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ORION’S POWERED FLIGHT GUIDANCE BURN OPTIONS FOR
NEAR TERM EXPLORATION MISSIONS

Thomas Fill,* John Goodman,t and Shane Robinson#

NASA'’s Orion exploration spacecraft will fly more demanding mission pro-
files than previous NASA human flight spacecraft. Missions currently under de-
velopment are destined for cislunar space. The EM-1 mission will fly unmanned
to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts
on a mission to the lunar vicinity. To fly these missions, Orion requires powered
flight guidance that is more sophisticated than the orbital guidance flown on
Apollo and the Space Shuttle. Orion’s powered flight guidance software contains
five burn guidance options. These five options are integrated into an architecture
based on a proven shuttle heritage design, with a simple closed-loop guidance
strategy. The architecture provides modularity, simplicity, versatility, and adapt-
ability to future, yet-to-be-defined, exploration mission profiles. This paper pro-
vides a summary of the executive guidance architecture and details the five burn
options to support both the nominal and abort profiles for the EM-1 and EM-2
missions.

INTRODUCTION

NASA’s mandate to develop a Multi-Purpose Crew Vehicle (MPVC) to advance human explo-
ration of deep space is well underway. The two centerpieces of this exploration program, the Space
Launch System (SLS) and the Orion Crew Module (CM) with its companion Service Module (SM)
are approaching their first joint flight sometime in late 2019 in an uncrewed test flight to cislunar
space. As follow-on missions take on greater complexity and venture farther from Earth, Orion’s
mission design will need to cover many different types of burns and trajectory constraints and its
systems will be expected to provide much greater levels of autonomy than previous crewed vehi-
cles. Future missions will require further definition and the on-board systems must be flexible
enough to handle these new missions without major modification. To satisfy these demands, the
Orion powered-flight Orbit Guidance (OrbGuid) leverages many decades of successful flight her-
itage from the Apollo and Shuttle eras by using algorithms and designs that have proven utility and
reliability, while incorporating lessons learned in the areas of advanced precision, autonomy, and
architecture design. The result is an algorithm that is flexible and easily extensible to a wide variety
of orbit transfer scenarios.
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THE EM-1 MISSION PROFILE

Exploration Mission 1 (EM-1) has three main objectives to meet before the first crewed flight:
to demonstrate spacecraft systems performance, to demonstrate high speed entry and thermal pro-
tection system performance, and to achieve a successful landing off the coast of California.
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Figure 1. Notional EM-1 Uncrewed Distant Retrograde Orbit (DRO) Mission Profile.

The EM-1 profile will take the Orion capsule and SM to cislunar space on an approximately 25-
day mission. The profile is shown in Figure 1. Following liftoff and insertion by the SLS Interim
Cryogenic Propulsion Stage (ICPS) into a 975x100 nmi orbit, and within one orbit, the ICPS Trans-
lunar Injection (TLI) burn will place Orion on a trajectory towards a flyby of the Moon some 6
days after TLI. As Orion flies past the Moon at 54 nmi (100 km) altitude, it executes its first major
burn, the Outbound Powered Flyby (OPF) burn, to a Distant Retrograde Orbit (DRO) target. The
OPF is a Lunar Gravity Assisted (LGA) burn. Some 4 days later, Orion executes the Distant Ret-
rograde orbit Insertion (DRI) burn to insert into the DRO. Orion then remains in the DRO for 6
days. After this point, Orion performs a Distant Retrograde orbit Departure (DRD) burn, which
targets the Return Powered Flyby (RPF) burn on the way back to Earth. About 4 days after the
DRD, Orion executes the RPF burn during a flyby of the Moon, again near 54 nmi (100 km) alti-
tude. Like the OPF, the RPF is an LGA burn. The burn satisfies a specific SM Entry Interface (El)
state of earth longitude, geodetic latitude, altitude, inertial flight path angle, and inertial velocity
azimuth at El to achieve a landing off the coast of California. The flight time from RPF to El is
about 5.5 days. About 20 minutes before El, the Orion CM separates from the SM, and subsequently
executes a small CM-raise burn to achieve the desired EI flight path angle, and provide separation
from the SM trajectory before re-entry. The approximate burn AVs for the four major EM-1 burns
are listed in Table 1.



Table 1. EM-1 Major Burn AVs.

