting the information system’s…
– Categorization per FIPS-199
– Information types
– Security impact

levels for
• Confidentiality
• Integrity
• Availability

– Security boundary and
interfaces

• Each information system has its own SSP (multiple per mission) per the strategy
provided in the Project Protection Plan. Risk assessment captured in companion
document, Risk Assessment Report (RAR).

26

INFORMATION TYPE
(Derived from NIST SP 800-60)

D11 – Transportation

INFORMATION SUB-TYPE D11.4 – Space Operations

Confidentiality Impact Level NIST: Low OWNER: Moderate

Integrity Impact Level NIST: High OWNER: High

Availability Impact Level NIST: High OWNER: High

Justification for any deviation from
the NIST recommended impact level

Business functions involve
proprietary information

• NIST = National Institute of Standards and Technology
• FIPS = Federal Information Processing Standard
• FIPS Publications are standards issued by NIST after approval

Select all the security controls
based on the security

categorization process

Tailor by applying scoping,
parameterization,

and compensating control
guidance

Supplement with
Agency supplemental security
controls for selected controls

Document in the SSP
Security Controls, in

SSP

Specify the minimum control requirements

Identify from this set which of the security controls are common
controls or controlled by another organization

Ite
ra

te
 a

nd
 e

vo
lv

e

Ite
ra

te
 a

nd
 e

vo
lv

e

Baseline of
Security Controls

Tailored and
Scoped Security

Controls

Supplemented
Security Controls

Part 3: Select and Tailor Security Controls

27

To select security controls, engineers must:

• Risk based process
• Engineering Analysis
• Iterative in nature
• Continuous monitoring

System Security Plan
• Information types
• Security impact levels

for Confidentiality,
Integrity, Availability

• Security boundary and
interfaces

• Security controls

Part 3: Security Controls Families (NIST 800-53)
Within a Control Family, analyze controls based on
1) Required controls, based on FIPS-199 classification

28

ID FAMILY

AC Access Control

AT Awareness and Training

AU Audit and Accountability

CA Security Assessment and
Authorization

CM Configuration Management

CP Contingency Planning

IA Identification and
Authentication

IR Incident Response

MA Maintenance

MP Media Protection

PE Physical and
Environmental Protection

PL Planning

PS Personnel Security

RA Risk Assessment

SA System and Services Acquisition

SC System and Communications Protection

SI System and Information Integrity

PM Program Management = relates to software or software control

2) Evaluation of supplemental controls, enhancements
that are not explicitly specified
Example SI-10 (3)
SI-10 Information Input Validation.
Enhancement (3) Information input validation | Predictable
behavior The information system behaves in a predictable and
documented manner that reflects organizational and system objectives
when invalid inputs are received.
Supplemental Guidance: …This control enhancement ensures that
there is predictable behavior in the face of invalid inputs by specifying
information system responses that facilitate transitioning the system to
known states without adverse, unintended side effects.

Complexity of satellite
development supply chains
pose vulnerabilities

Part 4: Secure Software
Development

Example Supply Chain Risks

• Undefined security requirements,
policies, and practices limiting
overarching security
considerations

• Insecure software delivery
mechanisms, leading to theft or
malware injection

• Code and design defects that lead
to vulnerable software

• Integration of insecure 3rd party
libraries.

Software Threats Description (CCSDS Green Book, Section 3.4.9) Mitigations/Controls

Users, system operators, and programmers often make mistakes that
can result in security problems. Users or administrators can install
unauthorized or un-vetted software, which might contain bugs,
viruses, spyware, or which might simply result in system instability.
System operators might configure a system incorrectly resulting in
security weaknesses. Programmers may introduce logic or
implementation errors which could result in system vulnerabilities
or instability.

• Unauthorized/Un-Vetted SW: Provide
appropriate focus on Supply Chain risks

• Logic/Implementation Errors: Utilize
Coding Standards and integrate tools
into development environment (e.g. VA,
OA, SCA, Threat Modeling)

• Plan for Defense in Depth and secure the
development environment

Program
Office

Supplier

Acquire
Develop
In-house

Supplier

Reuse

Outsourc

Supplier

Open-Source
Software

Contractor

COTS

Acquire
Develop
In-house

Reuse

Outsource

Offshore

US Foreign
Developers

Foreign
Location

Foreign

Global
US

Contractor
?

?

?

?

?

?

?
?

? ?

?

Prime
Contractor

Legacy
Software

Other
Programs

29

Software Threat Modeling

• Microsoft Threat Modeling Process
– Who

• The adversary does a good job so maybe we should try it
– What

• Repeatable process to find & address all threats to SW
– When

• Earlier the better, gives more time to fix
– Why

• Find problems earlier and ensures more secure SW
– How

30

https://download.microsoft.com/download/9/3/5/935520EC-D9E2-413E-BEA7-0B865A79B18C/Introduction_to_Threat_Modeling.ppsx

Some Key Features

• Identify threats to the SW as a whole
to include the security features and
attack surfaces

• Enables improving SW design by to
effectively find security problems
early in the process

• STRIDE

31

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

Standard Mitigations

32

Resources

33

Secure Software Development
Tools: VA vs SCA vs OA

• Vulnerability Assessment (VA)
– Running of tool(s) to identify known vulnerabilities and/or configuration

settings that could lead to an impact to confidentiality, integrity or availability.
VA identifies Common Vulnerabilities and Exposures (CVEs) or non-compliance
with compliance regulations (e.g. STIGs)

• Static Code Analysis (SCA)
– Running of tools that attempt to highlight possible weaknesses within 'static'

(non-running) source code by using techniques such as taint analysis and data
flow analysis. SCA identifies Common Weakness Enumerations (CWEs).

• Origin Analysis (OA)
– OA fingerprints the binaries and folder structures, which discovers the third-

party components used by the developer of the software, and creates a “bill
of materials”. Based on each identified component and its version, the tool
then crosschecks its database for known vulnerabilities and software licenses
associated with the component and categorize each as potential security or
operational risks respectively. OA identifies Common Vulnerabilities and
Exposures (CVEs) and risks with open source license usage. 34

https://cve.mitre.org/
https://iase.disa.mil/stigs/Pages/index.aspx
https://cwe.mitre.org/
https://cve.mitre.org/

We “should” be doing this already!

• The requirements for security testing software are
present in existing guidance (e.g. NIST Control RA-5)

– Knowledge, tool availability, oversight and governance could be
improved which puts government at risk

– Credentialed vulnerability scanning, static code analysis, origin
analysis and dynamic analysis of software is needed to
adequately reduce software risk

35

https://nvd.nist.gov/800-53/Rev4/control/RA-5

Assess SW against Common Vulnerabilities and exposure
(CVE):
• Identifies publicly known information security vulnerabilities and

assign them a CVE_ID.
• Scored 1 to 10 on CVSS scale
• Operating Systems, Applications, FOSS, etc. 36

Common Weakness Enumerations (CWE):
Serves as a common language for describing software security weaknesses in architecture, design, or code.
Protection is important for Ground SW, less vulnerabilities/threats for Flight SW. Originated by MITRE.

