Abstract of my presentation:

Quantum computing promises an unprecedented ability to solve intractable problems by harnessing
guantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial
Intelligence Laboratory (QUAIL) at NASA Ames Research Center is the space agency’s primary facility for
conducting research and development in quantum information sciences. QUAIL conducts fundamental
research in quantum physics but also explores how best to exploit and apply this disruptive technology
to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same
time, machine learning has become a major focus in computer science and captured the imagination of
the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine
learning can take advantage of quantum computing to significantly improve its effectiveness. Although
we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If
explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide
range of tasks leading to new technologies and discoveries that will significantly change the way we
solve real-world problems.
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Key:
Data Analysis and Potential Anomaly Detection

Data Fusion skt 21 d Decision Making
speedup

V&V and
optimal
sensor
placement

Air Traffic
1 Management

Mission Planning and Scheduling, and Coordination

&=
#

Topologically
aware Parallel
Computing

Common Feature: Intractable (NP-hard / NP-complete) problems!
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QuAIL: Quantum Artificial Intelllgence Laboratory

Brief Development Timeline [ v
2000-2011: Occasional NASA research on quantum computing, including .
seminal papers on adiabatic quantum computing & quantum annealing
Jan 2012: NASA organizes the First Quantum Future Technologies
Conference attracting eminent researchers worldwide and participation
from companies such as Google and D-Wave Systems [
Nov 2012: NASA signs innovative 3-way Non-Reimbursable Space Act e oem
Agreement (NRSAA) with Google and USRA :

Jan 2013: Site preparations begin at NASA Ames using Center
investment funds for installation of D-Wave quantum annealer

Sept 2013: 512-qubit D-Wave 2 system comes on-line at Ames

June 2014: AFRL funding for research in quantum annealing

Aug 2014: IARPA funding for MIT-LL led QEO collaboration
among NASA, TAMU, ETH-Z, UC Berkeley, and MIT

July 2015: Upgraded D-Wave 2X quantum annealer comes on-line
with over 1000 qubits

Feb 2017: NASA signs NRSAA with Rigetti Computing for collaborative
work on their prototype universal quantum processor

April 2017: Latest upgrade underway for D-Wave system with over 2000 qubits

May 2017: NASA to lead T&E effort for IARPA QEO program

QuAIL team has published 40+ papers since 2012

i | e — QUANTUM
| ARPA | — » ENHANCED
N OPTIMIZATION

" | Phys. Rev. Lett. 104,
1020502 (2010)




Long Term
* Determine the breadth and range

of quantum computing applications

« Explore potential quantum
algorithms and applications of
relevance to NASA

« Evaluate, influence, and utilize

emerging quantum hardware
- Develop programming principles,
compilation strategies, etc.

— Characterize the hardware
capabilities, noise, etc.
- Evaluate and implement the most
promising NASA applications
» Projections based on fundamental
understanding of quantum physics

Ongoing Efforts

* [nitial target: Quantum Annealing
- Only significant quantum hardware
available are quantum annealers
from D-Wave Systems

— Currently the most prominent
gquantum heuristic

- Widely applicable to optimization
problems, and sampling for ML

- Early hardware used to develop
intuitions and identify potential

* Near-term target: Emerging
quantum computing hardware
- Small universal quantum systems
- Advanced quantum annealers

— Alternative approaches to
optimization, sampling for ML, etc.
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Foundational Theory of Quantum Annealing

Simulated Annealing
(Kirkpatrick et al., 1983)

Quantum Annealing
(Finnila et al., 1994, Kadawaki & Nishimori, 1998, Farhi et.al., 2001)

 Algorithm: Start with high temperature;
then, gradually reduce intensity of thermal
fluctuations to obtain optimal configuration

« Transitions between states via jumping
over barriers due to thermal fluctuations

E({z}): Free energy
surface (cost function)

r) Algorithm: Start with large

amplitude A(T) responsible for
quantum fluctuations; then,
gradually turn it off while
turning on the cost function of
interest B(T)