Burn AV Magnitude (ft/s)
OPF 515
DRI 432
DRO 446
RPF 828

ORBGUID ARCHITECTURE AND OPERATION

OrbGuid provides burn guidance for all of the burns performed by the Orion CM and SM.
OrbGuid’s primary function is to provide updates to the vehicle’s commanded burn attitude profile
and planned engine cutoff time so that the vehicle will meet the desired target conditions at the end
of the burn. The OrbGuid algorithm structure derives its heritage from the Space Shuttle inser-
tion/deorbit powered flight guidance.? 2 Efforts to unify the various ascent, insertion, on-orbit and
deorbit powered guidance phases around a core predictor-corrector algorithm, the Powered Explicit
Guidance (PEG) algorithm, led to a flexible framework that could be applied to multiple flight
phases and target conditions. OrbGuid takes advantage of PEG’s flexible nature to also unify a set
of orbital guidance options. Through a menu of various desired velocity options within the predic-
tor/corrector framework, Orion can apply essentially the same guidance algorithm across all of its
orbital powered burns such as orbit insertion, rendezvous, deorbit, CM raise burns, externally-spec-
ified AV burns, lunar transfer, earth-return burns, and aborts.

OrbGuid runs in two execution
Exec: modes, shown in brown

Input: State, mode-dependent burn targets, TIG, runPreBurnCompsFlag. boxes:

Controls execution initializations, resets, transitions + Pre-burn computations:

+ Active burn guidance:

[t > (TIG — tGuidPreTIG) && burnEnable == TRUE]

[runPreBurnCo mpng ==TRUE]

Pre-burn Computations: Active Burn Guidance:
Input: State, mode-dependent burn targets Input: State, IMU data

Maps targets to internal targets for active guidance. Maintains Sﬂll_lti(’n (_Viﬁ call to PEG) in the
Call PEG to Converge steering solution from scratch presence of dispersions and handles
based on targets. details of burn execution.

Sets burnEnable to TRUE if converged, FALSE Freeze steering solution and burn cutoff
otherwise. time as approach end of burn.

Output Processing:
Input: Burn Solution
Output: Burn cutoff time, Steering outputs

Figure 2. OrbGuid Executive Logic.

OrbGuid consists of two main parts: a top-level internal executive wrapped around PEG and the
PEG algorithm itself. Figure 2 shows the flow diagram for the top-level logic. OrbGuid handles



initialization and re-initialization by flags passed from an external executive. OrbGuid then exe-
cutes one of its two main internal modes, pre-burn computation or active guidance, based on the
current input time and Time of Ignition (TIG).

Pre-burn computations must be performed long enough before a burn to allow for both valida-
tion of the burn solution, and for the vehicle to orient to the desired initial burn attitude. During

pre-burn computations, OrbGuid solves for the vector velocity-to-be-gained by thrust (\790) to

achieve the end-of-burn targets. To do that, it first performs a number of variable initializations,
including propagation of the current vehicle state to TIG. The PEG algorithm is then called to
converge on the burn solution which also yields the steering profile and the desired engine shut-
down time.

Active guidance begins at a pre-determined time before TIG, and it begins with the converged
solution from the pre-burn computation. During active guidance, PEG takes the vehicle state, either
the current vehicle state or the predicted ignition state, whichever is later, and updates the steering
and burn solution to maintain convergence to within a specified velocity-miss tolerance.

At a pre-determined time interval before desired engine cut-off, OrbGuid holds the steering
command direction to avoid large attitude changes as \790 decreases to a zero magnitude. The con-

trol system commands the engine system to shut down at OrbGuid’s computed cut-off time. The
vehicle holds attitude while the engine system completes its shut-down and the propellant settles.
OrbGuid continues to cycle at a 1 Hz rate to provide a continued accurate computation of the re-

sidual Vgo required to achieve the burn objectives. Following cleanup of the burn residuals with an

optional trim burn using the Reaction Control System (RCS) thrusters, execution of OrbGuid is
terminated.

Additional detail on the Orion exo-atmospheric burn guidance architecture and algorithm are
available in “Orion’s Exo-atmospheric Burn Guidance Architecture and Algorithm.”* The desired
target conditions, including the desired TIG, are provided by either ground uplink or by the onboard
Two-Level Targeter (TLT) software.® Parameter data on the planned thruster performance and ve-
hicle mass are also part of the target set.

PEG Algorithm Framework

The PEG algorithm performs OrbGuid’s primary function, to guide a burn such that the vehicle
state at burn cut-off meets the specified target conditions. OrbGuid sets the proper flags and target
pre-processing based on the desired burn options and target type, and then executes its core predic-
tor-corrector process to solve for the basis elements of the steering law and burn duration.

PEG is explicit in the sense that it does not require a reference trajectory. It is a semi-analytic
algorithm where the form of the steering law allows for certain analytic approximations that enable
solutions for elements of that steering law from the current estimate of the velocity-to-be-gained.
The prediction of the cut-off state using those steering elements and the estimated burn duration is
obtained by a combination of analytic computation of the position and velocity changes due to
thrust and a numeric Encke-Beta integration.® " A correction process is then employed to null the

miss between the predicted and desired velocity states at burn cut-off using Vgo as the iteration var-

iable. Over a small number of iterations, the algorithm converges on theVgo, and the burn steering

profile which take the vehicle to the desired velocity condition at burn cut-off that satisfies the orbit
transfer objectives. A brief synopsis of the algorithm structure for orbit applications follows.