• Standard measuring stick for software security tools targeting these weaknesses
• Common baseline standard for weakness identification, mitigation, and prevention efforts
• Utilize CWE to better understand, identify, fix, and prevent weaknesses and vulnerabilities

Assess CWEs against common attack pattern enumeration
and classification (CAPEC):
• Community-developed list of common attack patterns
• Comprehensive schema and classification taxonomy
• International in scope

Common Weakness Scoring System (CWSS) of CWEs
• High impact within our system
• Values will be different for flight and ground (system dependent)

Top/Most
Dangerous CWEs

CWEs may already be addressed
through good coding practices

including use of static code
analyzers with appropriate

checkers (e.g. buffer overflow),
coding standards, code

walkthroughs, etc.

with

Secure and Resilient Code

https://cve.mitre.org/
https://cwe.mitre.org/
https://capec.mitre.org/
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

Let’s Break that Down…

• In order to provide assurance from a secure
code perspective we need to establish:
– The weaknesses in the software we deem most

important within the context of the system
• These could in turn be “requirements”

– A link between the tools used for analysis and the
most important weaknesses

– Create a plan to maximize coverage with respect
to static code analysis coverage

37

CWE Rack and Stack

• Source of weaknesses
– Common Weakness Enumeration

• Ex: CWE 20: Improper Input Validation
• Weakness parents / children
• Impacts to CIA
• Examples

• Which ones do we care most about?
– High impact within our system
– Broad attack surface (many patterns, low technical barrier)
– Evidence of real world exploitation

• Will have to use a combination of objective and
subjective inputs

38

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/20.html

• CWSS can help determine the CWEs with high impact within our
system

• https://cwe.mitre.org/cwss/cwss_v1.0.1.html

• Values will be different for each system (e.g. spacecraft and ground)
– Realistically this should be performed on a per mission / system basis

CWSS evaluation

39

Each factor in the category is
assigned a value. These values
are converted to associated
weights and a category sub-
score is calculated. The three
sub-scores are multiplied
together, which produces a
Common Weakness Scoring
System (CWSS) score. Higher the
score, higher it ranks.

https://cwe.mitre.org/cwss/cwss_v1.0.1.html

Let’s Add in CAPEC

• Common Attack Pattern Enumeration and
Classification
– https://capec.mitre.org

• Community-developed list of common attack
patterns

• Comprehensive schema and classification
taxonomy

• International in scope
• Taking into account attack pattern and any other

factors to generate list of CWEs that are critical.

40

https://capec.mitre.org/

Combining it All
• Calculates Scoring based on CWSS

– CWSS = BaseFindingScore * AttackSurfaceScore
* EnvironmentScore

– Subjective due to system dependability
• Maintain ranking of CAPEC scores

– Will have to use your own ranking system
– More objectivity

• Maintain relationship between tools used and CWEs
– Easily demonstrate which CWEs are covered
– Can be used to develop future tools (Config generators, etc.)

• Process = Near complete picture of the top CWEs
• Subjective and Objective measures

– Subjective - CWSS
– Objective - CVE
– Hybrid - CAPEC

41

Disclaimer

= Using mapping from tool vendors on their
CWE coverage. Verification and Validation has
not been perform!

Research being performed at SAMATE & CMU-
SEI to help with this problem.

Rapid Expansion of Classification Models to Prioritize Static
Analysis Alerts for C

https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_506534.pdf

42

https://samate.nist.gov/Main_Page.html
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_506534.pdf

• Peer reviewed most dangerous list of CWEs for system
– Perfect ? No
– Good enough ? Yes
– Better than blindly accepting tool vendor criticality? Yes

• A link between the tools available and the most
important weaknesses
– Associate tool checks with CWEs
– Mapped to secure coding standards/guidelines

Results

43

Know what you are trying to prevent before
selecting coding standards and tools

• CWE 311: Missing Encryption of Sensitive Data
– Btw also NIST SC-8 Transmission Confidentiality

and Integrity

• Adhere CERT Rules
– MSC00-J
– MSC18-C
– WIN04-C

• Fortify has checkers for this which can reduce
likelihood of being in code

Simple Use Case #1

44

https://cwe.mitre.org/data/definitions/311.html
https://nvd.nist.gov/800-53/Rev4/control/SC-8
https://wiki.sei.cmu.edu/confluence/display/java/MSC00-J.+Use+SSLSocket+rather+than+Socket+for+secure+data+exchange
https://wiki.sei.cmu.edu/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data,+such+as+passwords,+in+program+code
https://wiki.sei.cmu.edu/confluence/display/c/WIN04-C.+Consider+encrypting+function+pointers

Simple Use Case #2

• CWE 119: Improper Restriction of Operations within
the Bounds of a Memory Buffer
– Btw also NIST SI-10 Information Input Validation

• Adhere CERT Rules
– ARR38-C, STR32-C, STR31-C, FIO37-C, EXP39-C, EXP33-C,

ENV01-C, CTR50-CPP, ARR30-C, ARR00-C, ARR38-C, ARR00-
C, CTR52-CPP, ARR30-C, STR32-C, CTR50-CPP, CTR52-CPP,
EXP33-C, STR31-C, EXP39-C, FIO37-C, ENV01-C

• Fortify does not have a checker mapped to this
– But Klockwork does

• ABV.ANY_SIZE_ARRAY, ABV.GENERAL, ABV.ITERATOR, ABV.STACK,
ABV.TAINTED, NNTS.MIGHT, NNTS.MUST,
SV.STRBO.BOUND_SPRINTF, SV.STRBO.UNBOUND_COPY,
SV.STRBO.UNBOUND_SPRINTF, SV.TAINTED.LOOP_BOUND

45

https://cwe.mitre.org/data/definitions/119.html
https://nvd.nist.gov/800-53/Rev4/control/SC-10

Takeaway

• One SCA tool is not going to ensure code is secure
• For real security assurance, must know what you

want to prevent
– What risk am I reducing in my system/software

• Now pick the rules/guidelines and tools to help
reduce that risk

• Great resource for identifying tools
– Institute for Defense Analyses (IDA) Report | Spreadsheet
– NASA also maintains matrix for mapping Top CWEs to tools to

CERT rules

46

https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/ITSD/2014/P-5061.ashx
http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016-AppE.xlsx

• 5.5 million lines of ground SW analyzed
• Klocwork and Fortify executed

• Surprised?
– Not surprising given that the tools only have a 22% overlap in the

ability to detect the same defects from NASA’s most dangerous
CWE list

Real World Example

47

Overlap of defects was 15%

• Of the 49 most dangerous CWEs in ground
systems
– Klocwork against C/C++ = 47% coverage
– Adding HP Fortify increases coverage by almost 35%
– Giving the ability to detect 82% of the CWEs in

C/C++

• Similarly, if HP Fortify is the only tool used then
the tool only has the ability to detect 57% in
C/C++, but by adding Klocwork an increase of
25% is realized, resulting in 82% coverage

Real World Example (cont.)

