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Abstract 

Responses to challenges associated with verification and validation 

(V&V) of Space Launch System (SLS) structural dynamics models are 

presented in this paper. Four methodologies addressing specific 

requirements for V&V are discussed. (1) Residual Mode Augmentation 

(RMA), which has gained acceptance by various principals in the NASA 

community, defines efficient and accurate FEM modal sensitivity models 

that are useful in test-analysis correlation and reconciliation and 

parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) 

and Harmonic Reduction (HR, introduced in 1976), developed to remedy 

difficulties encountered with the widely used Classical Guyan Reduction 

(CGR) method, are presented. MGR and HR are particularly relevant for 

estimation of “body dominant” target modes of shell-type SLS 

assemblies that have numerous “body”, “breathing” and local 

component constituents. Realities associated with configuration features 

and “imperfections” cause “body” and “breathing” mode 

characteristics to mix resulting in a lack of clarity in the understanding 

and correlation of FEM- and test-derived modal data. (3) Mode 

Consolidation (MC) is a newly introduced procedure designed to 

effectively “de-feature” FEM and experimental modes of detailed 

structural shell assemblies for unambiguous estimation of “body” 

dominant target modes. Finally, (4) Experimental Mode Verification 

(EMV) is a procedure that addresses ambiguities associated with 

experimental modal analysis of complex structural systems. Specifically, 

EMV directly separates well-defined modal data from spurious and 

poorly excited modal data employing newly introduced graphical and 

coherence metrics. 

1.0 General Introduction 

Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics 

models due to the magnitude and complexity of SLS subassemblies and subassemblies. The following 

issues contribute to the overall challenge: 

1. Nearly all modal testing will be conducted on non-fueled assemblies and subassemblies in the  

0-60 Hz frequency band. Modes that exercise the fueled structure in this frequency band have 

non-fueled counterparts at natural frequencies well in excess of 60 Hz. 

2. Many SLS components are configured as thin, complex construction (waffle, etc.) shell structures 

with attached, localized structural subassemblies (e.g., ISPE). Overall body, shell breathing, and 

localized subassembly dynamics in the 0-60 Hz frequency band produces a variety of technical 

challenges including (a) coupling of body, breathing and local kinetic energies in individual 

modes due to configuration features and imperfections, (b) sensitivity of shell breathing modes to 

static (pressure) loads, (c) sensitivity of modes to uncertainties primarily in joint stiffnesses. 

3. There exist a large number of modes (~1000s for the entire SLS L/V) in the 0-60 Hz band, 

resulting in the following technical challenges; (d) Modal test planning and execution requires 

large instrumentation and excitation resources to appropriately map system modes, (e) practically 

achievable test-analysis correlation and reconciliation must focus on a target mode subset, which 

is difficult to properly select, and (f) experimental modal analysis of systems with many closely-
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spaced modes requires objective quality metrics that are independent of mathematical model 

predictions. 

This report addresses SLS structural dynamics V&V challenges by suggested employment of four 

methodology classes, namely: 

1. Residual Mode Augmentation (RMA), a technique that defines a set of “residual” trial vectors 

appended to baseline system modes to produce reduced-order sensitivity models that closely 

follow sensitivity behavior of corresponding very-large-order FEM representations. RMA is 

gaining wide acceptance in our technical community as evidenced by its exercise by Dr. Eric 

Stewart of NASA/MSFC and Dr. Paul Blelloch of ATA. 

2. Model Order Reduction (HR & MGR), alternatives to Classical Guyan Reduction (CGR) that 

define “body and selected dominant” shape functions based on assumed geometric shapes 

[Harmonic Reduction (HR)] or “load patches” rather than point loads [Modified Guyan 

Reduction (MGR)]. HR is a model order reduction method, formally introduced in 1976 to 

improve solution efficiency for propellant tank hydroelastic models. Initial motivation for MGR 

was the result of difficulties encountered in the past decade by Dr. Paul Blelloch during modal 

test planning on a structure modeled with 3-D elastic elements. HR and MGR offer new 

opportunities in (a) mathematical model target mode selection and (b) experimental target mode 

identification. Most significantly, (c) MGR provides the “kernel” ingredient for modal 

consolidation. 