OrbGuid solution algorithm usesa
predictor/corrector methodology to
converge & maintain a stable guidance
solution. Iteration variable is v, (the
velocity to be gained by thrust)

START
Vo = Vgo — AV
nCycles =0
[nCycles < NMAX && normiv,,.) < tolerance]

nCycles = nCycles +1

solve for burn time using rocket equation (tgo)
Solve for elements of steering law

Predictor: predict cutoff state (t,, r,, v}

Compute desired state (tg, ry, vy
Insert appropriate burn option desired velocity
solution algorithm (LTVC, etc.)

Viniss = Vp —Vy

Corrector: update v, to null v,

Figure 3. PEG Top-Level Logic.

Figure 3 illustrates the top level PEG executive. At the heart of the PEG algorithm lies the
predictor-corrector loop. This loop exits either whenVy, converges to a specified tolerance or the
number of cycles exceeds a preset limit.

For a given estimate of Vgo the burn time is derived from the rocket equation and the elements

of the steering law are computed. With these parameters, PEG’s predictor subroutine predicts the
vehicle state at burn-cutoff.

The corrector task calls the specified desired velocity routine based on the burn option given the
predicted burn cut-off state. For orbital maneuvers, there is no explicit control of the burn cut-off
position, and the desired velocity routine determines the velocity that will allow the vehicle to meet
the target conditions from that cut-off position.

OrbGuid’s versatility comes mostly through the different desired velocity routines in the PEG
corrector, each being related to a specific guidance option. The extensible nature of the PEG frame-
work provides the ability to readily add new guidance options as the need arises. The current suite
of burn options are detailed in the next section.

DESIRED VELOCITY ROUTINES

OrbGuid’s unique guidance elements lie mainly in its desired velocity routines. Orbit guidance
typically does not control position at burn cut-off, so the corrector reduces to controlling velocity.
For a particular burn, the target burn option parameter controls which routine to execute, and the
target set contains the parameters necessary to evaluate a solution. Another parameter, the plane
control option, controls how OrbGuid handles the out-of-plane burn component. The separation of
in-plane and out-of-plane components is essential near the 180° transfer singularity, but it also
enables OrbGuid to protect against propellant and coasting time limits or to target the plane of the
landing site in the case of a deorbit burn.



A description of the burn options currently implemented within OrbGuid is presented in the
following subsections. All but one of the burn options are solutions to intercept problems, which

involves finding the initial velocity (v, ) which effects a transfer between two given positions (Fp
and ¥, ) subject to some constraint.

1. External Delta Velocity

An external source, such as a separate targeting routine or an uplink from Mission Control,
provides a desired velocity change to be achieved by thrust, the External AV vector, which is then
executed by OrbGuid. This is the simplest burn option within OrbGuid and is the one non-intercept
burn option. It will likely be used on the planned trajectory correction burns en-route to and from
the Moon, and for orbit maintenance while in the DRO. OrbGuid provides the option to specify the
External AV vector either in an inertial coordinate frame or a “Local Vertical, Local Horizontal”
(LVLH) coordinate frame located at burn ignition. The latter format provides for easier burn visu-
alization and in some situations is less sensitive to variation in burn ignition.

External AV guidance begins with \790 being initialized to the External AV vector from the input

target set. The subsequent burn prediction yields the predicted cutoff velocity (\7p). To remain
consistent with the PEG predictor-corrector framework, the desired velocity routine reduces to the
assignment \7d = \7IO . This equality yields convergence on the first iteration. Implementing External
AV into PEG this way reduces the need for additional guidance software.

2. Linear Terminal Velocity Constraint

In a search for a generalized targeting algorithm, particularly to support deorbits from Low Earth
Orbit (LEO), the Space Shuttle Program developed the Linear Terminal Velocity Constraint
(LTVC) transfer where a linear constraint was imposed between the radial (v, ) and horizontal

(v, ) velocities at the target found in Equation (1).

Ve = C + GV, 1)

The historical background of the LTVC transfer is provided by Bond and Allman.2 The LTVC
option was used for Space Shuttle orbit insertion (the OMS-1 and OMS-2 burns) and the deorbit
burn.
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Figure 4. LTVC Geometry.

The LTVC algorithm solves for the initial velocity to intercept a downrange position vector
target while constraining the radial and horizontal velocity components, at intercept, by the linear
relationship. Figure 4 illustrates the LTVC problem. The target position can be specified as an
inertial vector or as a combination of altitude at the target and transfer angle from TIG.

