## Orion Powered Flight Burn Options

for near term exploration
Tom Fill, c. s. draper Laboratory John Goodman, od/ssey Space Ressarch Shane Robinson, NASA ISC

## Powered Flight Guidance to support MPCV Mandate

"...missions beyond low-Earth orbit ...conduct regular in-space operations...alternative means for delivery of crew and cargo to the ISS...capacity for efficient and timely evolution..."

- NASA Authorization Act of 2010
- Provide Burn Guidance for Range of Missions
- LEO \& Beyond
- Flexibility
- Nominal
- Abort
- Evolutionary
- EM-1 and Beyond



## OrbGuid: Executive Summary

- Primary Function: Guide the vehicle through a burn such that, vehicle achieves a desired trajectory at burn cutoff.
- Uses the Powered Explicit Guidance (PEG) algorithm.
- Shuttle heritage with numerous extensions and added capability.
- Explicit - no reliance on an a reference trajectory.
- OrbGuid acts as a wrapper executive to call the PEG algorithm.
- Architecture supports a menu of desired (burn cutoff) velocity options.
- Current suite of five options
- New desired velocity options can be added as necessitated by the mission.


## Powered Explicit Guidance



## $\mathrm{r}_{\text {predicted, } 1}=\mathrm{r} \quad \mathrm{V}_{\text {predicted, } 1}=\mathrm{V}$

$\Delta v_{1}=0$
$\mathrm{v}_{\text {desired, } 1} \quad \Delta \mathrm{v}_{2}=\mathrm{V}_{\text {miss,1 }}$

Predicted intercept state,1

Target condition

## Powered Explicit Guidance



## OrbGuid Executive

OrbGuid runs in two execution modes, shown in brown boxes:

- Pre-burn computations:
- Active burn guidance:


## Exec:

Controls execution initializations, resets, transitions
[t > (TIG - tGuidPreTIG) \&\& burnEnable == TRUE]
[runPreBurnCompsElag ==TRUE]

## Pre-burn Computations:

Calls PEG to Converge steering solution from scratch to achieve targets.

Sets burnEnable to TRUE if converged, FALSE otherwise.


## Output Processing:

Burn cutoff time, Steering outputs

## Active Burn Guidance:

Maintains solution (via call to PEG) in the presence of dispersions.

## OrbGuid (PEG)

## START

$$
\mathbf{v}_{\mathrm{go}}=\mathbf{v}_{\mathrm{go}}-\Delta \mathbf{v}
$$

$$
\text { nCycles }=0
$$

$\downarrow$ [nCycles < NMAX \&\& norm $\left(\mathbf{v}_{\text {miss }}\right)$ < tolerance]

OrbGuid solution algorithm uses a predictor/corrector methodology to converge \& maintain a stable guidar solution. Iteration variable is $\mathrm{v}_{\mathrm{go}}$ (the velocity to be gained by thrust)
nCycles $=$ nCycles +1
Solve for burn time using rocket equation (tgo)
Solve for elements of steering law
Predictor: predict cutoff state $\left(\mathrm{t}_{\mathrm{p}}, \mathrm{r}_{\mathrm{p}}, \mathbf{v}_{\mathrm{p}}\right)$
Compute desired state $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{r}_{\mathrm{d}}, \mathrm{v}_{\mathrm{d}}\right)$
Insert appropriate burn option desired velocity
solution algorithm (LTVC, etc.)
$\mathbf{v}_{\text {miss }}=\mathbf{v}_{\mathrm{p}}-\mathbf{v}_{\mathrm{d}}$
Corrector: update $\mathbf{v}_{\mathrm{go}}$ to null $\mathbf{v}_{\text {miss }}$

## External DV

- Spec: Ext- $\Delta \mathbf{V}$
- in either TIG LVLH or inertial Frame
- Typical Usage
- Trajectory Correction Burns
- Orbit maintenance
- PEG yields $\mathbf{V}_{\text {go }}=$ Ext $-\Delta \mathbf{V}$



## Linear Terminal Velocity Constraint (LTVC)

- Space Shuttle heritage transfer problem
- Result of a search for a generalized targeting algorithm.
- Linear Velocity Constraint imposed at Intercept

$$
v_{r}=C_{1}+C_{2} v_{h}
$$

- Spec $\mathbf{r}_{T}, c_{1}, c_{2}$ (\& TIG)
- $\mathbf{r}_{\mathrm{T}}$ : sometime as a spec altitude a spec transfer angle from TIG
- Used on Shuttle Orbit insertion \& Deorbit
- Common Transfers
- Line-of-Apsides Control / Hohmann-like transfers
- Target defines desired Apsis altitude and location
- $\mathrm{C}_{1}=\mathrm{C}_{2}=0$
- Deorbit