Transitions between states
via tunneling through barriers

: Eliz)) {z}=configurations in S o3 oz o6 os 1 duetoquantum fluctuations
;ﬂ solution space Time, T
! E({z) ® ® ®
0 E({z}, 1=0) E({z}, 1<1) E({z}, 1=1)
=
© l
: \/,Jc\\/f o N\
g— v ~y—" tunneling
ks \/\/j [\f — {2} —> {2} —>{z}
Initialize in an Quantum states Final state a bit
¢ easy to prepare explored by string encoding
_ full quantum quantum the solution
Time| superposition tunneling with probability

5
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Tailored problems to

s@ show quantum

enhancement

Device calibration
techniques
| )

Study of annealing
in 1D chains

P.$$ Hidden bottlenecks of L

large-scale problems
Static and dynamical >

noise in SQUIDs

Insights into and

New embedding intuitions for
techniques quantum heuristics

Optimal
parameter setting

Error suppression
techniques

Annealing theory of
embedded problems

Future Performance
architectural estimators

design elements

Phase transitions in

application problems Machine
PP P Learning and QA solvers for
- Artificial complex planning and
Design of new Intelligence scheduling problems
application-
focqsed QA Graph-based fault-
architectures detection problems

APPLICATION PROBLEMS
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D-Wave System Hardware
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» Collaboration with Google and
USRA led to installation of
system at NASA Ames in 2013

» Started with 512-qubit Vesuvius
processor (currently upgrading to
2000-qubit Whistler)

* 10 kg metal in vacuum at ~15 mK

» Magnetic shielding to 1 nanoTesla
* Protected from transient vibrations
» Single annealing takes 20 ps

» Typical run of 10,000 anneals
(incl. reset & readout takes ~4 sec)

» Uses 12 kW of electrical power - - o,

Magnetic Flux

1 Superconducting
Loop

.‘p‘

C
“Spin-down' circulai"®

Focused on solving discrete optimization problems using quantum annealing -
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D-Wave System Capability

The system solves only one binary optimization problem:

Given { hj ,]ii }, find { S — il }
that minimizes

N N
&(Sl, ...,SN) :zhlsl_l_ z]ijsisj
j=1

i jEE
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Vesuvius to Washington to Whistler

DREODADLONHLDL O
’ﬁ ri e

ﬂ@%i’é #9@

g%v#@vvvvv;;év%¢
D-Wave 2X D-Wave 2000Q
512 (8x8x8) qubit “Vesuvius” 1152 (8x12x12) qubit 2048 (8x16x16) qubit “Whistler”
processor “Washington” processor processor

509 qubits working — 95% yield 1097 qubits working — 95% yield 2038 qubits working — 97% yield
1472 J programmable couplers 3360 J programmable couplers 6016 J programmable couplers

20 mK max operating 15 mK max operating 15 mK max operating temperature
temperature (18 mK nominal) temperature (13 mK nominal) (nominal to be measured)

5% and 3.5% precision level for 3.5% and 2% precision level for To be measured
hand J hand J

20 us annealing time 5 us annealing time (4X better) 5 us annealing time
12 ms programming time 12 ms programming time 9 ms programming time (25% better)
New: anneal offset, pause, quench

6 graph connectivity per qubit 6 graph connectivity per qubit 6 graph connectivity per qubit
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Map the target 9 Embed the QUBO coupling e Run the problem
combinatorial optimization matrix in the hardware graph several times and
problem into QUBO of interacting qubits collect statistics
No general algorithms but smart D-Wave qubit hardware connectivity Use symmetries,
mathematical tricks (penalty is a Chimera graph, so embedding permutations, and error
functions, locality reduction, etc.) methods mostly based on heuristics correction to eliminate the

systemic hardware errors

o )
Qi Ri %5 Rk 00 \ and check the solutions
] o — rrs
I Probability
Dije YT T (&)()/ 1 J 5
ﬁijk(3yij _2Ziyij _2ijij +Z,'Zj) \ 2 6
Zij Qijzizj — / 3 7
4 8 - e i e 3 = .
D i hisi + E” Jijsis; Solution’s energy/cost
Mapping not needed for Embedding not needed for Performance can be
random spin-glass models native Chimera problems improved dramatically with

smart pre-/post-processing

10
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Mapping to QUBO: Graph Coloring Example