The solution is based on the well-known fact that a conic velocity can be represented as the sum
of two vectors of constant length, one perpendicular to the position vector and one perpendicular
to the major axis. This yields the following expressions for the radial and horizontal components
of velocity.

v, =“Tesin(f) @) v, =ﬁ+’uTecos(f) 3)

This means that the desired trajectory is completely specified by a knowledge of the radial and
horizontal components of velocity at some point along the trajectory. Given Equation (1), one other
equation is required to relate these two quantities. That equation is obtained by using Equation (3)
at the initial position and relating the time varying quantities to those at the target. The horizontal
velocity is readily mapped using the conservation of angular momentum, and true anomaly by the

transfer angle ( fp = fT —0 where 0 is measured from burn cutoff). With Iy =T, (since burn

cutoff position is not explicitly controlled), expansion of the cosine of a difference (cos(f, —)),
and using Equations (2) and (3) to eliminate f_, yields the needed equation in the form of a quad-
raticinv, . .
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Simultaneous solution of Equations (1) and (4) is obtained by substituting (1) into (4), yielding

r—r i
T~ and w=cot? = SN0
Iy 2 1-cosé

the following quadratic in the unknown v, where Kk =

[K(L+wW?) +2(1—wWC,)(Vr )° —2we, vy —Zr—”:O (5)

The quadratic solution is then given by the following equations.

a=Kk(1+w’)+2(1-wc,) (6) b=wc, (7)
czer” (8) d=b*+ac (C)]
Vep = ﬁ (10) Vo, =Cy +CyVp (11)

Using relationships of velocity components between two positions on a trajectory provides the
desired solution at the burn cutoff position.

Van =@+K)vy ), (12) Vd,r =k WVT,h _VT,r (13)

It was shown by Shepherd that the plus sign in Equation (10) is the most meaningful from a
guidance point of view, and is used in the LTVC solution.® The LTVC transfer has been applied to
the deorbit problem where the required flight-path angle at El is dependent on the velocity magni-
tude. Over a limited region, this relationship can be linearized between the radial and horizontal
components of velocity. In the trivial case where the entry flight-path angle is fixed, the constraint
line is given by ¢, =0 and ¢, =tan(y) . In practice, the two constraints are chosen to control ve-
locity dispersions at El. Additionally, LTVC works well for the orbit insertion and orbit transfers
located at the apsides where the velocity at the desired intercept (apsis) altitude is horizontal, which
correspondstoc, =c, =0.

For low eccentricity orbits, OrbGuid modifies the above equations analytically to account for
the J, gravity perturbation. Lineberry derived an analytic solution based on mean element theory
for in-plane precision LTVC.1® * McHenry derived a formulation for both in-plane and out-of-
plane J, perturbations.*? Both solutions result in a minimal increase in algorithmic complexity
over the conic formulation.

3. Free-Range LTVC

Before entry the Orion CM executes a short burn after separation from the SM. This “CM-raise”
burn is designed to achieve a slightly shallower flight-path angle at El to gain separation from the
SM before entry. Use of the LTV C option for this burn is problematic for the near-parabolic Earth
return trajectory from the Moon due to the extreme sensitivity of the impulse to the in-plane transfer



angle. This can be seen by implicitly differentiating Equation (4) with respect to #to find the partial
derivative.

[sin(8) —c, cos(9) v »—c, cos(8) vr n— - sin(0)

Ovr, rr

o0 2{cos(6’)+c2 sin(0) —”}Vrﬁclsin(@)

ld

(14)

The sensitivities of the desired radial and horizontal velocity are now found by using the chain
rule to differentiate Equations (12) and (13).

Vg h K OVr

20 r, 00 (15)
%: ri_]_ Sil’](@) _rl 8VT'h + rl_]_ VT—h (16)
00 Iy 1-cos(@) r,| 00 \r cos(d)-1

Despite the complexity of these equations, a few salient observations can be made: 1) as the
ratio of the target radius to the position radius departs unity, the sensitivity of the desired radial
velocity to the transfer angle increases; 2) a singularity in the sensitivity of the desired radial ve-
locity exists for transfer angles that are integer multiples of 180 degrees; and 3) both the desired
radial and horizontal sensitivities are proportional to the horizontal velocity at the target point. For
the EM-1 CM raise burn these effects combine to produce very high sensitivities (approximately
330 m/s per degree root sum squared). Hence, any shift in the effective transfer angle due to finite
burn effects (via the burn arc length subtracting from the ignition-relative transfer angle) results in
large variations in the velocity-to-be-gained direction and magnitude, potentially injecting instabil-
ity and inhibiting convergence. Even in the event of successful convergence, the resulting burn may
be prohibitively large.
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Figure 5. LTVC Impulse Sensitivity to Transfer Angle.



