National Aeronautics and Space Administration

Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

David J. Israel

March 5, 2018

Exploration & **SPACE** Communications

ZSG

More than you ever imagined...

NASA Relay Satellite Communications

The Space Network provides tracking and data acquisition services to spacecraft below geosynchronous orbit, and can connect user spacecraft with 100% coverage of the user's orbit.

Generations of TDRS

TDRS-M LAUNCH:

August 18, 2017

0

TDRS-13

 First Generation
 Second Generation

 TDRS-A to TDRS-G
 TDRS-H to TDRS-J

 THRD GENERATION

ThiACGE PITAINCE: TDRS-K to TDRS-M February 2018

EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION NASA GODDARD SPACE FLIGHT CENTER

Aerospace Conference

Disaggregated Communications

RF and optical communications are built and deployed on separate systems.

Disaggregation Benefits

- Fleet management at individual service level
- Greater opportunity for commercialization of RF services

The Future of NASA Space Comm: Optical Communications

Optical communications systems

are under development to enable support of **tremendous volumes of data at higher rates** with quicker response times.

Optical communications will enable:

- Speed and Volume
- Less SWaP
- Availability

SWaP

Optical: State of the Technology

Aerospace Conference

Key Features of LCRD

Subsystem	Description
Two optical modules	10.8-cm telescope, 2-axis gimbal
Laser	1550 nm at 0.5W
RF downlink	Spacecraft bus provided
Module-to-module switching	Gbps-class high-speed space switching unit
Data rates	Up to 1.244 Gbps forward and return links
Optical ground stations	Haleakala, HI Table Mountain, CA
Mission operations center	GSFC Space Network at WSC, NM

Path to Optical Relay Operations

An optical relay capability is being targeted for a 2025 launch as the first node of the next-generation relay architecture. Early studies and technology developments are underway.

NASA's Next Generation Earth Relay

Next-Generation Earth Relay Concept of Operations

Next-Generation Earth Relay Payload Nomenclatu

Spacecraft/Platform

Optical Communications Payload

Other Required Subsystems

Optical Space Terminal

Optical Module

Modem with Beacon, Amplifier and CODEC

Controller Electronics Other Required Subsystems:

- Storage
- Data Processing
- Switch/Router
- Optical Comm
 Payload Controller

Conclusions

- The requirements for the first optical relay nodes continue to be refined.
- Relay nodes could be dedicated spacecraft or hosted payloads.
- Alternate acquisition strategies for the relay node are also under assessment.
 - Procure optical relay services, if commercially available
 - Form partnership with commercial entity