48

Targeted Metrics

• NASA’s Most Dangerous Common Weakness Enumerations
(CWEs) were used as a basis for evaluation as an additional
overlay to what the tools report as Critical/High/Medium
– NASA’s most dangerous CWEs is a list published by NASA’s Secure

Coding Portal (SCP) team, which classifies the most dangerous
weaknesses for ground software (similar to SANS Top 25 software
errors)

– Subset of weakness that mapped to the most dangerous ground
system CWEs

49

https://cwe.mitre.org/
https://www.sans.org/top25-software-errors/?cat=top25

Takeaway

• If a program’s security approach was simply to
execute one SCA tool, that would be a good
start but not good enough

• Could result in a false sense of security
• In the previous example, if one tool was use

there’s a risk that ~ 50% of the dangerous
CWEs would be in the SW

50

But Wait There’s More

• Don’t forget….
– Common Vulnerabilities and Exposures (CVE)

• Two flavors to worry about
– COTS CVEs (Windows, Linux, Intel, etc.)

• Installed on end points
– FOSS CVEs (Struts, Xerces, Apache, etc.)

• Embedded within custom code or installed on end
points

• Different tools for detection
– Vulnerability Assessment vs Origin Analysis

51

https://cve.mitre.org/

Origin Analysis:
Secure SW Supply Chain
• From Institute for Defense Analyses (IDA) SOAR Report – “Origin analyzers

are tools that analyze source code, bytecode, or binary code to determine
their origins (e.g., pedigree and version).”

• Origin Analysis can be used to reduce the software supply chain risk
– Identifies CVEs that may be present in re-used open source libraries/code
– Also identifies potentially licensing issues

• Examples of tools
– Sonatype

• Binary scanner; Works best on JAVA

– Black Duck HUB
• Provides binary and source tree scanning; Support C/C++ as well has JAVA

– OWASP Dependency Check
• Currently Java, .NET, Ruby, Node.js, and Python projects are supported; additionally, limited

support for C/C++ projects is available for projects using CMake or autoconf.

52

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
https://www.owasp.org/index.php/OWASP_Dependency_Check

OA: Examples from Ground Systems

53

Vulnerability Affected File Mitigation

CVE-2014-0003: Allows remote
attackers to execute arbitrary Java
methods via a crafted message.

camel-core-
1.5.4.0-fuse.jar

Upgrade Jar file to 2.11.4 or newer

CVE-2009-4611: Allow remote
attackers to modify a window's
title, or possibly execute arbitrary
commands or overwrite files, via an
HTTP request

jetty-6.1.14.jar;
jetty-util-
6.1.14.jar

Upgrade Jar file to 6.1.25 or newer

CVE-2011-2730: Allows remote
attackers to obtain sensitive
information

spring-web-
2.5.5.jar

Upgrade Jar file to 3.2.9 or newer

CVE-2014-0107: Allows remote
attackers to bypass expected
restrictions and load arbitrary
classes or access external resources
via a crafted messages

xsltc.jar;
xalan.jar

Upgrade Jar file to 2.7.2 or newer

CVE-2013-4002: Allows remote
attackers to affect availability via
unknown vectors.

Xerces2.6.2_xer
cesImpl.jar;
xercesImpl.jar

N/A (new versions exist but also
contain vulnerabilities).
Implement host based restrictions
(i.e., IP tables, file integrity
detection, Host based IDS)

CVE-2010-1244: Allows remote
attackers to hijack the
authentication of unspecified
victims

activemq-web-
5.2.0.2-fuse.jar

Upgrade Jar file to 5.9.0 or newer

Real World Example

• Analyzed ~5.5 million line of custom developed ground
software using the OA tools

– Mostly C/C++ and Java

54

» Identified 350 (7%) out of
5,000 third party components
contained a combined 2,000
CVEs in addition to some
risky open source licenses.

Vulnerability Assessment/Scanning

• Vulnerability scanning uses tools like Nessus, Foundstone,
AlienVault, OpenVAS, Retina, SCAP, CIS Benchmarks
– Don’t confuse VA tools for SCA or OA tools
– Identifies CVEs, misconfigurations, and compliance issues
– Must be credentialed!!!!

• Example

55

Real Life Example
Front End Processors

Unsecure Design Example

56

Scope for this Example

57

TLM

CMD

Command and Control (C2)

Modem

CMD

TLM

CMD

TLM

FEP

CMD

TLM

CM
D

TL
M

ECHO

FEPs (RT Logic,
Amergint, Avtec etc.)

FEP: Commanding & Telemetry

58

• Commanding
– Command and Control (C2) Systems automate user processes:

• Send command sequences
• Translate mnemonics to binary commands
• Set limits on commanding
• Store logs of commands sent and telemetry received

– C2 controls the FEP
– Modem converts digital signal to analog signal (modulation)
– Transmitter amplifies and transmits RF signal

• Telemetry
– Receiver collects and amplifies RF signal.
– Modem converts analog signal to digital signal (demodulation)
– Command and Control (C2) Systems automate user processes:

• Translate frames/sub frames of telemetry into calibrated data (decomm)
• Set limits on telemetry
• Store logs of commands sent and telemetry received

FEP Providers

59

• RT Logic (1997, Colorado Springs, CO)
– T501 Front-End Processor

• Amergint (2008, Colorado Springs, CO)
– SoftFEP

• Avtec (1990, Fairfax, VA)/Ingenicomm (2010, Chantilly, VA)
– Programmable Telemetry Processor

• GDP Space Systems
– Components

• Acromamatics Telemetry Systems (1971, Santa Barbara, CA) /Delta
Information Systems, Inc. (1976, Horsham, PA)

– Model 2900AP PCI Telemetry System
– Model 2900AP - Lightweight Rackmount PCI Telemetry System
– Model 3022P - "Lunchbox" PCI Telemetry Data Processing System
– Model 4000 - Compact "quick-look" Telemetry System

• Aventas Inc. (2002, Richardson, TX)

Command and Telemetry

60

TLM

CMD

Command and Control (C2)

Modem

CMD

TLM

CMD

TLM

FEP

CMD

TLM

CM
D

TL
M

ECHO

Command and Telemetry

61

Command and Control (C2)

Modem

FEP

FEP: Threats & Mitigations

62

• Threats
– The connectivity between a FEP and a modem varies between

programs. It potentially contains many media and signal conversions.
– Isolating issues to a FEP or the related infrastructure can be difficult.
– The FEP and the related infrastructure is complex and functionality

becomes prioritized over change management.
– Defense of a FEP is expected on the boundaries, so they tend to have

minimal end-point protection.
– Testing of FEPs centers on functionality and requirements verification,

not resiliency or reliability.
• Mitigations

– Basic hardening produces significant gains in security posture.
– FEPs have a relatively regular operations, meaning anomalous behavior

should be relatively easy to recognize.
– FEPs and the related infrastructure have a lot of redundancy and

sparing.