This sensitivity to variation in transfer angle is illustrated in Figure 5 which compares the LTVC
impulse in three scenarios: the Earth return from the Moon CM-raise, a LEO deorbit, and a LEO
CM-raise burn. An alternate interpretation of these results is that the entry point on the Earth return
trajectory is insensitive to the impulse magnitude this late in the approach trajectory. For the EM-
1 CM-raise example a burn of nearly 300 m/s oriented to maintain EI conditions will only shift the
transfer angle by a single degree. This issue was first raised and a resolution proposed to not specify
the transfer angle (i.e., the intercept location) and allow the algorithm to solve for the transfer angle
that yields the minimum burn impulse.r® This variant of the LTVC problem is termed the Free-
Range LTVC (FR-LTVC) problem, and has been implemented as a new guidance option to provide
explicit closed-loop control of the EI flight-path angle by the CM-raise burn.

The FR-LTVC solution equation is obtained by considering the following vis-viva integral, with
a defining the orbital semi-major axis.

(17

=N

1 v
a H
Using Equation (17), since the semi-major axis is constant on the post-burn coasting trajectory, the

velocities at burn cutoff and target intercept can be related to one another (again with Iy =T, since
burn cutoff position is not explicitly controlled), satisfying the relationship in Equation (18).

1 1
vd2:2y[———J+vT2 (18)

rd T

Breaking up the magnitudes into vertical and horizontal components, and substituting Equation
(1) for the vertical component at intercept, yields Equation (19).

(19)
Vd,r2 +Vd,h2 = 2/{_1 __:- j+ [(Cl JrC2VT,h)2 +VT,h2]
a I

Since the orbital angular momentum (h = rv,,) is a constant on the coasting trajectory from I
to r; , then the horizontal velocity at burn cutoff and intercept can be related using Equations (20)
and (21).

Vih =P Van (20) p=— (21)

Substituting Equation (20) into Equation (19) yields the FR-LTVC constraint equation.

2
r_lu(l_p)"' (c,+Cp Vd,h)2 + (,02 _l)vd,h2 _Vd,r2 =0 (22)
d

The solution to the free-range LTVC problem involves trying to minimize Equation (23), with
subscripts ¢ and d denoting the current and desired (cutoff) velocity components, respectively.
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Vgo =/ (Vg y =V )2 + (Vg — Vo) (23)

The optimization problem to be solved is to minimize Equation (23) (or rather its square) subject
to the constraint in Equation (22). Observe that Equation (22) defines a conic section which con-
strains the in-plane desired velocity. Therefore, this is a problem of finding a point on a conic
section (Vgn, Var) nearest the point (veh, Ver). This insight allows for an efficient numeric solution
that is stable, robust, and exhibits desirable convergence properties. For a detailed analysis of this
problem and its robust numeric solution, including a useful method of normalizing the problem,
please refer to Some Geometric Relations and a Proposed Solution Process for the Free Range
Linear Terminal Velocity Constraint Problem by S. Robinson.** What follows is only a brief de-
scription outlining the solution approach.

Use a Lagrange multiplier to adjoin the constraint from Equation (22) to the square of Equation
(23).

2 2 2
J = (Van—Ven) +(Var—Ver) +ﬂ{r—”(1—p)+(cl+cz vd,h)2+(p2—1)V§,h—V§,r} (24)
d

Now take the partials with respect to vqnand vq,and set them equal to zero.

aJ (25)
= 2(Vd,h _Vc,h)+ 21[C1C2 +(c; +p° _1)Vd,h]: 0
8Vd,h
J
™ =2V s = Ver) =24V, =0 (26)
These equations are solved to find the components of the desired velocity.
V., —AcC.C V.,
Van =7 a7 (27) Vs = (28)

T 14 A(CS+p*-1)

These relations are used in conjunction with a guarded Newton-Raphson iteration loop to find
the value of A which satisfies the constraint in Equation (22). Extensive offline testing has shown
that this approach is a robust solution to the problem with desirable convergence characteristics.*

The left plot in Figure 6 shows the results of a quick convergence study done with one hundred
million randomly generated cases. In this study all cases converged in less than 31 iterations. The
right plot in Figure 6 shows the observed cumulative distribution function for the number of itera-
tions. More than 99.9% of the random cases converged within 15 iterations. The cases which re-
quired more than 15 iterations for convergence all involved such large changes in velocity that it is
difficult to imagine these cases occurring in an actual orbital scenario. More specifically, the cases
with large numbers of iterations all involved initial conditions near the lines of symmetry for the
constraint conic defined by Equation (22). Initial points lying directly on the lines of symmetry
may not have unique solutions. For cases near reasonable mission profiles, the convergence is rapid
and well behaved. For example, in the case of a notional CM raise burn from the EM-1 flight
profile, the free-range targeting algorithm converged in only 3 iterations to the correct solution.
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4. Transit Guidance Option