3. Mode Consolidation (MC), a strategy for consolidation of “split” or “fragmented” modes, which 

used selected shape functions defined in MGR to (a) select “body dominant” system modes on 

the basis of kinetic energy distribution, and (b) consolidate apparently repeated “body dominant” 

modal fragments into idealized body modes of an apparent “de-featured” dynamic system. MC 

for experimental modes combined with MGR for a system mathematical model may provide new 

opportunities for effective, focused test-analysis correlation and reconciliation that deliberately 

focus on target modes. 

4. Experimental Mode Verification (EMV), an approach to test the authenticity of modes 

estimated via experimental modal analysis that is independent of mathematical model data (e.g., 

the TAM mass matrix). This approach employs the experimental mode shapes (more precisely the 

left-hand eigenvectors) as a transformation on measured frequency response arrays to verify the 

quality of experimental mode isolation. EMV is somewhat related to recent work on the SMAC 

algorithm by Randy Mayes of Sandia National Laboratories. The need for a procedure such as 

EMV was recently indicated by difficulties encountered by NASA/MSFC during use of the B&K 

Reflex system for experimental analysis of ISPE measured data. 

2.0 Preliminary Comments 

Before discussion of the four methodologies, key aspects of modern structural dynamic modeling 

practices should be noted. The following publications and reports by the writer provide details of 

foundational subject matters: 

1. Harris’ Shock and Vibration Handbook, 6th Edition, Piersol & Paez, McGraw-Hill, 2010 (Chapter 

23, Finite Element Methods of Analysis) 

2. “Understanding Large Order Finite Element Model Dynamic Characteristics”, IMAC 29, 2011 

3. “Variational Foundations of Modern Structural Dynamics”, IMAC 32, 2014 

4. “Structural Dynamics Modeling – Tales of Sin and Redemption”, IMAC 33, 2015 

5. “Launch Vehicle Propellant Tank Hydroelastic Analysis (1976-2016)”, lecture at Seoul National 

University, ROK, October 2016 (provided in Appendix A) 

6. “Review and Recommendations Regarding NESC-RP-14-00946, ”, Note to Loads & Dynamics 

TDT, 5 December 2016 (provided in Appendix B) 
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The cited materials stress the significance of structural dynamic mode sensitivity to structural joint 

flexibilities that are often neglected in detailed finite element models. Moreover, structural dynamic 

damping in many structural assemblies is concentrated in those typically neglected flexible joints 

(damping in basic metallic structural members (e.g., rods, beams, panels, shells) is extremely low. 

Natural frequencies and mode shapes of thin shell (and other structural assemblies, notably offshore 

jacket platforms) are ideally grouped in (a) body mode families (e.g. bending, axial, torsion and “bulge” 

[especially fluid-filled tanks]) and (b) breathing mode families. Breathing modes tend to occur well 

within the frequency band of fundamental body modes. In addition, breathing modes (especially those 

associated with singly curved, cylindrical regions) are strongly sensitive to static internal pressure and 

“weight” structural loading; in contrast, body modes tend to be insensitive to static loadings (as a general 

rule). 

Structural features and imperfections (especially in joints) tend to produce structural modes of thin shell 

structures which have mixed body and breathing characteristics. This results in analytical and 

experimental modes that are difficult to categorize and discern. The mixed character modes often appear 

as repeated body modes, differing from one another merely due to the phase of breathing kinetic energy 

contributions. 

Fluids represent roughly 80% of a fully fueled liquid propellant launch vehicle stage. Other than the fact 

that the role and mechanical modeling of fluids is largely a poorly understood “orphan” in structural 

dynamics practice, it is disconcerting that the majority of planned V&V modal tests on SLS will be 

conducted on dry structures in the 0-60 Hz frequency band. The empty structure fundamental axial-bulge 

mode will occur well above the 0-60 Hz frequency band, while the same type of fundamental mode for a 

fully fueled structure will certainly occur within the 0-60 Hz frequency band. This fact strongly suggests 

that the planned modal testing activities will not exercise some system dynamics that are significant for 

flight loads V&V. 

