National Aeronautics and Space Administration

NASA

OSIRIS-REX VISIBLE AND INFRARED SPECTROMETER

NASA Goddard Space Flight Center

www.nasa.gov

OVIRS Instrument

Origins, Spectral Interpretation, Resource Identification, and Security - Regolith Explorer OSIRIS-REx Visible and Infrared Spectrometer

OVIRS Overview: How it was made

Jason Hair – Instrument Project Manager

$\mathbf{NASA} - \mathbf{GSFC}$

OVIRS Development Timeline

OVIRS has been developed, built, and tested to meet performance requirements and delivered ahead of schedule and within budget

Goddard Space Flight Center

- Overall Instrument Responsibility
- Instrument Scientist and Deputy Instrument Scientist
- Management & Systems Engineering
- Mechanical Hardware
- Harness Assemblies
- SIDECAR Assembly Code
- OVIRS Integration and Environmental Qualification
- OVIRS Performance Testing, Calibration and Characterization

- Jackson and Tull: Focal Plane Electronics
- Teledyne Imaging Sensors: Focal Plane Assembly
- JDS Uniphase (Viavi Solutions): Linear Variable Filter
 Corning: Optics

OVIRS Team and Partners

<u>SwRI</u> - Main Electronics Box

- <u>Teledyne Imaging Sensors</u> – Focal Plane Assembly

<u>GSFC</u> - Detector Assembly

JDSU – LVF Array _

OVIRS Team (GSFC)

OVIRS Operation – Bennu Measurement

The OSIRIS-REx spacecraft points OVIRS at the target asteroid, Bennu, and light from the Bennu enters OVIRS The light goes into the Optics Box and to the Primary Mirror

The Primary Mirror directs the light to the Secondary Mirror

The Secondary Mirror directs the light on to the Filters and the Detector

OVIRS Operation – Solar Calibration

A percentage of the sunlight reflects off of a mesh in the solar calibrator assembly and is directed toward the Primary Mirror

OVIRS utilizes sunlight for overall calibration. The spacecraft is turned to direct sunlight in to the solar port The sunlight then follows the normal optical path to the Secondary Mirror

The Secondary Mirror directs the sunlight on to the Filters and Detector

For calibration in the Infrared, the onboard blackbody source is warmed up, and directs light Blackbody energy is reflected to the Secondary Mirror by the Secondary Mirror to the **Filters and Detector**

OVIRS Operation

In the Detector Box, Filters divide / the incoming light in to wavelengths and the Detector measures the intensity of each wavelength and converts it in to an electrical signal

Special harnessing communicates the electrical signal to the Main Electronics Box with low noise, and high thermal isolation to allow the Detector to operate at cryogenic temperatures

Components

OVIRS: How it was made-Sept 7, 2016

OVIRS Optic Hardware

OVIRS: How it was made-Sept 7

Blackbody Source

Solar Calibrator

Filament Calibrator

Filament Calibrator Tests

Spectral output measurements of Filament Source in Dewar

Filament Source in Dewar

Filament Source burn-in tests

Linear Variable Filter Array

Detector Assembly

Detector Assembly

Measurements for Filter Shim sizing

Filter Mounting to Detector

Assembling Detector/Filter with Harness and Baffle

Detector ready for performance test and characterization at cryogenic temperatures

OVIRS: How it was made-Sept 7, 2016

Thermal Isolation and Strap for Detector Mount in Detector Box

OVIRS: How it was made-Sept 7, 2016

Completed Detector Box Assembly

Detector Signal Harness

Main Electronics Box

Focal Plane Electronics Testing with a test Detector

Flight Dual-String Focal Plane Electronics (Post Conformal Coat)

Optics Box Housing Fabrication

Plating Vendor Fire – Optics Box Housing Destroyed

Completed Optics Box Housing with Plating

Optics Box Assembly

Primary and Secondary Mirror Mounting in Optics Box

Mirror Alignment in Optics Box

Optical System Performance Tests

Blackbody Source Installed in Optics Box

Detector Box Alignment with Optics

Assembled Optics and Detector Box

There might have been a few 'to-do' lists involved

0-BOX Find MDM #2, 2-4 fasteness for all Obox MDMs Received Modified CSA Jackposts and Install - Connect purge port and filter to suitase V(Flow ges for a few hours) - Install Fillament Calibrators and J12 harness Install Mirror Covers, Including J11, J12, J14 to Guers - Route PG, P8 and Nate to CSA Saturday 2/21 Install CSA, Mate WS Powered testing Install bottom Cover O.box and MEB if Not Friday _ Install W4 - Install wIOT~ Install Solar Glibrator Install Puizc Poit on 0-BOX I weigh obox V Install 0-box to EMI stand

Assembled Optics Box

Integration

Harness Installation

Heater and Temperature Sensor Installation

Temperature Sensor Installation and Harness Routing

Electrical Circuit Checkouts

Optics Box and Main Electronics in the Spacecraft Configuration with Signal Harness

Proof Test of Support Structure

The allusive structural integrity certification tag

Thermal Blanket Design Planning

Blanket Design Templating

Blanket Design Templating

Complex Blanket Closeouts

Wait a minute ...

OVIRS: How it was made-Sept 7, 2016

Inner Layer Blanket Installation

Thermal Blankets Near Completion, Radiators used to Cool Detectors Installed

In case you didn't recognize him ...

Optics Box Gets Approval from the Optics Team

Completed Optics Box

Test

OVIRS: How it was made-Sept 7, 2016

OVIRS Integration Activities

Moving OVIRS in to Electrical Interference Testing

OVIRS in Electromagnetic Interference and Compatibility Testing

Test Sensor Installation for Optics Box Vibration Test

Optic Box Vibration Test

Calibration System used to Measure Performance during Thermal Vacuum Test

Calibration System Exposes OVIRS to Various Sources to Characterize Performance

OVIRS: How it was made-Sept 7, 2016

Blackbody Source used for Infrared Calibration

Preparing OVIRS for Thermal Vacuum Test

Blanket, Harness, and Test Sensor Closeout for Test

OVIRS: How it was made-Sept 7, 2016

OVIRS Ready for Test

Preparing the Cold Target for the Test

Cold Target Used Over OVIRS to Cool Radiators and Detector to Cryogenic Temperature

Thermal Vacuum Testing, 24 hours a day, 7 days a week for 36 days

OVIRS: How it was made-Sept 7, 2016

Science Data Collection and Analysis during Thermal Vacuum Test

Example Detector Image of the Spectrum of a Mercury Lamp

Delivery and Spacecraft Integration

OVIRS Packed and Ready to Ship

OVIRS Arrival for Spacecraft Integration

Optics Box installed the Spacecraft

Detector Signal Harness Connection between Optics Box and MEB

Optics Box and Main Electronics Box on the Spacecraft with Signal Harness

OVIRS Spacecraft Integration Team

OSIRIS-REx Assembled and Ready for System Level Testing

OVIRS: How it was made-Sept 7, 2016

OSIRIS-REx Ready for Launch

OVIRS: How it was made-Sept 7, 2016