Sample Attack #1 during PenTest

63

TLM

CMD

Command and Control (C2)

Modem

CMD

TLM

CMD

TLM

FEP

CMD

TLM

CM
D

TL
M

ECHO

Input Validation & Lack of Authentication Vulnerabilities

The software performs actions in the server’s operating system
using calls build in the “Python” scripting language. Several scripts
exist in the URLs that execute tasks in the OS and return the output
to the application.

The calls performed by these scripts are passed to the OS without
the use of input validation or any authentication at the
application/OS level. The use of these scripts creates a semi-shell
environment where a user can execute many OS commands
through the web browser.

NIST SI-10
NIST IA-3

https://nvd.nist.gov/800-53/Rev4/control/SI-10
https://nvd.nist.gov/800-53/Rev4/control/IA-3

Sample Attack #2 during PenTest

64

TLM

CMD

Command and Control (C2)

Modem

CMD

TLM

CMD

TLM

FEP

CMD

TLM

CM
D

TL
M

ECHO

Unsecure Design = Lack of Authentication Vulnerabilities

FEP intended design…. “Just write the message to the socket, and
read the reply. In fact, if you are so inclined, you can telnet to port
xxxxx and enter the messages directly.”

Therefore, anyone with access to the network has the capability to
send commands to these ports and reconfigure the FEP
unauthenticated. If used as an attack vector, it affects the
availability and integrity of the FEP system.

NIST IA-3

https://nvd.nist.gov/800-53/Rev4/control/IA-3

• You can’t boil the ocean
– Threat modeling takes time
– Classifying CWEs takes time

• Free to use NASA’s list as a starter, NASA
can share their customizable Access DB

– Procuring VA, SCA, & OA tools takes time

• Discussion has been geared around how to
reduce risk staring from inception of system
– What about existing systems? Let’s discuss….

Near Term Goals

65

Near Team Goals (cont.)

• Promote Defense-in-Depth

66

Services Provided, Received
• Software runs on a Host
• Hosts are interconnected via the Network
• Developers code the software builds,

updates, and patches in a non-operational
environment

• Operators use the Hosts to interact with
the Network and Software appropriately

• Administrators manage the Hosts and
Networks while installing/configuring
Software

Additionally:
• Software handles Data
• Mission runs within an Enterprise

Developers

Administrators

Users

Operators

Defense in Depth (DiD)

• Secure software development is extremely important but DiD
is key to protecting mission assets

• In space mission environments, DiD can be difficult
– Older architectures/technology

• Unsupported operating systems, older hardware, etc.
– Shared architectures/technology

• Mission X doesn’t own all layers of the defense

• Sometimes vulnerable software depends on something that is
out of their control to protect it
– Do you trust the Network Engineers? Should you?
– Do you control the host level configuration?

67

DiD (cont.)

• Work with Network Engineers to implement
enclaves/network zoning and/or encryption
– Migrate to a “zero trust” architecture

• Vulnerabilities injected by Mission X may affect
Mission Y

• Understand and eliminate pivot points
– From networking perspective, software security perspective, host level

security

• Increase attack depth or eliminate all together

68

Utilize tools like RedSeal Networks, Skybox, etc. to
understand network topology and threat exposures

Example SW Impacting Mission

69

Exploits Vulnerability

Establishes persistent
foothold on Mission

Asset

Mission
AssetCompromised Asset

Often Times F/W Rules
Allow Access

Directly to Assets on
Mission Networks

Mission
Control

Launch Attacks
(DoS, Brute Force,
Extract Data, etc.)

This example will depict how vulnerability on non-critical (trusted) asset
within a network can potentially impact critical mission assets

Can’t assume protection from Firewall. Need “Defense
in Depth”. Can’t assume if knocking on door, that they
are supposed to be there.

Sample Exposure

70

Demonstrates that a pathway exists from the VPN Landing Zone,
Internet, Or Untrusted to a vulnerable asset in non-zero trust network

Vulnerability
(trusted asset)

VPN Landing Zone,
Internet, Or
“Untrusted”

Sample Exposure

71
Demonstrates all outbound access paths (Pivoting) from the vulnerable asset

Vulnerability
(trusted asset)

Sample Exposure

72Demonstrates potential vulnerabilities that could be exploited from this server

Vulnerable Asset
“Pivot Point”

Mission Control that
“wasn’t” network

accessible from VPN,
Untrusted, Etc.

Attack Depth = 1

What To Do Now?

• In space mission environments (esp. mission with extended
ops) you may not be able to patch code; therefore for
vulnerable code that can’t be fixed the “host” owner can
– Harden the servers and hosts by disabling all ports,

protocols and services that are not explicitly required for
operations

– Install file integrity software (i.e., TripWire, Aide) to alert to
changes made to the file system

– Install and finely tune a host-based IDS that will alert to
any anomalous traffic

– Utilize IP tables/IPFilters to limit data flow to specific IP
addresses, ports, protocols and services

73

What To Do Now?

• To prevent future deployments of vulnerable code
– Participate in secure code training

• Educate developers, PMs, Authorizing Officials, Security Personnel (ISSO, ISO, etc.)
on the importance of eliminating vulnerable code from architecture

– Pick the low hanging fruit (see backup slides)
– Utilize Best Practices and Secure Coding Standards

• Ex: Best Practices from NASA’s Secure Coding Portal
• Ex: Coding Standards (Ex. CERT C, C++ or JAVA Stds.)

– Institute static source code and binary analysis to assist in identifying
weaknesses - https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

• Apply the tools within the development activity (i.e., as an add-on to the
developer's Integrated Development Environment (IDE)) as well as in the
Independent Test and Evaluation (IT&E) activities

• Classify most dangerous CWEs for Ground Systems
– Use NASA’s or create you own based on your mission and threats

74

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Current Trends in the Field
• Lack of Defense in Depth (DiD) – Layered Security

– Border protection (i.e. Firewalls) is depended on too much
• Network management and insight is insufficient

– Lack of ground-truth topology
– Lack of monitoring, alerting and knowing what is required or “normal”

• Industrial Control Systems are Vulnerable
– Not designed or operated with cyber resiliency in mind

• Patching and Security Testing is not a Priority
– Mission trumps all and patching/testing is delayed or never done
– Lack of vulnerability scanning, code analysis, & dynamic analysis

• Vulnerable COTS, Open Source, and Custom Code on networks

• Limited Staffing Investment
– Lacking appropriate training on technology/tools and knowledge
– Staff is overtasked with non cyber activities

• Programs are waiting for Continuous Diagnostics and Mitigation
(CDM) Phases 1 – 3 deployment to provide “security”