Binary variable:

Graph Coloring Problem:
Assign one of k colors to each 1 vertex v with color ¢
vertex so that no two vertices Te = {
sharing an edge have the same

color

0 vertex v not with color ¢

Violation of requirements encoded as cost:

. e (1) unique assignment: Each vertex v must be

i assigned exactly one color:
Costing cases

O % HéuniQue) — (Z Ty — 1)2 - Z Toc = 1

ceC ceC

(1) No color or Multi-colored

e (2) Connected vertices cannot use the same color

o o
_ H(emclude)
(2) Same color for connected vertices v,v’ ¢

Final QUBO form:

H = ZH(unzque)+ Z ZHQ()e’l:)B’Clude)

v, wWEE ¢

H = 0 corresponds to a valid coloring 11

. /
Ty, cTy e VvV €FE
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Embedding the QUBO

Embed a triangle onto a bipartite graph

original QUBO hardware connectivity QUBO embedded
1
- la — 1b
3 2 3 2

Hy = Jigx129 + Jogzozs + J13T1T3 H, = J19%14%0 + J232223 + J13T16%3 + JFerroT1aT1b

Strong, but not too strong, ferromagnetic coupling between physical qubits x,, and xy,
encourages them to take the same value, thus acting as a single logical qubit x4

Embedding a realistic problem instance:
Physical qubits on each colored path

Ho and H1 have the same ground state but the
energy landscape of the search space differs

Current research investigation: How best
to set the magnitude of these “strong”
couplings to maximize probability of success

12



National Aeronautics and .
N(%A Sgaoe Adr?wfinistration ﬁ.;{’/ f)( I I . P q
A ‘dw. -~ £ \l >

Discove Innovations Solutions

Current NASA Research in Applications

Complex Plannlng and Scheduling

e G S
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* General Planning Problems (e.g., navigation,

scheduling, asset allocation) can be solved on a
quantum annealer
* Developed a quantum solver for Job Shop
Scheduling that pre-characterizes instance
Machine 1 Machine 2 Machine 3 . ] .
ensembles to design optimal embedding and run
strategy — tested at small scale (6x6) but

potentially could solve intractable problems
(15x15) with 10x more qubits

» Analyzed simple graphs of Electrical Power
Networks to find the most probable cause of
multiple faults — easy and scalable QUBO
mapping, but good parameter setting (e.g.,
gauge selection) key to finding optimal solution —
now exploring digital circuit Fault Diagnostics
and V&V

« Subgraph Matching Problems are common in
applications of interest to the intelligence
community — similarly, finding Longest Matching
Sequences important in genomics and
bioinformatics

Graph-based Fault Detection
b4 Circuit
>\ Breakers

/ ﬁ NN

Sensors

000100010001 11 10bservations

13
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Current NASA Research in Quantum Physics

Calibration of Quantum Annealers

80 v v v r v v v 180

* Developed technique to determine and correct

residual persistent biases in the programmable
hiprog = Nspec + Nifas | B° | parameters of quantum annealers (h and J) —
correction significantly improves performance
and reliability (reduction in variability)

Number of qubits
3 8 38 33
ber of qubits _
8 8 8 3 & 8

3
u

IS
°

First realistic noise analyses show how low-
-$£050.04003.0.02:0.01 0 0.010.02 0.030.04 0.05 806 004 :003-002001 0 001 002 003 004 005 frequency n0|se dramatlca”y aﬁ:eCtS the
h biases (before) correction h biases after correction performance of quantum annealers — results