The Transit guidance option uses an algorithm that solves the classical Lambert time-of-flight
point-to-point transfer. The iteration parameters used by the Orion Lambert algorithm were first
published by Lancaster, Blanchard, and Devaney in 1966, and are valid for elliptical, parabolic,
and hyperbolic transfers.’ 6 Their work served as the basis for the on-board Lambert algorithm
developed for Space Shuttle rendezvous burn targeting in the late 1970s. This algorithm, valid for
elliptical and circular transfers, flew on the Space Shuttle from 1984 to 2011.2

In 1968 Battin published an independent development of the same iteration parameters but with
a different time-of-flight equation that used a hypergeometric function.!” Later, Battin published an
improvement to his time-of-flight equation.'® ¥ After performing a survey of Lambert solution
methods, Gooding wrote in 1990 that “the outstanding contribution to the subject has been the pair
of papers by Lancaster and his colleagues.”?° Gooding developed a more comprehensive algorithm
using the Lancaster, Blanchard, and Devaney iteration parameters. This included algorithms for
estimating the first guess of the independent iteration parameter and use of a Halley iteration that
provides third order convergence. Gooding’s new developments achieved a desired level of solu-
tion accuracy throughout the iteration space in a fixed number of iterations.

In 2007 Gooding’s FORTRAN algorithm was coded in MATLAB to serve in the Rendezvous
Targeting (RTARG) software for Orion in the Constellation Program. This algorithm underwent
extensive convergence characteristics testing in 2011. The RTARG software was later removed
from the Orion software after the Constellation Program was canceled. In the spring of 2016, work
began on a Lambert algorithm for the Orion OrbGuid Transit option. The MATLAB implementa-
tion of Gooding’s algorithm was chosen since it had been tested for Orion during the Constellation
Program. The non-dimensional nature of the iteration parameters permit generic testing of the iter-
ation scheme over a wide range of values without defining a trajectory in terms of position and
velocity vectors. In addition, the elliptical portion of the iteration space was familiar to personnel
due to convergence characteristics testing conducted on the Space Shuttle on-board Lambert algo-
rithm in 1993 and 1994.

The MATLAB algorithm underwent extensive modification to replace decades old FORTRAN
coding practices with code that met Orion software standards. The multi-revolution logic was re-
moved since it was not needed for exploration missions. Part of Gooding’s starter value algorithm

12



was replaced by a development of 1zzo, and the Halley iteration was replaced with a Householder
iteration.?* The algorithm can compute elliptical, parabolic, and hyperbolic transfers.

To further simplify the algorithm, Battin’s universal time-of-flight Equation (36) was used in-
stead of Gooding’s time-of-flight equations.*® In the following equations the magnitudes of the
initial and final position vectors are r; and r,, and c is the chord of the transfer. The independent
iteration parameter x (Equation [30]) is a function of the semi-major axis a of the transfer orbit and
the semi-major axis of the minimum energy transfer a,, in Equation (29). The transfer geometry
parameter A (Equation [31], also called g) is a function of the semi-parameter of the transfer triangle
s (Equation [29]), the transfer angle &, and the magnitudes of the initial and final position vectors
r; and r,. The Orion implementation of Equation (35) uses the hypergeometric function evaluation
software developed for the OrbGuid Encke-Beta trajectory predictor.” The initial and final times of
the transfer are represented by t; and t, (Equation [36]).

s =2a, =050;+r,+c0) (29) X = /1 _dm (30)
a

1 0

A= S NS cos (31) y=41-22(1—-x2) (32)
n=y—Ax (33) S =05(1—-21—xn) (34)
Q= g F(3,1,;,51) (35) /aig (t; —t) = n°Q + 44y (36)

Testing of the Lambert algorithm was performed at several levels. Lambert was exercised dur-
ing tests of the integrated Orion guidance, navigation, and control software. These tests involved
flying portions of the EM-1 mission profile.

Extensive off-line testing of the Lambert algorithm was also performed. This permitted tests to
be created that exercised the algorithm over a wider range of transfers than the integrated guidance,
navigation, and control software tests. Furthermore, the off-line tests could collect more data and
execute for longer times. Internal data not captured in integrated testing could be collected in off-
line testing. The first type of off-line Lambert testing was executed in conjunction with testing of
the Kepler algorithm used by the Encke-Beta predictor.” These tests exercised the complete Lam-
bert algorithm by input of the transfer time and the initial and final position vectors. Test results
have compared favorably with a different Lambert algorithm developed by Arora and Russell.?