Due to the complexities inherent in SLS structures, (a) thorough instrumentation and exciter resources are 

required to clearly map experimental system modes, and (b) mathematical models must be prepared to 

effectively and efficiently describe the system’s parametric sensitivities. The following section 

summarizes an efficient strategy for treatment of parametric sensitivities. 

3.0 Part 1: Residual Mode Augmentation 

3.1 Introduction 

Efficient computation of structural dynamic modal frequency and mode shape sensitivities associated 

with variation of physical stiffness and mass parameters is essential for (1) practical design sensitivity and 

uncertainty studies and (2) reconciliation of finite element models with modal test data. Sensitivity 

analysis procedures fall in two distinct categories, namely (a) modal derivatives for small parametric 

variation and  

(b) altered system modes associated with “large” parametric variation. The latter category is generally 

applicable to modal testing, which often requires significant local parameter changes at joints to effect 

FEM-test reconciliation[1]. However, many investigators and commercial software packages employ 

estimated modal derivatives in optimization strategies, which address FEM-test reconciliation objectives. 

Since the 1960’s, methods for computation of modal frequency and mode shape derivatives have evolved. 

Fox and Kapoor[2] introduced an exact derivative formulation that required knowledge of all modes of the 

original system; application of the procedure when a truncated set of modes was employed produced 

compromised derivatives. In response to this difficulty, Nelson[3] derived an exact formulation for 

computation of mode shape derivatives for truncated mode sets. Efforts to refine and extend application 

of mode shape derivatives for finite parameter change sensitivity computations have been pursued by 
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many investigators (including the present author). However, the need for modal frequency and mode 

shape sensitivities that map over very large ranges for multiple parameters suggests application of 

alternative Ritz[4] strategies. 

The Ritz method is one of the most significant developments in analytical mechanics of the past century. 

This method provides a logical energy formulation for consistent reduction of mass and stiffness matrices 

employing a set of trial vectors as a reduction transformation. Effectiveness and accuracy of the reduction 

process depends on   selection of an appropriate trial vector set. When a truncated set of baseline system 

mode shapes is used as the trial vector set (popularly known as Structural Dynamic Modification 

(SDM)[5], the Ritz method often produces poor estimates for the altered system. Augmentation of the 

truncated baseline system mode shapes with appropriately defined additional vectors, however, has been 

found to produce extremely accurate altered system modal frequencies and mode shapes. Quasi-static 

residual vectors[6], appended to a truncated set of mode shapes, were found to produce extremely accurate 

modes for offshore oil platform models subjected to localized alterations[7]. Residual Mode Augmentation 

(RMA), introduced in 2002[1] and thoroughly discussed in references 8 and 9, is a procedure that defines 

augmented trial vectors, which are appropriate for structures subjected to highly distributed, as well as 

localized, alterations. 

3.2 Nomenclature 

 

3.3 Sensitivity Analysis Strategies 

The present discussion focuses on Ritz procedures that address structural sensitivities due to stiffness and 

mass alterations described by large (as opposed to small) parametric variations. Therefore formulations 

that address computation of eigenvalue and mode shape derivatives are not considered. 

3.3.1 Exact Modal Analysis of Baseline And Altered Structures 

The matrix equations describing exact free vibration of baseline and altered structures, respectively, are  

        0MK OOOOO  ,  (1) 

and 

        0MpMKpK OO  .  (2) 

It is implicitly assumed that the stiffness and mass changes scale linearly with respect to the parameter, p. 

Therefore, changes in “beam” depth may not be directly applied, since the axial stiffness (AE) scales 

linearly with depth and the flexural stiffness (EI) scales as the cube of depth. The appropriate formulation 

for equation 2 permits linear sensitivity of “AE” and “EI” separately.  