75

IA/Cyber Lessons Learned in Space Systems

76

Area Challenge Faced Potential Solutions

Overall
Approach

• Adding security to in-process developments
• Incorporating security into existing processes
• Newness of artifacts to Development process,

variations in artifact quality

Work together to
incorporate as part of
engineering and risk
process

SSP • Using FIPS categorization to baseline control set
without supplementation for mission-specific threats

• Defining customizations based on as-is design vs.
identifying control substitutions or other mitigating
factors—identification / documentation of residual
risk

• Definition of SSPs around development of the ground
segment (e.g. workstations, servers) instead of
system/mission

• Sometime there are no SSPs for the spacecraft system

Projects ensure that
asset protection is
part of the
engineering process,
with results captured
in the SSP. Promote
best practices and
lessons learned across
projects

Security
Allocation to
Requirements

• Security is not a distinct domain
• Requirements defined prior to availability of SSP, PPP,

or Threat Summary

Ensure a top-down
approach to
addressing security

Backup Slides

77

References / Links
• Zero Trust

– http://csrc.nist.gov/cyberframework/rfi_comments/040813_forrester_research.pdf
– http://www.ndm.net/firewall/pdf/palo_alto/Forrester-No-More-Chewy-Centers.pdf

• NIST 800-53
– http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

• Space Security
– http://www.spacesafetymagazine.com/aerospcae-engineering/cyber-security/cyber-crime-cyber-

space-outer-space/
– http://www.nbcnews.com/tech/security/hacked-space-are-satellites-next-cybersecurity-

battleground-n658231
– http://www.homelandsecuritynewswire.com/dr20160922-space-cybersecurity-s-final-frontier
– Security Threats: https://public.ccsds.org/Pubs/350x1g2.pdf
– https://www.chathamhouse.org/sites/files/chathamhouse/publications/research/2016-09-22-space-

final-frontier-cybersecurity-livingstone-lewis.pdf

• Misc.:
– DoD: http://www.cyberdefensereview.org/2015/12/10/mission-command-primer/
– NASA Networks: http://www.gao.gov/new.items/d104.pdf
– CIS Top 20: https://www.sans.org/media/critical-security-controls/SANS_CSC_Poster.pdf

78

http://csrc.nist.gov/cyberframework/rfi_comments/040813_forrester_research.pdf
http://www.ndm.net/firewall/pdf/palo_alto/Forrester-No-More-Chewy-Centers.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://www.spacesafetymagazine.com/aerospcae-engineering/cyber-security/cyber-crime-cyber-space-outer-space/
http://www.nbcnews.com/tech/security/hacked-space-are-satellites-next-cybersecurity-battleground-n658231
http://www.homelandsecuritynewswire.com/dr20160922-space-cybersecurity-s-final-frontier
https://public.ccsds.org/Pubs/350x1g2.pdf
https://www.chathamhouse.org/sites/files/chathamhouse/publications/research/2016-09-22-space-final-frontier-cybersecurity-livingstone-lewis.pdf
http://www.cyberdefensereview.org/2015/12/10/mission-command-primer/
http://www.gao.gov/new.items/d104.pdf
https://www.sans.org/media/critical-security-controls/SANS_CSC_Poster.pdf

Links

CCSDS
• major space agencies of the world - http://public.ccsds.org/participation/member_agencies.aspx
• multi-national forum - http://cwe.ccsds.org/
Policies and such
• Program Protection & System Security Engineering - http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
• 2810 - http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf
• 7150.2B - http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf
• 7120.5E - https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1. N_PR_7120_005E_.pdf
• 800-53 - http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
• SA-11 - https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11
• RA-5 - https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
• Security Quality Requirements Engineering (SQUARE) - http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?
• Microsoft Security Development Lifecycle - https://www.microsoft.com/en-us/sdl/
SCA/OA
• C - https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
• C++ - https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
• JAVA - https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
• Klockwork - http://www.klocwork.com/products/insight
• Fortify - http://www8.hp.com/us/en/software-solutions/software-security/
• Flexelint - http://www.gimpel.com/html/flex.htm
• CodeSonar - http://www.grammatech.com/codesonar
• Sonatype - http://www.sonatype.com/
• BlackDuck - https://www.blackducksoftware.com/products/black-duck-hub
• Report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
• Spreadsheet - http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
Info and Training
• Common Weakness Enumeration (CWE) - https://cwe.mitre.org/
• Common Vulnerabilities and Exposures (CVE) - https://cve.mitre.org/
• Common Attack Pattern Enumeration and Classification (CAPEC) - https://capec.mitre.org/
• FedVTE - https://fedvte.usalearning.gov/
• SAFECode - https://training.safecode.org/
• Secure Coding and Standards Tutorial - https://www.safaribooksonline.com/self-registration/nasatutorials/
• Cigitial - https://www.cigital.com/services/training/elearning/
• Pluralsight - https://www.pluralsight.com/search?q=security&categories=course

79

http://public.ccsds.org/participation/member_agencies.aspx
http://cwe.ccsds.org/
http://www.acq.osd.mil/se/initiatives/init_pp-sse.html
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_2810_001A_/N_PR_2810_001A_.pdf
http://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002B_/N_PR_7150_002B_.pdf
https://foiaelibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/1.%20N_PR_7120_005E_.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=SA-11
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
https://web.nvd.nist.gov/view/800-53/Rev4/control?controlName=RA-5
http://www.cert.org/cybersecurity-engineering/products-services/square.cfm?
https://www.microsoft.com/en-us/sdl/
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
http://www.klocwork.com/products/insight
http://www8.hp.com/us/en/software-solutions/software-security/
http://www.gimpel.com/html/flex.htm
http://www.grammatech.com/codesonar
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://fedvte.usalearning.gov/
https://training.safecode.org/
https://training.safecode.org/
https://www.safaribooksonline.com/self-registration/nasatutorials/
https://www.cigital.com/services/training/elearning/
https://www.pluralsight.com/search?q=security&categories=course

Links (cont.)

• Security Development Lifecycle (SDL) Banned Function Calls - https://msdn.microsoft.com/en-us/library/bb288454.aspx
• Stack Overflow Post - http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-

and-their-safer-replacements
• Flawfinder - http://www.dwheeler.com/flawfinder/
• Cppcheck - http://cppcheck.sourceforge.net/
• Rosecheckers - http://sourceforge.net/projects/rosecheckers/
• Splint - http://www.splint.org
• RATS - https://code.google.com/p/rough-auditing-tool-for-security
• Flawfinder - http://www.dwheeler.com/flawfinder
• SWAMP - https://continuousassurance.org
• Find Bugs - http://findbugs.sourceforge.net/
Mitre Links
• CWE - https://cwe.mitre.org/
• CVE - https://cve.mitre.org/
• CAPEC - https://capec.mitre.org/
Tools
• SOAR Report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
• Sonatype - http://www.sonatype.com/
• Black Duck HUB - https://www.blackducksoftware.com/products/black-duck-hub
• OWASP Dependency Check - https://www.owasp.org/index.php/OWASP_Dependency_Check

80

https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-replacements
http://www.dwheeler.com/flawfinder/
http://cppcheck.sourceforge.net/
http://sourceforge.net/projects/rosecheckers/
http://www.splint.org/
https://code.google.com/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinder/
https://continuousassurance.org/
https://continuousassurance.org/
http://findbugs.sourceforge.net/
https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.sonatype.com/
https://www.blackducksoftware.com/products/black-duck-hub
https://www.owasp.org/index.php/OWASP_Dependency_Check

Links (cont.)