The second type of off-line testing focused on determining the convergence characteristics of
the iteration scheme. Logic concerning starter values for the independent iteration parameter, the
Householder iteration, the time-of-flight equation, and the convergence test was exercised. Inputs
to these tests included the normalized desired transfer time (left side of Equation [36]) and the
transfer geometry parameter 1. While this level of testing does not exercise all of the Lambert logic,
it does more extensively test the convergence characteristics of the iteration scheme. This type of
off-line testing was originally performed during the Space Shuttle Program in 1993 and 1994 in
response to a Lambert targeting problem that occurred during the STS-49 mission and another that
occurred four days before the launch of STS-51.%

Figure 7 illustrates where the four EM-1 Transit burns are located in the Lambert iteration
space. The horizontal axis is the independent parameter x and it is a function of the desired semi-
major axis of the transfer (Equation [30]). x = 0 is a minimum energy elliptical transfer, -1 < x <
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+1 represents elliptical transfers, x = 1 is a parabolic transfer, and x > +1 represents hyperbolic
transfers. The circular transfer locus is also shown. The other lines on the plot represent the transfer
geometry parameter g (Equation [31], also called 1). g = +1 is a O degree transfer, g = 0 is a 180
degree transfer, and g = -1 is a 360 degree transfer. The vertical axis is the normalized time-of-
flight T (left side of Equation [36]).

Lambert Iteration Space With EM-1 Transit Burns Indicated

Normalized Transfer Time (T)
N

X = +/-sqrt(1-(am/a))

Figure 7. Lambert Iteration Space with EM-1 Transit (Lambert) Burns Labeled.

Figure 8 is a plot of the number of iterations required for the algorithm to converge on a solution
for the independent parameter x given a desired normalized transfer time T and a transfer geometry
parameter g. In all cases the iterations are complete in three or less iterations. Most cases converge
in two iterations (blue circles). Cases of convergence on the first iteration (green circles) occur for
some parabolic transfers (x = 1).
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Number of Lambert Iterations to Converge

Number of Iterations to Converge

X = +/—sqrt(1—(am/a))

Normalized Transfer Time (T)
Figure 8. Lambert Iteration Space Number of Iterations to Converge.

5. Constrained Intermediate Terminal Intercept (CITI) mode

The CITI algorithm had its genesis during the Apollo Program with the return-to-Earth targeting
to achieve a specified flight-path angle at El, but was not used due its late development. It was
derived by William M. Robertson, although the name was only recently applied.?* %

This algorithm has application to intercept problems requiring a constraint on the flight path
angle at an intermediate point. The algorithm finds the velocity required to intercept a target vector
while achieving a desired flight-path angle at an intermediate altitude as illustrated in Figure 9. The
fundamental variable in the solution is the flight path angle at cutoff (7). Marscher derived two
equations for all conic transfers between to arbitrary radii. 2 With burn cutoff being one radii (again
with Iy =T, since burn cutoff position is not explicitly controlled), these relations are shown in
Equations (37) and (38).

P _ 1-cosé P

. —Cc0s@+1I,sind y (%)2(1+1"2)—(1+1"d2)

2(%—1)

P is the semi-latus rectum, @is the transfer angle from r, tor, T, is the tangent of y,, r is an

arbitrary radius, and I" is the tangent of the flight-path angle atr . Evaluating Equation (37) at the
intercept position (. ) and Equation (38) at the intermediate position (r.) and eliminating P /r,

yields the following quadratic inT, .
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1,2+ 202 —1)cot DT, +| 1- (92 @+ T2 + —2— (" —1)(a _cosg) | =0 (39)
K 2 r 1-cosé r, I
Intermediate
Position
. V.

7

cutoff

/" Terminal
5 Intercept

ignition

Pre - bumn
trajectory

Post - burn
trajectory

Figure 9. CITI Transfer Geometry.

Once T, is determined, substitution into Equation (37) at the intercept position yields the normal-

ized semi-latus rectum. Substitution of this result into another equation derived by Marscher yields
the normalized semi-major axis.?

f 2 Puiry (40)
a r

The desired velocity magnitude at burn cutoff can now be obtained from the vis-viva integral
Equation (17), completing determination of the desired velocity vector at burn cutoff. Details of
the quadratic roots are provided on the basis of the relationship between ry , r, and r. , six regions

in all.** The scenarios of current interest for Orion are r. >r, >r.,and r, > r. > r, . The first sce-

nario applies to lunar and Earth orbit maintenance burns, while the second applies to direct return
aborts during the outbound leg to the Moon and deorbit burns from LEO. An example of an Earth
orbit problem, that parallels the LTVC solution, is a deorbit burn where an Earth-surface target is
defined for ballistic intercept while specifying the desired flight path angle at the El altitude of 400
kft.

HIGH-ORDER GRAVITY TARGET BIASING

Orion’s exploration mandate necessitates higher autonomy. OrbGuid’s high-order gravity op-
tion takes advantage of increased computing power to bias guidance targets on-board to take into
account higher order gravitational harmonics and third body perturbations. This biasing is accom-
plished using a single prediction of the conic transfer solution from burn cutoff per each evaluation
of the conic transfer solutions. The solution is predicted to the pierce plane that contains the target
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intercept position vector and is perpendicular to the orbit plane. The target vector is then biased by
subtracting the miss vector. After several predictor/corrector guidance iterations, the conic burn
solution with the biased targets rapidly converges to the high-order predicted solution.