The relationship between mode shapes of the baseline and altered structures is expressed as the cross-

orthogonality of orthonormal mode shape sets, 

      O

T

O MCOR ,  (3) 
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where 

       OOO

T

OO MOR    ,           O

T MOR . (4) 

3.3.2 Truncated Mode Set Approximation 

The most fundamental Ritz approximation, commonly used in Structural Dynamic Modification (SDM)[5], 

employs a truncated set of low frequency eigenvalues as the reduction transformation described by 

     OL
,  (5) 

where the reduced baseline structure stiffness and mass matrices, respectively, are 

     OLOLO

T

OLO Kk    ,        OLOLO

T

OLO Mm  , (6) 

the reduced stiffness and mass sensitivity matrices, respectively, are  

   OL

T

OL Kk    ,      OL

T

OL Mm  , (7) 

and the reduced altered structure free vibration equation is 

        0mpkp OLOL  .  (8) 

A well-known result of this type of trial vector reduction strategy is that the approximate altered structure 

eigenvalues are generally higher than results for the exact solution, and the approximate mode shapes do 

not closely follow the exact shapes when parametric alterations are large. 

3.3.3 Residual Vector Augmentation (for Local Alterations) 

The static displacements for a baseline structure subjected to unit loads (at physical degrees of freedom 

where the structure is to be altered) described by the columns of a load array, [], are the solutions of 

    SO UK ,  (9) 

A low frequency modal approximation of static displacements for the above system employs the 

transformation, 

    LOLSL qU  ,  (10) 

resulting in the approximate static displacements, 

       T

OL

1

LLq   ,        T

OL

1

LOLSLU , (11) 

The difference between the exact and approximate static solutions defines MacNeal’s[6] quasi-static 

residual vectors, 

            



T

OH

1

HOH

T

OL

1

LOL

1

OSLS KUU , (12) 

which have been mathematically proven to be the quasi-static displacements associated with all of the 

high-frequency mode shapes.  

An orthonormalized set of residual vectors is defined by solution of the residual eigenvalue problem[7], 

     O

TKk   ,        O

TMm , 

  (13) 
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        0mk     ,          

The augmented trial vector set (replacing the reduction transformation of equation 5) is  

    OLOL .  (14) 

When structural alterations are localized, relatively few residual vectors adequately describe the content 

of changed system mode shapes, as demonstrated in an offshore oil platform damage sensitivity study[7]. 

The above described innovation loses its appeal when structural alterations are well-dispersed requiring 

utilization of many residual vectors. 

3.3.4 Robust Strategy (for Dispersed Alterations) 

When structural alterations are well-dispersed, parametric structural changes may affect many physical 

degrees of freedom and require a description in terms of several independent scaling parameters, “pi”. The 

expressions for altered stiffness and mass matrices in such a situation are 

     



N

1i

iiO KpKK   ,       



N

1i

iiO MpMM , (15) 

The altered system free vibration matrix equation for this situation is  

          0MpMKpK
N

1i

iiO

N

1i

iiO 
















 



, (16) 

Note that equation 1 describes the baseline system’s free vibration behavior. 

3.3.5 Residual Mode Augmentation (RMA) 

Definition of residual vectors associated with dispersed, independent alterations of a baseline structure, 

described by equation 1, is accomplished by first computing the lowest frequency mode shapes of the 

baseline structure (equation 5) as well as the lowest mode shapes associated with each independent 

alteration of the structure 

        0MpMKpK iLiLiiOiLiiO    (for i=1,…,N), (17) 

The selected value of each independent scaling parameter is sufficiently large to produce a substantial 

change in mode shapes (with respect to the baseline structure). An initial set of trial vectors that 

adequately (and perhaps redundantly) encompass all potential (low frequency) altered system mode 

shapes is 

   NLL2L1 ...    (18) 

This set of trial vectors is expressible as the sum of (a) a linear combination of baseline system mode 

shapes and (b) trial vectors (that are linearly independent of the baseline system mode shapes) 

      'COROL    (19) 

The cross-orthogonality coefficient matrix is determined based on the following least-squares solution  

           0COR'MCORMM OLO

T

OLOLO

T

OLO

T

OL  , (20) 
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where 

      O

T

OL MCOR   (21) 

     O

T

OLOLOL M'   (22) 

The “purified” trial vector set is linearly independent of the baseline system mode shapes in a manner 

similar to MacNeal’s residual vectors, as follows: 

            0MMMMMM' OLO

T

OLOLOOLO

T

OLO

T

OLOLOOL

T

OLO

T   

  (23) 

          0MKKMK' OLOLOOLO

T

OLO

T

OLOLOOL

T

OLO

T  . 