- Target defined Entry Interface
- $\mathbf{C 1}=0 ; \mathbf{C} 2=\operatorname{Tan}\left(\gamma_{\mathrm{EI}}\right)$
- Solution is a quadratic in the unknown $v_{T, h}$

$$
\left[k\left(1+w^{2}\right)+2\left(1-w c_{2}\right)\right]\left(v_{T, h}\right)^{2}-2 w c_{1} v_{T, h}-\frac{2 \mu}{r_{T}}=0
$$

- $v_{T, r}$ From constraint; Map $\vec{v}_{T}$ back to $\vec{r}_{p}$ to obtain $\vec{v}_{d}$
$k=\frac{r_{T}-r_{d}}{r_{d}}$
$w=\cot \frac{\theta}{2}=\frac{\sin \theta}{1-\cos \theta}$


## Free-Range LTVC (FRLTVC)

- Orion CM executes short burn to separate from the SM prior to Entry
- Via Shallower flight-path angle at EI
- FRLTC created to address extreme sensitivity of LTVC $\Delta \mathrm{V}$ on return-from-moon Trajectory
- CM-raise is a mini-deorbit adjustment burn
- But Vehicle is close to EI
- Eccentricity is near parabolic
- Resolution: relax transfer angle specification
- Spec $\mathbf{r}_{\mathrm{T}}$ (magnitude only), $\mathrm{c}_{1}, \mathrm{c}_{2}$ (\& TIG)




## Transit / Lambert Desired Velocity

RION


Number of Lambert Iterations to Converge

- Spec $\mathbf{r}_{\mathrm{T}}$, Transfer Time (\& TIG)
- Algorithm based on work by Lancaster, Blanchard and Devaney (1966), but enhanced by Gooding.
- Lancaster, Blanchard and Devany based algorithm used on Shuttle
- Gooding algorithm using for Constellation and is basis for Orion algorithm.
- Gooding's new developments achieve a desired level of solution accuracy throughout the iteration space in a fixed number of iterations




## Constrained Intermediate Terminal Intercept (CITI) NAES:

RION

- Determines velocity required to intercept a specified target position vector $\left(r_{T}\right)$ while attaining a specified flight-path angle at an intermediate radius $\left(r_{\gamma}\right)$.
- Flight-path angle at the intercept target is not specified.
- Intermediate radius location is unimportant
- Spec $\mathbf{r}_{T}, r_{i}, \gamma_{i}$ (\& TIG)
- An analytic solution exists:
- Robertson (1972): "Closed Form Solution of a Certain Common Conic De-orbit Problem".
- Genesis is Return-to-Earth Targeting during
 Apollo.
- Solution is a quadratic in the unknown Tangent of Flightpath angle at burn cutoff $\left(\Gamma_{d}=\operatorname{Tan}\left(\gamma_{d}\right)\right)$

$$
\Gamma_{d}^{2}+2\left(\frac{r_{d}}{r_{i}}-1\right) \cot \left(\frac{\theta}{2}\right) \Gamma_{d}+\left[1-\left(\frac{r_{d}}{r_{i}}\right)^{2}\left(1+\Gamma_{i}^{2}\right)+\frac{2}{1-\cos \theta}\left(\frac{r_{d}}{r_{i}}-1\right)\left(\frac{r_{d}}{r_{T}}-\cos \theta\right)\right]=0
$$

- Roots dependent on relationship between $r_{d} r_{i} \& r_{T}$ (6 regions in all)
- Scenarios of current interest are $r_{i}>r_{d}>r_{T}$ (lunar and Earth orbit maintenance burns), and $r_{d}>r_{i}>r_{T}$ (direct return aborts during the outbound leg to the Moon and deorbit burns from LEO).


## Target Biasing (LTVC example)



## Out-of-Plane Constraints



$$
\Delta v_{\max , \operatorname{mass}}=v_{\text {ex }} \ln \left(\text { mass } / \text { mass }_{\min }\right)
$$

(preserve propellant reserves)
$\Delta v_{\max , t t i}=-v_{e x} \ln \left(1-\left(t_{g o}+t t i+t t i_{\min }\right) / \tau_{A}\right) \quad$ (preserve coast time-to-intercept $($

Questions?