Additional biases are also computed depending on the guidance option. For the two LTVC op-
tions, the linear slope constants Equation (1) are biased based on the radial velocity miss at inter-
cept. For the transit option, the conic transfer time is biased by the transit-time miss from the desired
transit time. For CITI, the propagation from burn cutoff to intercept is broken into two segments.
The first segment propagates to the intermediate position vector to obtain the bias of the interme-
diate radius magnitude and intermediate flight-path angle. The second propagation segment pro-
vides for biasing the target intercept vector. An illustration of the position and constraint biasing is
provided in Figure 10 for the LTVC solution.

]‘u
Constraint line
F=C+Cy, -

Figure 10. Intercept Target Biasing for Non-Central Body Effects.

OUT-OF-PLANE CONTROL

OrbGuid provides several options for specifying the objective of the out-of-plane component
for the desired intercept velocity solutions: in-plane only, target intercept, velocity null, and Earth-
fixed target plane intercept. Solving for the in-plane-only solution is useful for 180° transfers and
cases where maintenance of the orbit plane is not important, and it is accomplished by projecting
the target vector into the orbit plane. Target intercept is accomplished by adding an out-of-plane
velocity component that nulls the out-of-plane position miss at intercept found by the predicted
solution. The following equation for the out-of-plane velocity miss is derived from basic trigono-
metric identities.

_ Vhoriz rT ,miss,y

V. o= L
miss.y I, sin @

(41)

In this equation Vhori; is the horizontal component of the velocity at cutoff, r; is the target inter-

cept radius, ¢ is the central transfer angle from cutoff to the target, and g5y is the out-of-plane
position miss at target intercept.
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Out-of-plane velocity null is useful for partially correcting the orbit plane with a single burn,
and it is accomplished by projecting the desired velocity into the desired orbit plane. The position
remains uncorrected, but the plane error is limited to the current out-of-plane position miss.

Finally, the Earth-fixed target plane intercept is useful for bringing the orbit plane over a target
such as a landing site. It applies to the LTVC and CITI burn options. This method requires an
estimate of the elapsed time between downrange target intercept and the planar intercept target.
Using this parameter, the planet-fixed vector can be converted into inertial coordinates, and the
downrange intercept target moved into the appropriate orbit plane by using Equation (41) to relate
the out-of-plane velocity correction required to null the cross-track position miss at landing.

In addition to directly specified out-of-plane intercepts, OrbGuid has options to protect against
minimum mass or free-fall time constraints. Minimum mass includes propellant, and the mass pro-
tection prevents Orion from exceeding propellant reserves in order to meet out-of-plane targets.
Similarly, a certain amount of free-fall time is required to accomplish docking mechanism jettison,
SM jettison, CM orientation, and the CM raise burn (if required). In the case of a propulsion system
downmode, these protections allow for an immediate downmode while allowing the vehicle to
achieve the smallest out-of-plane possible while preserving the critical in-plane component.

OrbGuid accomplishes both mass and free-fall time protection by scaling the \7g0 magnitude to

account for the limit. For mass, the maximum Vg, magnitude is given by Equation (42).
m (42)

Y =v,_ In
ex
n burnout,min

g0, max, mass

For free-fall time, if ty defines the burn time and tti defines the coast time from burn cutoff to
intercept, then ty+tti defines the elapsed time to intercept, and tgo+tti-ttimin defines the allowable
burn time that satisfies the minimum free-fall time. Using the rocket equation (43), the maximum

Vo is given by Equations (44) and (45).

g~

v, =—v, Ina—2Yy) (43)
T

(g tti) —tiy,

ttiarg =1 T— (44) Vgo,max, i~ _Vex In(ttiarg) (45)

The maximum Vg, magnitude is the lesser of the mass and time-to-intercept values. If the un-

constrained Vg, is greater, and the in-plane burn is achievable, then the out-of-plane burn compo-
nent is given by Equation (46).

. 2 2
Vgo,max, oop — SIgn(vgo,oop )\/ Vgo,max - Vgo,ip (46)
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SUMMARY

For NASA’s future manned exploration missions, the Orion Multi-Purpose Crew Vehicle re-
quires a burn guidance capability that is able to support the current exploration missions and that
is adaptable to future, as yet to be defined, exploration mission profiles. The orbit powered flight
guidance algorithm design described in this manuscript leverages many decades of successful flight
heritage design with proven utility and reliability while incorporating lessons learned in the areas
of advanced precision, autonomy, and architecture design. The result is an algorithm and suite of
burn options that support a wide variety of orbit transfer scenarios. Yet the design is extendable to
new burn options, as demonstrated by the relatively recent addition of the free-range LTVC burn
option. The design is poised to provide the burn guidance required to support the mission challenges
ahead.
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