While the “purified” trial vector set has the above property, it includes an unnecessarily large number of 

vectors. An appropriate, substantially smaller set of residual vectors is identified by singular value 

decomposition of the generalized mass matrix 

   'M'A O

T  ,  (24) 

The singular value decomposition process involves solution of the eigenvalue problem, 

      A  .....321     (25) 

The cut-off criterion, noted below employed to define suitable reduced trial vector set, is 

N

1

N
10tol 









 (where N ~ 4 to 6 is usually adequate). (26) 

The augmented trial vector set (replacing the reduction transformation of equation 5) is 

    'OLOL .  (27) 

3.3.6 Multi-Parameter Sensitivity Models 

The form of the resulting Ritz, multi-parameter sensitivity model (associated with selected values of the 

scaling parameters) is 

          0mpmkpk
N

1i

iiO

N

1i

iiO 
















 



, (28) 

where 

   OLO

T

OLO Kk    ,      OLO

T

OLO Mm   

  (29) 

   OLi

T

OLi Kk    ,      OLi

T

OLi Mm  . 

Recovery of mode shapes in terms of physical degrees-of-freedom is accomplished with 

     OL   (30) 
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3.3.7 RMA Solution Qualities 

Since its introduction in 2001, RMA has exhibited the capability to accurately follow modal sensitivity 

trends over an extremely wide range of parametric variation. The simple cantilevered (planar) beam 

example, provided in Figure 3.1 below, demonstrates typical RMA performance (“100%” is baseline). 

Actual cross-orthogonality checks are also excellent. 

EI1                    EI2                  EI3Support

Baseline: EI is uniform

Mode Baseline Exact Approx Exact Approx

1 28.78 28.47 28.47 5.71 5.71

2 180.39 172.40 172.40 79.86 79.86

3 467.65 467.65 467.65 320.70 320.70

4 505.11 504.82 504.82 467.65 467.65

5 989.87 950.46 950.46 733.08 733.08

6 1400.30 1400.30 1400.30 870.15 870.15

7 1636.50 1633.60 1633.60 1400.30 1400.30

8 2325.20 2325.20 2325.20 2042.60 2042.60

9 2445.00 2357.10 2357.10 2170.70 2170.70

10 3237.10 3237.10 3237.10 2325.20 2325.20

11 3416.00 3403.70 3403.70 3237.10 3237.10

12 4130.80 4130.80 4130.80 4017.60 4017.60

13 4550.00 4403.90 4403.90 4130.80 4130.80

14 5001.50 5001.50 5001.50 4201.20 4201.20

15 5844.20 5813.10 5813.10 5001.50 5001.50

16 5848.10 5844.20 5844.20 5844.20 5844.20

17 6654.20 6654.20 6654.20 6654.20 6654.20

18 7311.70 7104.70 7104.70 6668.30 6668.30

19 7427.00 7427.00 7427.00 6935.70 6935.70

20 8158.30 8158.30 8158.30 7427.00 7427.00

50% EI2 Loss 99.9% EI2 Loss
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5 989.87 950.46 950.46 733.08 733.08
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8 2325.20 2325.20 2325.20 2042.60 2042.60

9 2445.00 2357.10 2357.10 2170.70 2170.70

10 3237.10 3237.10 3237.10 2325.20 2325.20

11 3416.00 3403.70 3403.70 3237.10 3237.10

12 4130.80 4130.80 4130.80 4017.60 4017.60

13 4550.00 4403.90 4403.90 4130.80 4130.80

14 5001.50 5001.50 5001.50 4201.20 4201.20

15 5844.20 5813.10 5813.10 5001.50 5001.50

16 5848.10 5844.20 5844.20 5844.20 5844.20

17 6654.20 6654.20 6654.20 6654.20 6654.20

18 7311.70 7104.70 7104.70 6668.30 6668.30

19 7427.00 7427.00 7427.00 6935.70 6935.70

20 8158.30 8158.30 8158.30 7427.00 7427.00

50% EI2 Loss 99.9% EI2 Loss

 
Figure 3.1.  RMA Sensitivity Performance for a Cantilevered Beam Example 

3.4 ISPE Convergence Study 

During the past year, an early finite element model of the ISPE test article, provided by Dr. Eric Stewart 

of NASA/MSFC, was employed for an RMA convergence study (see Appendix C). Details of the ISPE 

model with parametric sensitivity regions are summarized below in Figure 3.2. 
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Negligible 
Sensitivity

