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Engineering Risk Assessment

Space Mission, Campaign & 
System Risk Analyses

• Ares V Mars campaign
• CxAT Lunar Surface Systems
• HEFT II campaign to a NEO
• Aquila II
• SWORDS

Agency Risk Methodology & 
Requirements Development

• Liquid/Solid Propellant Study for 
NASA’s Study of Rockets

• CCP requirements development
• OSMA PRA guide chapters and 

training modules.
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Asteroid Threat Assessment 
Project (ATAP)

• Physics-based impact risk model
• Fragmentation/breakup
• Crater-forming impact
• Ground damage assessment

Characterization

Entry &
Breakup

Blast 
Propagation

Ground 
Damage

Crew Launch Vehicle Risk Assessment 
& Risk-Informed Design

• Ares I/V integrated LOM/LOC
• SLS abortability
• SNC Dream Chaser mission risk modeling
• SpaceX DragonRider ascent risk sensitivity
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Example Architecture

Nominal

Abort
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Integrated Ascent Risk Modeling

Contained 
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Early detection vs. false positives 
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Effectiveness 
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immediate 
manifestation 
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LOC$

Escape from 
failure 
environment LOM$

Case$

Ground$ops$

Igni,on$

RCS,$TVC$
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Top Down Side
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Test Case: 4 Engines + Tanks
• Simple engine model for generic 

launch vehicle platform 
(derived from J2X)
• 32 components: 7 per engine and 

4 tanks
•Main combustion chamber (MCC)
•2 turbopumps: fuel (FTP)
and oxidizer (OTP)
•3 pipes (fuel, oxidizer, hot gas)
•Nozzle

• Between ~1k–6k triangles per 
component
• 3 different initiators: 

MCC, FTP, and OTP

Tank

(2) FTP
(3) OTP

(1) MCC

(4) Nozzle

(5) Pipe 1

(7) Pipe 3

(6) Pipe 2
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Failure Propagation Model
• Models failure propagation of debris field 

and blast wave environments
• Consists of component-to-component 

interactions and behaviors given 
initial conditions
• Uses Monte Carlo framework developed 

in C++:
•Execution begins by seeding a failure and letting 
it cascade until propagation ends
•Results include probabilities of component 
vulnerabilities and scenario tracking

• 100,000 realizations run in ~2 minutes on 
laptop for current test case
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Propagation Example
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Integrated Ascent Risk Modeling
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Vehicle-level Explosion Model II
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Blast Propagation Model
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Blast Propagation Model
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Blast Propagation Model
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Integrated Ascent Risk Modeling
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Structural Response Model
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Debris Model
•Debris propagation
•Three degrees-of-freedom (3DOF) trajectory 
integration using MISSION code
•Trajectories  calculated for:

– Launch vehicle
– Crew module
– Each fragment of potentially dangerous size

• Initial debris conditions
•Mass distribution based on experimental data
•Velocity distribution

– Experimental and historical data
– Computed results

•Debris Impact risk determined from 
intersection of CM and debris 
trajectories

Fragment 
field

Orion position

Debris field caused by fragmentation of 
the Ares I CLV during ascent

Strike probability as a function of 
MET with penetration criterion
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Mission Elapsed Time

FTS delay:
time 1
time 2
time 3
time 4
time 5
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Debris Propagation Model
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Risk Contributors
Many contributors to risk as shown below—too many to exhaustively 
analyze.

!

• Physics-based analysis 
of key risk factors
•External hazards
•Failure environments

• Dynamic nature of 
failures
•Time dependence
•State dependence
• Interactive effects 
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OFF TO THE MOON…
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LSS Background
• In 2004, NASA was chartered 

to return humans to the moon 
and enable long-term 
habitation
•Baseline transportation 
architecture developed during 
the Exploration System 
Architecture Study (ESAS)
•Lunar surface architecture 
concepts developed by Lunar 
Surface Systems (LSS) Project

• Campaigns: 30+ flights 
spanning a decade
• Combined exploration 

architecture driven by safety 
and mission success criteria

What is the probability of 
Loss of Mission (LOM) 
for a lunar campaign?
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•Proposed requirement was to be allocated as reliability 
requirements for Elements
•All systems required to “not fail” over duration
•Approach
•Countered with Availability requirement proposal
•Used sensitivity to scope potential ranges