IDA Work
• report - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
• matrix - http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
• NSA’s CAS - http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
• Institute for Defense Analyses - http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
Standards
• C - https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
• C++ - https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
• JAVA - https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
• https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

81

http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
http://www.acq.osd.mil/se/docs/P-5061-AppendixE-soar-sw-matrix-v9-mobility.xlsx
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf
http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-20140716.pdf
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Acronym List

82

Acronym List
ACL Access Control Lists NIST National Institute for

Standards and Technology
C2 Command and Control OPM Office of Personal

Management
CIS Center for Internet Security PIM Privileged Identity

Management
CND Computer Network Defense SANS
DiD Defense in Depth SIEM Security Incident and Event

Manager
DLP Data Loss Prevention SPAN Switch Port for Analysis
DMZ Demilitarized Zone SSH Secure Shell
HW Hardware SSL Secure Sockets Layer
IDS Intrusion Detection System SW Software
IONet Internet Protocol Operation

Network
TAP Test Access Point

IP Internet Protocol TC Telecommands
IPS Intrusion Protection System TM Telemetry
IT Information Technology VPN Virtual Private Network
MOC Mission Operations Center WSC White Sands Complex
NASA National Aeronautics and Space

Administration

		Acronym List

		ACL

		Access Control Lists

		NIST

		National Institute for Standards and Technology

		C2

		Command and Control

		OPM

		Office of Personal Management

		CIS

		Center for Internet Security

		PIM

		Privileged Identity Management

		CND

		Computer Network Defense

		SANS

		

		DiD

		Defense in Depth

		SIEM

		Security Incident and Event Manager

		DLP

		Data Loss Prevention

		SPAN

		Switch Port for Analysis

		DMZ

		Demilitarized Zone

		SSH

		Secure Shell

		HW

		Hardware

		SSL

		Secure Sockets Layer

		IDS

		Intrusion Detection System

		SW

		Software

		IONet

		Internet Protocol Operation Network

		TAP

		Test Access Point

		IP

		Internet Protocol

		TC

		Telecommands

		IPS

		Intrusion Protection System

		TM

		Telemetry

		IT

		Information Technology

		VPN

		Virtual Private Network

		MOC

		Mission Operations Center

		WSC

		White Sands Complex

		NASA

		National Aeronautics and Space Administration

		

		

Low Hanging Fruit
Unsafe Functions
• Stop using known unsafe functions and always do bounds checking

if you are copying to a buffer
– Even if you think you know what you are copying from and it’s limited,

defensive coding is best.
• Some samples of unsafe functions due to allowed writing with no

regard to buffer size

• Most of these are unsafe due to allowed writing with no regard to
buffer size
– strncpy, _iota, sscanf, & wcslen have safer _s varieties (ex. _iota_s)

that require a buffer size to be specified
• Resource: Security Development Lifecycle (SDL) Banned Function Calls
• Resource: Stack Overflow Post

• Free tool to help find unsafe functions - Flawfinder

83

memset
memcpy
strcat
strcmp
strcpy
strlen

sprintf
strncpy
_iota
sscanf
wcslen

https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://stackoverflow.com/questions/6747995/a-complete-list-of-unsafe-string-handling-functions-and-their-safer-replacements
http://www.dwheeler.com/flawfinder/

Low Hanging Fruit
CERT Rules

• For legacy code:
– MSC00-C. Compile cleanly at high warning levels

• The process of fixing compiler warnings will probably
quash some other vulnerabilities.

– ERR33-C. Detect and handle standard library
errors

• Include any program functions that give some kind of
error indication

– If a function returns some special value on error, such as
NULL, your calls to that function should always check its
return value

84

Low Hanging Fruit
CERT Rules (cont.)
• For new code

– ERR00-C. Adopt and implement a consistent and comprehensive error-handling policy
• This is where programs fail the most easily. They fail to check for errors because the developers

don't know what to do if an unexpected error occurs.

– MEM00-C. Allocate and free memory in the same module, at the same level of
abstraction

• A design issue, but not following it will get your code into hot water quickly.

– MEM12-C. Consider using a goto chain when leaving a function on error when using and
releasing resources

• More specifically, make sure your code frees resources even if errors occur.

• For both new and existing code: execute static code analysis
tools to determine weaknesses

• Free ones are a good place to start; See slide 14 for commercial ones

85

– Cppcheck
– Rosecheckers
– Splint
– Find Bugs

– RATS
– Flawfinder
– SWAMP

Back

http://cppcheck.sourceforge.net/
http://sourceforge.net/projects/rosecheckers/
http://www.splint.org/
http://findbugs.sourceforge.net/
https://code.google.com/p/rough-auditing-tool-for-security/
http://www.dwheeler.com/flawfinder/
https://continuousassurance.org/

Some Secure Coding Best Practices

1. Validate input. Validate input from all untrusted data sources. Proper input validation can eliminate the
vast majority of software vulnerabilities. Be suspicious of most external data sources, including
command line arguments, network interfaces, environmental variables, and user controlled files.

2. Heed compiler warnings. Compile code using the highest warning level available for your compiler and
eliminate warnings by modifying the code.

3. Use Code Analysis Tools. Use static and dynamic analysis tools to detect and eliminate additional
security flaws. Dynamic analysis is the testing and evaluation of an application during runtime. Static
analysis is the testing and evaluation of an application by examining the code without executing the
application. Many software defects that cause memory and threading errors can be detected both
dynamically and statically. The two approaches are complementary because no single approach can find
every error. The primary advantage of dynamic analysis: It reveals subtle defects or vulnerabilities
whose cause is too complex to be discovered by static analysis. Dynamic analysis can play a role in
security assurance, but its primary goal is finding and debugging errors. The primary advantage of static
analysis: It examines all possible execution paths and variable values, not just those invoked during
execution. Thus static analysis can reveal errors that may not manifest themselves until weeks, months
or years after release. This aspect of static analysis is especially valuable in security assurance, because
security attacks often exercise an application in unforeseen and untested ways.

4. Use Binary Analysis Tools. Binary analysis creates a behavioral model by analyzing an application's
control and data flow through executable machine code – the way an attacker sees it. Unlike source
code tools, this approach accurately detects issues in the core application and extends coverage to
vulnerabilities found in 3rd party libraries, pre-packaged components, and code introduced by compiler
or platform specific interpretations.

86

Some Secure Coding Best Practices

5. Architect and design for security policies. Create software architecture and design your software to implement
and enforce security policies. For example, if your system requires different privileges at different times,
consider dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege
set.