 

Figure 3.2.  ISPE Finite Element Model and Parametric Sensitivity Regions 

In response to very significant concerns brought up by Dr. Eric Stewart regarding RMA solution 

convergence, an investigation of the matter was conducted. Specifically, the role of the SVD tolerance 

parameter (tol), defined in equation 26, was evaluated. An objective convergence criterion was developed 

based on comparison of parametric alterations resulting from the solution of the exact modal equation, 

    eei

i

iOei

i

iO MpMKpK 
















  , (31) 

and the approximate modal equations (see equations 28-30, developed for a specific value of “tol”), 

    aai

i

iOai

i

iO mpmkpk 
















   

  (32) 

     OL . 

The metric for evaluation of approximate solution convergence is the cross-orthogonality matrix 

associated with exact and approximate (RMA) modal sets; specifically 

     aO

T

eea MCOR    (33) 

Convergence of the approximate (RMA) modal set is therefore judged on the basis of how close the 

(absolute value) cross-orthogonality matrix is to an identity matrix. In addition, the difference between 

exact and approximate corresponding modal frequencies is also employed as part of convergence 

evaluation. 
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Before engaging in the actual RMA convergence study, a preliminary evaluation of modal sensitivities for 

each of the 28 parametric variations (parameter change set to a value of pi=1) was conducted, wherein the 

cross-orthogonality between the baseline modes and exact perturbed modes, 

     OO

T

eeO MCOR  ,  (34) 

and corresponding modal frequencies were evaluated. Results of that exercise, summarized below in 

Table 3.1, indicate that 13 of the total of 28 parametric variations were insignificant. 

Table 3.1.  Evaluation of the Significance of ISPE Model Parametric Variations 
Case DF (%) 100-Cor (%) Class

1.2c.mat 4 31

1.3c.mat 5 30

1.4c.mat 9 17

1.5c.mat 13 97

1.6c.mat 13 90

1.7c.mat 2 35

1.8c.mat 1 3

1.9c.mat 1 7

1.10c.mat 0 0

1.11c.mat 1 7

1.12c.mat 1 10

1.13c.mat 2 81

1.14c.mat 4 22

1.15c.mat 0 0

1.16c.mat 0 1

1.17c.mat 2 8

1.18c.mat 23 95 Sensitive

1.19c.mat 1 6 Insensitive

1.20c.mat 6 93

1.21c.mat 3 89

1.22c.mat 2 15

1.23c.mat 23 100

1.24c.mat 16 100

1.25c.mat 8 2

1.26c.mat 28 100

1.27c.mat 0 0

1.28c.mat 0 0

1.29c.mat 0 0

1.30c.mat 0 0

Sensitive

Insensitivr

Sensitive

Insensitive

Sensitive

Insensitive

 

It should be noted that the numerical values provided in the above table are the peak frequency and cross-

orthogonality alterations associated with the lowest 60 normal modes of each “unit” parametric variation. 

As a result of this finding, only the “sensitive” 16 parameters were evaluated in the RMA convergence 

study. 

Results associated with the RMA convergence study, which used “unit” parametric variations and values 

of “tol” set to 1e-4, 1e-5, and 1e-6, respectively, are summarized below in Table 3.2. 
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Table 3.2.  Summary of RMA Convergence Study Results 

Tolerance

Residuals

Case |f| (%) |C| (%) |f| (%) |C| (%) |f| (%) |C| (%)

