

Orion Powered Flight Guidance Burn Options for near term exploration Tom Fill, C.S. Draper Laboratory John Goodman, Odyssey Space Research Shane Robinson, NASA JSC

Powered Flight Guidance to support MPCV Mandate

"...missions beyond low-Earth orbit ...conduct regular in-space operations...alternative means for delivery of crew and cargo to the ISS...capacity for efficient and timely evolution..."

- NASA Authorization Act of 2010

- Provide Burn Guidance for Range of Missions
 - LEO & Beyond
- Flexibility
 - Nominal
 - Abort
- Evolutionary
 - EM-1 and Beyond

- Primary Function: Guide the vehicle through a burn such that, vehicle achieves a desired trajectory at burn cutoff.
- Uses the Powered Explicit Guidance (PEG) algorithm.
 - Shuttle heritage with numerous extensions and added capability.
 - Explicit no reliance on an a reference trajectory.
- OrbGuid acts as a wrapper executive to call the PEG algorithm.
- Architecture supports a menu of desired (burn cutoff) velocity options.
 - Current suite of five options
 - New desired velocity options can be added as necessitated by the mission.

Powered Explicit Guidance

Powered Explicit Guidance

T. Fill

Exec:

OrbGuid Executive

Controls execution initializations, resets, transitions

[t > (TIG – tGuidPreTIG) && burnEnable == TRUE]

OrbGuid runs in two execution modes, shown in brown boxes:

- Pre-burn computations:
- Active burn guidance:

Pre-burn Computations:

[runPreBurnCompsElag ==TRUE]

Calls PEG to Converge steering solution from scratch to achieve targets.

Sets burnEnable to TRUE if converged, FALSE otherwise.

Active Burn Guidance:

Maintains solution (via call to PEG) in the presence of dispersions.

Output Processing: Burn cutoff time, Steering outputs

```
11/27/2017
```


OrbGuid (PEG)

<u>START</u>

END

 $\mathbf{v}_{go} = \mathbf{v}_{go} - \Delta \mathbf{v}$ nCycles = 0

[nCycles < NMAX && norm(v_{miss}) < tolerance]

OrbGuid solution algorithm uses a predictor/corrector methodology to converge & maintain a stable guidar solution. Iteration variable is v_{go} (the velocity to be gained by thrust)

nCycles = nCycles + 1

Solve for burn time using rocket equation (tgo)
Solve for elements of steering law
Predictor: predict cutoff state (t_p, r_p, v_p)
Compute desired state (t_d, r_d, v_d)
Insert appropriate burn option desired velocity solution algorithm (LTVC, etc.)

 $\mathbf{v}_{miss} = \mathbf{v}_{p} - \mathbf{v}_{d}$

Corrector: update v_{go} to null v_{miss}

7

External DV

- Spec: Ext-ΔV
 - in either TIG LVLH or inertial Frame
- Typical Usage
 - Trajectory Correction Burns
 - Orbit maintenance
- PEG yields $V_{go} = Ext-\Delta V$

- Space Shuttle heritage transfer problem
 - Result of a search for a generalized targeting algorithm.
- Linear Velocity Constraint imposed at Intercept

$$v_r = C_1 + C_2 v_h$$

- Spec \mathbf{r}_{T} , c_{1} , c_{2} (& TIG)
 - \mathbf{r}_{τ} : sometime as a spec altitude a spec transfer angle from TIG
- Used on Shuttle Orbit insertion & Deorbit
- **Common Transfers** ٠
 - Line-of-Apsides Control / Hohmann-like transfers
 - Target defines desired Apsis altitude and location
 - $C_1 = C_2 = 0$
 - Deorbit
 - Target defined Entry Interface
 - C1 = 0; C2 = Tan (γ_{FI})
- Solution is a quadratic in the unknown . $v_{T.h}$

$$[k(1+w^2)+2(1-wc_2)](v_{T,h})^2-2wc_1v_{T,h}-\frac{2\mu}{r_T}=0$$

 $v_{T,r}$ From constraint; Map \vec{v}_T back to \vec{r}_p to obtain \vec{v}_d • 11/27/2017

Free-Range LTVC (FRLTVC)

- Orion CM executes short burn to separate from the SM prior to Entry
 - Via Shallower flight-path angle at EI
- FRLTC created to address extreme sensitivity of LTVC ΔV on return-from-moon Trajectory
 - CM-raise is a mini-deorbit adjustment burn
 - But Vehicle is close to El
 - Eccentricity is near parabolic
- Resolution: relax transfer angle specification
- Spec \mathbf{r}_{T} (magnitude only), c_1 , c_2 (& TIG)
 - Optionally altitude

Transit / Lambert Desired Velocity

- Lambert guidance solves the two-point boundary value problem constrained by time-of-flight (TOF)
 - Adds a new parameter to define time-of-flight by specifying the time-of-intercept (i.e., transit time from ignition to intercept)
- Spec r_T, Transfer Time (& TIG)
- Algorithm based on work by Lancaster, Blanchard and Devaney (1966), but enhanced by Gooding.
 - Lancaster, Blanchard and Devany based algorithm used on Shuttle
 - Gooding algorithm using for Constellation and is basis for Orion algorithm.
 - Gooding's new developments achieve a desired level of solution accuracy throughout the iteration space in a fixed number of iterations

Fill

Number of Lambert Iterations to Converge

Constra

Constrained Intermediate Terminal Intercept (CITI)

- Determines velocity required to intercept a specified target position vector (\mathbf{r}_{T}) while attaining a specified flight-path angle at an intermediate radius (\mathbf{r}_{γ}) .
- Flight-path angle at the intercept target is not specified.
- Intermediate radius location is unimportant
- Spec \mathbf{r}_{T} , r_{i} , γ_{i} (& TIG)
- An analytic solution exists:
 - Robertson (1972): "Closed Form Solution of a Certain Common Conic De-orbit Problem".
 - Genesis is Return-to-Earth Targeting during Apollo.

• Solution is a quadratic in the unknown Tangent of Flightpath angle at burn cutoff ($\Gamma_d = Tan(\gamma_d)$)

$$\Gamma_d^2 + 2(\frac{r_d}{r_i} - 1)\cot(\frac{\theta}{2})\Gamma_d + \left[1 - (\frac{r_d}{r_i})^2(1 + \Gamma_i^2) + \frac{2}{1 - \cos\theta}(\frac{r_d}{r_i} - 1)(\frac{r_d}{r_T} - \cos\theta)\right] = 0$$

- Roots dependent on relationship between $r_{d\nu}$, $r_i \& r_{\tau}$ (6 regions in all)
- Scenarios of current interest are $r_i > r_d > r_\tau$ (lunar and Earth orbit maintenance burns), and $r_d > r_i > r_\tau$ (direct return aborts during the outbound leg to the Moon and deorbit burns from LEO).

 $\Delta v_{max,mass} = v_{ex} \ln (mass/mass_{min}) \qquad (preserve propellant reserves)$

 $\Delta v_{max,tti} = -v_{ex} \ln(1 - (t_{go} + tti + tti_{min})/\tau_A) \text{ (preserve coast time-to-intercept (} 11/27/2017 \text{ T. Fill})^{14}$

Questions?