Effect of Noise on Quantum Annealing being used to design hardware improvements

« Limited hardware connectivity makes embedding
challenging — good runtime parameters
determined by considering the nature and

i dynamics of chains — quick scans can be used

to predict performance of extensive scans

N
8

> @,

Optimal Embedding & Parameter Setting + Small instances of hard problems at phase

" 2 transitions in combinatorial optimization are

0] 20 intractable — they can be designed by looking at
o Jis solvability phase transitions

) » Predict tractability of application problems by
16, / studying the scaling of energy gaps and density
a5 s 07 08 09 1 1112 13 of bottlenecks in spin glass phase 14

2 4 6 8
Ferromagnetic coupling within logical qubits J.



Quantum annealing capabilities

1) As a discrete optimization solver:

Potential NASA applications:

- planning
Given {h;, J;;}, find {s, =+ 1} NP-hard - scheduling
that minimizes problem - fault diagnosis

N
5(81, ,SN) == Zhij +
Jj=1

1,]ER

N
E Jz‘jSiSj

- graph analysis
- communication networks, efc.

QUBO: Quadratic Unconstrained
Binary Optimization
(Ising model in physics jargon).

2) As a physical device to sample from Boltzmann-like distributions:

PBoltzman X 6[L‘p[—€<81, ey SN)/Teff] I

Computationally
bottleneck

f Early work:

Bian et al. 2010. The Ising model: teaching an old problem new tricks.
\

J

rFoIIow-up work:
Raymond et al. Global warming: Temperature estimation in annealers.
LFrontiers in ICT, 3, 23 (2016).

J

\_

/Our work: Benedetti et al. PRA 94, 022308 (2016)

~N

We provide a robust algorithm to estimate the effective temperature of
problem instances in quantum annealers.

Algorithm uses the same samples that will be used for the estimation of
the gradient

J

Widely used in
generative
unsupervised £
learning -

Potential NASA applications:
- machine leaning (e.q., training
of deep-learning networks)



Unsupervised learning relies on sampling

[ Lesson 1: Move to intractable problems of interest to ML experts (e.g., generative |
models in unsupervised learning). Quantum advantage in near term.

“Unsupervised learning [... has] been overshadowed by the successes of purely supervised
learning. [... We] expect unsupervised learning to become far more important in the longer
term. Human and animal learning is largely unsupervised: we discover the structure of the
world by observing it, not by being told the name of every object.”

LeCun, Bengio, Hinton, Deep Learning, Nature 2015

“In the context of the deep learning approach to undirected modeling, it is rare to use any
approach other than Gibbs sampling. Improved sampling techniques are one possible research
frontier.”

Goodfellow, Bengio, Courville, Deep Learning, book in preparation for MIT Press, 2016

“Most of the previous work in generative models has focused on variants of Boltzmann
Machines [...] While these models are very powerful, each iteration of training requires a
computationally costly step of MCMC to approximate derivatives of an intractable partition
function (normalization constant), making it difficult to scale them to large datasets.”

Mansimov, Parisotto, Ba, Salakhutdinov, ICLR 2016




Unsupervised learning (generative models)

Learn the “best” model distribution that Example application:
can generate the same kind of data Image reconstruction
MODEL
P (Image ) Reconstructed
image
Learning f
algorithm LEARNED MODEL
P ( Image )
NO LABELS
Damaged
image

DATASET



Supervised learning (discriminative models)

Learn the “best” model that can Example application:
perform a specific task Image recognition
MODEL Predicted
label
P ( Label | Image )
61
Learning f
cleelyiiglyy LEARNED MODEL
Labels P ( Label | Image)
26624
==
Ty - Image to be
nfthn i | recognized

DATASET



A near-term approach for guantum-enhanced machine learning

modeling in unsupervised machine learning.