Lunar Base Loss of Mission

What is the probability of Loss of 
Mission over a lunar campaign?
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Notional Lunar Mission

ARES I

2 Flight Delay

ARES V

MOON 

EARTH

Low Earth 
Orbit

Orion	Loiter

Orion LT

CM	EDL

Altair	Quiescent

Altair LD 
Altair	Ascent

SM	Burn

Altair LOI

EDS TLI Burn

Lunar Orbit

Altair LL 

Lunar Surface 
Systems
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Lunar Surface Systems
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Mission Success Metrics
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Core_Habitat

PSUs



Page 26

Integrated LSS Risk Modeling

Element Reliability Data
(Initiator Likelihoods)Nominal Manifest 

& Activity Timeline

Dynamic Risk 
Simulation Model

Dynamic, 
interactive, 
state-dependent
sub-models
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Outpost Availability Sensitivity 
Study

• Model availability as functional 
capabilities within a system
•Multiple suppliers exist from a 
collection of outpost elements
•Pooled capabilities

• Failures go offline and 
successful repair modeled as a 
function of limited resources
•Available repair mass
•Available resources (crew 
presence, EVA time available)

• Sensitivity to understand levels 
needed

Repair assumption plays an 
increasingly larger role over time

What happens with limited 
resupply and repairability?

Average “complete” 
availability days, as a 
percentage of planned days

2	years	operation

5	years	operation

10	years	operation

More reliable
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Functional Availability: 
Environmental Protection
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Diminishing returns by 
increasing repair mass 

Lost availability due to 
insufficient repair mass 

Incremental difference 
between no and small 
repair mass

Sensitivity of available days to constrained repair mass
Assumes functional environmental protection from at least one provider
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RETURN TO EARTH
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Reentry Risk from Orbital Debris 
Strike

• What can occur?
•Orbital debris (OD) strike damages thermal protection system (TPS) 
of spacecraft prior to reentry

• What is the severity?
– Compromised TPS may: 

• Increase aeroheating
• Fail to keep substructure 

temperature within safe limits
• Cause structural failure and 

loss of crew (LOC)

• How likely is this outcome?
– Depends on:

• Likelihood of OD strike
• Degree of TPS loss from strike
• Degree of aeroheating

increase
• Margins in TPS and structure
• Dispersions / uncertainties in 

trajectory, aeroheating, TPS, 
and substructure 
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Physics-Based Risk Assessment

Reentry 
Physics 

and 
Spacecraft
Response

Structural 
Failure

Criterion

Environments and 
Vehicle States

OD Strike —
TPS Damage
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Reentry Risk Framework with OD 
Strike 

Aerothermal
Performance

TPS State

Entry 
Conditions

Trajectory 
Performance

TPS
Performance

Spacecraft
Geometry

Substructure
Structural
Response

Mechanical
Loading
Effects

Thermal
Expansion

Effects

TPS Bondline
Temperature Substructure

Temperature
Response

Material Strength
Variation with
Temperature

Failure Criterion

σsubstructure σstrength>

TPS Outer Wall
Conditions

Trajectory
History

Atmospheric
Conditions

Spacecraft
Characteristics

OD
Environment

OD/TPS Strike
Modeling

TPS Damage
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OD Strike Modeling
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Thermal Protection System Impact
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Uncertainty in Reentry Risk 
Assessment

•Sources of uncertainties
•Orbital debris: OD Environments 
and damage likely to be caused
•Trajectory, aerothermal, TPS, 
structural analysis
– Initial conditions
– Atmospheric properties
– Vehicle state and performance
– Structural geometry and material 

properties
– Models (trajectory, aerothermal, 

TPS) and model parameters

•Assessment must carry 
uncertainty through the model

σsubstructure

σstength
Pr

σ
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Approach Application
• Risk-informed decision 

support
•Requirement verification
•Design optimization
•Selection/procurement

• Risk analysis is 
informative, not 
predictive
•Provides quantitative 
answers to specific 
questions
•Always driven by specific 
application
•Based on traditional 
methods and extended as 
appropriate

Pessimistic 
bounds

Architecture Model inputs

Physical model

Assess risk 
drivers

Risk 
acceptable?

Solution 
reached

Assumption 
driven?

Architecture 
driven?

Refine 
inputs

Design trades

Iterative, responsive modeling approach
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FINAL QUESTIONS?

November 2015