1.2c.mat 1.5 11 1.2 10 0.1 3

1.3c.mat 2.3 16 1.9 16 0.0 1

1.4c.mat 3.2 33 1.6 29 0.1 1

1.5c.mat 1.0 16 0.5 1 0.2 0

1.6c.mat 1.3 1 1.0 3 0.1 0

1.7c.mat 0.4 8 0.4 4 0.1 0

1.13c.mat 0.3 12 0.1 2 0.0 0

1.14c.mat 2.5 16 0.6 5 0.0 0

1.18c.mat 0.7 19 0.1 0 0.0 0

1.20c.mat 3.0 20 1.4 7 0.1 2

1.21c.mat 0.7 15 0.3 1 0.0 1

1.22c.mat 0.4 7 0.2 1 0.1 1

1.23c.mat 1.0 4 0.5 3 0.1 0

1.24c.mat 0.1 0 0.1 0 0.0 0

1.25c.mat 1.7 99 0.6 6 0.1 1

1.26c.mat 0.9 5 0.2 2 0.0 0

1.00E-04 1.00E-05 1.00E-06

65 160 291

 

Notes for Table 3.2: 

(1) |f| (%) = [approximate – exact frequency]/[exact frequency] (%) 

(2) |C| (%) = 100% - [Cross-Orthogonality] (%) 

(3) Values of |f| and |C| are the envelopes associated with the lowest 60 system modes 

(4) Further details are provided in Appendix C. 

It is clear from the above results that tol = 1e-6 produces highly converged RMA modes for the ISPE. 

3.5 Conclusions 

Alteration of a structural dynamic model for the purpose of reconciliation with respect to measured data 

typically requires moderate to large variation in (stiffness and/or mass) parameters. Moreover, even when 

small parametric variations of parameters are required, close spacing of system modes produces large 

variations in modal vectors. Therefore, modal derivatives are not well suited for tracking of parametric 

sensitivities of structural dynamic modes. A more robust strategy for approximate modal sensitivity 

analysis employs the Ritz method. Specifically, a strategy known as Structural Dynamic Modification 

(SDM) employs a truncated set of baseline system modes as trial vectors to define reduced order mass 

and stiffness matrices. SDM is a mathematically stable method for approximate parametric sensitivity 

analysis; however, the baseline system modes are often not adequate for accurate tracking of sensitivities. 

Residual Mode Augmentation (RMA) is a methodology that defines trial vectors that augment baseline 

structure modes, resulting in substantially improved the ability of SDM to efficiently track parametric 

sensitivities of structural modes. RMA employs (a) system modes associated with large reference 

parametric alterations and (b) Singular Value Decomposition (SVD) to define a reduced set of residual 

vectors that are rich in dominant geometric changes experienced by the subject structural system. Since its 

introduction in 2001, RMA has been successfully employed during several modal tests and a variety of 

mathematical model studies. Most recently, RMA was employed to investigate parametric sensitivities for 
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the ISPE structure. As a result of this work, two enhancements of the method have been introduced, 

namely: 

1. Preliminary screening of candidate parametric sensitivities based on reference frequency shifts 

and cross-orthogonality metrics was defined to differentiate “sensitive” from “insensitive” cases 

(eliminating “insensitive” parametric variations from further consideration). 

2. A frequency and cross-orthogonality (SVD) convergence metric for determination of an 

augmented residual trial vector set that satisfies RMA accuracy requirements. 
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4.0 Part 2: Mode Consolidation 

4.1 Introduction 

Natural frequencies and mode shapes of thin shell construction launch vehicle assemblies (and other 

structures, notably offshore jacket platforms) are ideally grouped in (a) body mode families (e.g. bending, 

axial, torsion and “bulge” [especially fluid-filled tanks]) and (b) breathing mode families. Breathing 

modes tend to occur well within the frequency band of fundamental body modes. In addition, breathing 

modes (especially those associated with singly curved, cylindrical regions) are strongly sensitive to static 

internal pressure and “weight” structural loading. In contrast, body modes tend to be insensitive to static 

loadings (as a general rule). Structural features and imperfections (especially in joints) tend to produce 

structural modes of thin shell structures with mixed body and breathing characteristics, which are 

sometimes referred to as ”weakly coupled” or “fragmented” modes[1]. The mixed character modes often 

appear as repeated body modes, differing from one another merely due to the magnitude and phase of 

breathing kinetic energy contributions.  