[ Lesson 2: Hybrid approaches for generative ]

PREDICTIONS

F[ P(s|0 ]

«a LEARNING A

Stochastic gradient descent

0" = 0+ g[ P(s|0) ]+

Estimation assisted by sampling

HARD TO COMPUTE

from quantum computer

- J

Computationally
bottleneck

Where,
p(v,u) =

Ex.: Restricted Boltzmann

Machines (RBM)

Challenges solved:

Benedetti, et al. Estimation of effective
temperatures in quantum annealers for
sampling applications: A case study with
possible applications in deep learning.
PRA 94, 022308 (2016).

Benedetti, et al. Quantum-assisted
learning of hardware-embedded
probabilistic graphical models.
arXiv:1609.02542 (2016). Accepted in

PRX.

Perdomo-Ortiz, et al. Opportunities and
Challenges in Quantum-Assisted
Machine Learning in Near-term Quantum
Computer. arXiv:1708.09757. (2017).
Invited article to special QST issue.

5 o /T Widely used in
e~ Fvul)/Terr | nsupervised
Z(0) learning

Benedetti, et al. Quantum-assisted
Helmholtz machines: A quantum-
classical deep learning framework for
industrial datasets in near-term devices.
arXiv:1708.09784 (2017).




Quantum-assisted unsupervised learning on digits

OptDigits Datasets

32x32 —>

8x8 X6 7X06, binarized

Dataset: Optical Recognition of Handwritten Digits (OptDigits)




Quantum-assisted unsupervised learning on digits

OptDigits Datasets

16 16 16 16
14 14 14 14
12 12 12 12
10 10 10
8 5 8y 8 5
6 6 6 6
4 4 4 4
2 2 2 2
0 0 0 0

16 16

16 16
14 14
12 12
10 10

14
12
10

14
12
10

o N B O
o N b O
o N B O
o N B O

Dataset: Optical Recognition of Handwritten Digits (OptDigits)



Overcoming the curse of limited connectivity in
hardware.

46 fully-
connected
logical (visible)
variables

42 for pixels + 4 to one-hot encode the class

(only digits 1-4)

©
NN W
@ ® ®

w
N

o

w
&

X

W

- Are the results from this training on 940
qubit experiment meaningful?
- Is the model capable of generating digits?

Benedetti, et al. Quantum-assisted learning of hardware-
embedded probabilistic graphical models.
arXiv:1609.02542 (2016). Accepted in PRX.
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Quantum-assisted unsupervised learning on digits

Human or (quantum) machine? (Turing test)

B IF2E 1 1C 16 T M2irtieb- AR AV I RS R T

LIE 3516 TR E ARFiediea b l-ARk 1ol i gFCOL S E 2
LA T IT URATE AL Human
A RIFAETE AR Dabiels
CIFCIEIE T W R R S PAC
10T A PR AR e
PO TRR A T g
SN ST (AN el
PRSI TETTTE AR el o
(R R A D
5 W P (TR AT S
VAR AETEE TR Sl

Results from experiments using 940 qubits, without post-processing.
The hardware-embedded model represents a 46 node fully connected graph.

Benedetti, et al. arXiv:1609.02542 (2016). Accepted in PRX.



A near-term approach for quantum-enhanced machine learning
Challenges of the hybrid approach:

- Need to solve classical-qguantum model

mismatch

Training Method: Stochastic gradient ascent

5y 0ln L(@@|v)

oc[(Vihj)cl.ateJ—[(Vihj)model]

veS aVvij

[ Classical 1-
Tose?

Benedetti et al .
Phys. Rev. A 94,
022308 (2016) \

/ Quantum \

Robustness to noise, Fully visible models
intrinsic control errors,
and to deviations from
sampling model (e.g.,
Boltzmann)

Curse of limited @ visible units
connectivity -

parameter setting Benedetti et al.

arXiv:1609.0254
2

@ visible units () Hidden units

with continuous variables?

No progress in five years since QA
sampling was proposed as a
promissing appplication.

All previous fail to do that (fully

How about large complex datasets

quantum and hybrid here)




Perspective on quantum-enhanced machine learning

* New hybrid proposal that works directly on a low-dimensional representation of the
data.