6. Keep it simple. Keep the design as simple and small as possible. Complex designs increase the likelihood that
errors will be made in their implementation, configuration, and use. Additionally, the effort required to achieve
an appropriate level of assurance increases dramatically as security mechanisms become more complex.

7. Default deny. Base access decisions on permission rather than exclusion. This means that, by default, access is
denied and the protection scheme identifies conditions under which access is permitted.

8. Adhere to the principle of least privilege. Every process should execute with the least set of privileges
necessary to complete the job. Any elevated permission should be held for a minimum time. This approach
reduces the opportunities an attacker has to execute arbitrary code with elevated privileges.

9. Sanitize data sent to other systems. Sanitize all data passed to complex subsystems such as command shells,
relational databases, and commercial off-the-shelf (COTS) components. Attackers may be able to invoke unused
functionality in these components through the use of SQL, command, or other injection attacks. This is not
necessarily an input validation problem because the complex subsystem being invoked does not understand the
context in which the call is made. Because the calling process understands the context, it is responsible for
sanitizing the data before invoking the subsystem.

10. Practice defense in depth. Manage risk with multiple defensive strategies, so that if one layer of defense turns
out to be inadequate, another layer of defense can prevent a security flaw from becoming an exploitable
vulnerability and/or limit the consequences of a successful exploit. For example, combining secure
programming techniques with secure runtime environments should reduce the likelihood that vulnerabilities
remaining in the code at deployment time can be exploited in the operational environment.

87

Some Secure Coding Best Practices

11. Use effective quality assurance techniques. Good quality assurance techniques can be effective in
identifying and eliminating vulnerabilities. Fuzz testing, penetration testing, and source code audits
should all be incorporated as part of an effective quality assurance program. Independent security
reviews can lead to more secure systems. External reviewers bring an independent perspective; for
example, in identifying and correcting invalid assumptions.

12. Adopt a secure coding standard. Develop and/or apply a secure coding standard for your target
development language and platform.

13. Define security requirements. Identify and document security requirements early in the development
life cycle and make sure that subsequent development artifacts are evaluated for compliance with those
requirements. When security requirements are not defined, the security of the resulting system cannot
be effectively evaluated.

14. Model threats. Use threat modeling to anticipate the threats to which the software will be subjected.
Threat modeling involves identifying key assets, decomposing the application, identifying and
categorizing the threats to each asset or component, rating the threats based on a risk ranking, and
then developing threat mitigation strategies that are implemented in designs, code, and test cases.

15. Don't trust services. Many organizations utilize the processing capabilities of third party partners, who
more than likely have differing security policies and posture than you. It is unlikely that you can
influence or control any external third party, whether they are home users or major suppliers or
partners. Therefore, implicit trust of externally run systems is not warranted. All external systems should
be treated in a similar fashion.

88

Some Secure Coding Best Practices

16. Separation of duties. A key fraud control is separation of duties. For example, someone who requests a
computer cannot also sign for it, nor should they directly receive the computer. This prevents the user
from requesting many computers, and claiming they never arrived. Certain roles have different levels of
trust than normal users. In particular, administrators are different to normal users. In general,
administrators should not be users of the application.

17. Software Supply Chain. IT managers should create and preserve a bill of materials, or a list of
ingredients, for the components used in a given piece of software. The complexities and
interdependencies of the IT ecosystem require software suppliers to not only be able to demonstrate
the security of products they produce, but also evaluate the integrity of products they acquire and use.
Ultimately this should lead to greater confidence through integrity checks incorporated in a defined
secure development lifecycle.

18. Avoid security by obscurity. Security through obscurity is a weak security control, and nearly always
fails when it is the only control. This is not to say that keeping secrets is a bad idea, it simply means that
the security of key systems should not be reliant upon keeping details hidden. For example, the security
of an application should not rely upon knowledge of the source code being kept secret. The security
should rely upon many other factors, including reasonable password policies, defense in depth, business
transaction limits, solid network architecture, and fraud and audit controls. A practical example is Linux.
Linux's source code is widely available, and yet when properly secured, Linux is a hardy, secure and
robust operating system.

19. Fix security issues correctly. Once a security issue has been identified, it is important to develop a test
for it, and to understand the root cause of the issue. When design patterns are used, it is likely that the
security issue is widespread amongst all code bases, so developing the right fix without introducing
regressions is essential.

89Back

Example Security Analysis (Part 1)
Threats and Vulnerabilities

• Document credible threat environment, identify vulnerabilities

90

a

b

2

3
c

1

• Credible threat environment (notional)
• Satellite
• Mission Ops
• Science Ops
• Ground station – Satellite Links
• Mission Ops - Ground Stations
• Science Ops (evaluate all points of

entry) – Ground Station +
• Three types of threat groups identified

• Communication paths
• Ground elements
• Satellite

• Establish risk using Confidentiality, Integrity
and Availability

• Assess that communications paths
and ground elements pose high risk

• Assess that satellite poses low-
moderate risk (assuming other
system aspects are secure)

1

Satellite Threats
•Replay
•Unauthorized Access
•Software Threats
•Eavesdropping
•Denial of Service
•Data Modification

Ground Element Threats
• Replay
•Unauthorized Access
•Software Threats/Supply
Chain
•Denial of Service
•Social Engineering
• Threat-Agent/Insider
Threat

2
3
a
b
c

Communication Path
Threats
•Jamming
• Eavesdropping
• Replay
• Unauthorized Access
• Traffic Analysis
• Data Modification
• Supply Chain

Example Security Analysis (Part 2)
Security Strategy

• Project survivability strategy against credible threats,
vulnerabilities, and acknowledge evolving threat environment

• Strategy defined in terms of interfaces and information types (establish security
perimeters and how strong they need to be)

91

• Security strategy is at element level and at
system level to arrive at acceptable risk
posture
• For example, if the Mission Ops and

command interface into a spacecraft is
secure, perhaps less security is needed
within the satellite

• Candidate security strategy for SC FSW
• Protect the commanding path
• Perform command authentication
• Command traffic analysis
• Provide satellite software resiliency to

common weakness enumerations

Example Security Analysis (Part 3)
Security Controls

• Once threats, perimeters (interfaces and information types established),
engineering process to select controls and tailor accordingly

92

• Establish security categorization
• Select Controls, based on 800-53 analysis,

system specific tailoring
- Required Controls
- Supplemental Controls

• Consider
- Data in Motion, Data at Rest, Data in Use
- Strength of the control, pervasiveness of

threats
• Hints:

- Sometimes one control addresses
multiple threats, collateral security

- For spacecraft software, SC and SI are the
most relevant control families

- Controls may already be addressed through
design or fault management (e.g., SI-10(3)), e.g.
applying a robust set of security controls may
simply require taking credit for what is already
being done

Satellite Threats

Communication Path
Threats

Candidate SC FSW Threats, Perimeters

Strategy Candidate Security
Control SW

Command Path Encryption X

Cmd Authentication Protocol X

Command Traffic Monitoring

Software Resiliency Coding Standards X

Candidate security controls based on planned
strategy

Governance / Relationships Between Expected
Artifacts / Decomposition of Security Requirements

Threat Summary
Threat environment that the mission
is most likely encounter as it reaches

operational capability

Project Protection Plan
(PPP)

Mission survivability strategies in
addressing the threats

Level
3

System Security Plan
(SSP)

Basis for specific HW and SW security
requirements for a given information

system in the missionLevel
3

System Security Plan
(SSP)

Basis for specific HW and SW security
requirements for a given information

system in the mission

“System” Security
Plan(s) (SSP(s))

One or more plans that specify
and allocate security controls
across program elements to
implement the protection

strategies described in the PPP.