/ Quantum sampling \
dpy (1)

a0 |
= |
& ih = [Hy, po] i
5 dt |
o 1
a !

__ Compresse
d dat

Classical

. () .
:-Ildden o generation or
ayers o reconstruction
Q
= of data
—
—

Classical pre- and post-processing

Raw —=
input
data .
— ¥ Z;arrl?egs Generated
5 P n‘ samples

.Visible units ‘ Hidden units . Qubits Measurement

Benedetti, Realpe-Gomez, and Perdomo-Ortiz. Quantum-assisted Helmholtz machines: A quantum-classical deep
learning framework for industrial datasets in near-term devices. arXiv:1708.09784 (2017).




Perspective on quantum-enhanced machine learning

* New hybrid proposal that works directly on a low-dimensional representation of the
data.

/ Quantum sampling \ i
dpe (t A i
Po8) _ 85y, o |

g

| T T T T T
__ Compresse
(O
(&)
C
()
S
o
£

Measurement

! '%0 d dat i
| g _ Classical ;
S Hidden _J generationor !
5 layers reconstruction
i of data i
9 '
-1 - :
o — :
S '
 © |
¢ |
- Raw —= :
. @ . |
, O input !
é data F:orrupted Reconstructed
s - image image

Benedetti, Realpe-Gomez, and Perdomo-Ortiz. Quantum-assisted Helmholtz machines: A quantum-classical deep
learning framework for industrial datasets in near-term devices. arXiv:1708.09784 (2017).




(a) Recognition network

Higher resolution
representation z

(b) Generator network

Samples from
quantum annealer

Hidden layer u?
{7 U
Hidden layer u? (OOOOOO) (OOOOOO)
i U
Visible layer v (OOOOOO) (OOOOOO)
H 5 7 0 7 8
()
Real data Artificial data

(c)
MdE ARG AN
SISINTINGIOICI 3
22O T EOITIC)
zl01613181 A 7015 (0
A1L1216101218101013

(d)
SLSBLATUTO
21310171 710101013[3
KISIZION 1 FHOTIO
310191310131 /71510
01461510(01010101013

Experiments using 1644 qubits (no further postprocessing!)

Max. CL =43

Benedetti, Realpe-Gomez, and Perdomo-Ortiz. Quantum-assisted Helmholtz machines: A quantum-classical deep

learning framework for industrial datasets in near-term devices. arXiv:1708.09784 (2017).




(" Lesson 1: Focus on the hardest problems of interest to ML experts (e.g.,
generative models in unsupervised learning).
_ Quickest path to demonstrating quantum advantage in the near-term

-
Lesson 2: Focus on novel hybrid quantum-classical approaches.

Cope with hardware constrains. Exploitation of available quantum resources

\.

arXiv:1708.09757. (2017). To appear in the Quantum Science and Technology (QST)
invited special issue on “What would you do with a 1000 qubit device?”
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Conclusions

Understanding and harnessing the fundamental power of quantum

computing is a formidable challenge that requires:
- New insights in physics and mathematics

- Innovations in computer and computational science
- Breakthroughs in engineering design to produce robust, reliable, scalable technologies

 NASA QuAIL team has successfully demonstrated that discrete
optimization problems can be run on quantum annealers
- Effectively using such systems needs judicious mapping, embedding, execution strategies
» Exciting decade in quantum computing ahead of us
— Compilation and performance capabilities of today’s annealers are improving rapidly
- New and better quantum algorithms, particularly quantum heuristics, are emerging
- Small-scale universal quantum computers are becoming available g

ENIAC (1946), the first “general-purpose” computer

The task of taking a problem and mapping it onto the machine was complex,
and usually took weeks. After the program was figured out on paper, the
process of getting the program "into" ENIAC by manipulating its switches
and cables took additional days. This was followed by a period of verification
and debugging [...] (source: http://en.wikipedia.org/wiki/ENIAC)

eplacing & bad tube meant checking among ENTAC's 19,000 possibilities. 2 9