Federal Information Security Management Act (FISMA), EOs, etc.
Policy and Directives

The number and
organization of
these plans are not
as important as the
coverage for the PPP
strategies, the
completeness of the
control selections,
and traceability to
software
requirements (where
applicable).

NIST 800-53
Catalog of controls
with a process for
selecting and
tailoring the
controls to meet
mission / system
security needs.
(Provides more of
the “what to do.”)

Mandatory for
terrestrial networks
and IT systems (to
include ground
systems)—advisable
for space systems
(space system
“overlay” available).

Software
Requirements &

Design
FSW GSW

Software Products
& COTS

Customizations
FSW GSW

Project
Controls

(Dev.
Facilities &
Processes,

etc.)

Agency /
Center

Infrastructure,
External

Networks, Intl.
Partners, etc.

Points of Assurance

Threat Summary
Threat environment that the mission
is most likely encounter as it reaches

operational capability

Project Protection Plan
(PPP)

Mission survivability strategies in
addressing the threats

Level
3

System Security Plan
(SSP)

Basis for specific HW and SW security
requirements for a given information

system in the missionLevel
3

System Security Plan
(SSP)

Basis for specific HW and SW security
requirements for a given information

system in the mission

“System” Security
Plan(s) (SSP(s))

One or more plans that specify
and allocate security controls
across program elements to
implement the protection

strategies described in the PPP.

Software
Requirements &

Design
FSW GSW

Software
Products & COTS
Customizations

FSW GSW

Project
Controls

(Dev.
Facilities &
Processes,

etc.)

Agency /
Center

Infrastructure,
External

Networks, Intl.
Partners, etc.

The project has a Threat
Summary—or the PPP
contains information—
that indicates the project
has taken into account
the full range of threats
appropriate to its mission
type, capabilities, and
assets.

The PPP contains a
comprehensive set of
project survivability and
protection strategies
addressing the full range of
threats and vulnerabilities
that exist or are likely to
exist throughout its
lifecycle. Also, it contains
an assessment of risk
showing how the strategies
mitigate the project’s risk
to an acceptable level.

System-level plans fully
integrate the
protection strategies
from the PPP are
traceable to control
selection, allocation
tailoring decisions at all
levels of the system
design along with any
corresponding system
specifications.
Additionally, these
decisions are based on
an appropriate
categorization of the
specific data and assets
being protected in each
instance ensuring risk is
mitigated to a level
consistent with the
project’s risk tolerance
(as defined in the PPP).

Controls allocated to
software are traceable down
to specific software modules
and completely and correctly
specify the control

Controls implemented in software perform as specified.
Software products are robust and free from:
• Defects that many induce additional vulnerabilities

or bypass controls (CWEs)
• Undocumented / unspecified functionality

Plans and specifications
for programmatic
controls such as secure
development and
acquisition processes,
physical and personnel
security, change control,
and routine plan
maintenance are
complete and consistent
with PPP project
protection strategies and
risk tolerance.

Use of outside systems,
networks, and controls
are fully described with
supplemental controls
applied as needed to
mitigate risk.

	Slide Number 1
	Agenda/Outline
	Defining “Ground Systems” @ NASA
	Defining “Ground Systems”�…in the Military World
	Are the Threats Real?
	Are the Threats Real?
	Evolving Threatscape for Space Missions
	Adversary Tiers
	Space Systems ARE Vulnerable!
	Back to the Basics
	Scope for this Discussion…
	Software Security
	But Where are the Requirements?
	Flowing Down…
	Other Barriers to Reducing SW Risk
	Other Barriers to Reducing SW Risk
	NIST Can Help….
	Example: SI-10 (NIST 800-53 Rev 4)
	NIST Security Controls that �Apply to Software
	NIST Too High Level?
	An Approach for Secure & Resilient SW
	System Level Threat Modeling
	Generalized Process to Develop �Secure Software
	Part 1: System Security Threat Understanding
	Part 2: Develop Security Strategy
	Part 3: The System Security Plan
	Part 3: Select and Tailor Security Controls
	Part 3: Security Controls Families (NIST 800-53)
	Part 4: Secure Software �Development
	Software Threat Modeling
	Some Key Features
	Standard Mitigations
	Resources
	Secure Software Development �Tools: VA vs SCA vs OA
	We “should” be doing this already!
	Secure and Resilient Code
	Let’s Break that Down…
	CWE Rack and Stack
	CWSS evaluation
	Let’s Add in CAPEC
	Combining it All
	Disclaimer
	Results
	Simple Use Case #1
	Simple Use Case #2
	Takeaway
	Real World Example
	Real World Example (cont.)
	Targeted Metrics
	Takeaway
	But Wait There’s More
	Origin Analysis:�Secure SW Supply Chain
	OA: Examples from Ground Systems
	Real World Example
	Vulnerability Assessment/Scanning
	Slide Number 56
	Scope for this Example
	FEP: Commanding & Telemetry
	FEP Providers
	Command and Telemetry
	Command and Telemetry
	FEP: Threats & Mitigations
	Sample Attack #1 during PenTest
	Sample Attack #2 during PenTest
	Near Term Goals
	Near Team Goals (cont.)
	Defense in Depth (DiD)
	DiD (cont.)
	Example SW Impacting Mission
	Sample Exposure
	Sample Exposure
	Sample Exposure
	What To Do Now?
	What To Do Now?
	Current Trends in the Field
	IA/Cyber Lessons Learned in Space Systems
	Slide Number 77
	References / Links
	Links
	Links (cont.)
	Links (cont.)
	Acronym List
	Low Hanging Fruit�Unsafe Functions
	Low Hanging Fruit�CERT Rules
	Low Hanging Fruit�CERT Rules (cont.)
	Some Secure Coding Best Practices
	Some Secure Coding Best Practices
	Some Secure Coding Best Practices
	Some Secure Coding Best Practices
	Example Security Analysis (Part 1)�Threats and Vulnerabilities
	Example Security Analysis (Part 2)�Security Strategy
	Example Security Analysis (Part 3)�Security Controls
	Governance / Relationships Between Expected Artifacts / Decomposition of Security Requirements
	Points of Assurance