Consolidation of mixed body-breathing modes of a detailed thin shell structure finite element model is 

easily accomplished by application of either the Harmonic Reduction (HR)[2] or Modified Guyan 

Reduction (MGR)[3] method, which directly estimates approximate body dominant modes, while 

suppressing shell breathing modal characteristics. However, corresponding experimental modes of mixed 

body-breathing character are difficult to categorize and discern. 

Due to the likelihood that measured thin shell structure modes will be of mixed body-breathing character, 

(1) a modal test requires thorough instrumentation and exciter resources to clearly map the subject 

system’s modes and (2) a sufficiently detailed finite element model that describes all anticipated body and 

breathing modes in the frequency band of interest. Employment of a systematic modal test planning 

procedure (e.g., RKE[4] and IRKE[5]) defines an instrumentation array that will properly map all modes in 

the frequency band of interest. 

This paper introduces a procedure for consolidation of mixed character (body-shell breathing) 

experimental modes that processes modal kinetic energy clusters via singular value decomposition. The 

estimated consolidated body natural frequencies and mode shapes are found to be in close agreement with 

both HR and MGR consolidated body modes of an illustrative example shell structure. 



 

 14 

4.2 Nomenclature 

 

4.3 Model Order Reduction Techniques and System Mode Classification Metrics 

Classical Guyan Reduction (CGR)[6] has been a mainstay in the aerospace community since its 

introduction in 1965. CGR was originally intended to permit modal analysis of “large” finite element 

models that were beyond the practical solution capabilities of most computers. Since that time, computers 

and numerical methods have achieved the capability to treat extremely large, sparse real and complex 

eigenvalue problems. The primary reason for continued employment of CGR today is for definition of the 

Test-Analysis Model (TAM) mass matrix that corresponds to the planned measured response array for 

modal testing[4,5]. 

4.3.1 Harmonic Reduction (HR) 

A noteworthy alternative to CGR is a technique termed “Harmonic Reduction” or HR[2], which was an 

attempt to efficiently and effectively reduce large-order NASTRAN hydroelastic propellant tank models. 

In that endeavor, discrete DOFs were replaced with harmonic “patches” that defined displacement 

transformations of the type, 
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Employing [HR] as Ritz vectors, the reduced HR stiffness and mass matrices are 

      HR

T

HRHR KK   ,         HR

T

HRHR MM  . (2) 

4.3.2 Modified Guyan Reduction (MGR) 

Modified Guyan Reduction (MGR)[3] is the direct result of a conversation with Dr. Paul Blelloch of ATA, 

who informed the writer of difficulties encountered with Classical Guyan Reduction (CGR) during test 

planning for a complex structure modeled, in-part, with 3-D elastic solid elements. Recalling that CGR is 

based on static deflection patterns associated with point loads, coupled with the fact that 3-D elastic 
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deflections under concentrated loadings are infinite, a distributed “patch” load approach (MGR) was 

defined to circumvent the CGR difficulty. Since 2011, the new, MGR method has been applied to other 

challenging situations and continuing evaluations have produced related developments. 

Consider the general distribution of static loads described by the matrix equation, 

    
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,  (3) 

where the individual load patches, [ii], represents unit load patterns (over each specific geometric patch) 

that are mathematically the transposes of rigid body deflection patterns. The static displacement due to the 

above defined loading is 

        

 FKFKU 11

.  (4) 

Pre-multiplication of this result by the transpose of unit loadings yields, 

          


  FKFKU 1T1T
,         



  UKF
11T

. (5) 

Substitution of this result into equation 4 yields the (load patch based) MGR transformation, 

         

  UUKKU MGR

11T1
.  (6) 

Employing [MGR] as Ritz vectors, the MGR stiffness and mass matrices are 

      MGR

T

MGRMGR KK   ,         MGR

T

MGRMGR MM  . (7) 

It should be noted that, in the limiting case of concentrated, point patch loads, the present formulation 

reduces to CGR.  

4.3.3 Approximate Modes of the Reduced Order System 

Regardless of the selected model reduction strategy (CGR, HR, MGR), the original system is using the 

generic reduction transformation, 

    uU    (8) 

Resulting in the generic reduced order mass and stiffness matrices, 

       KK
T

,         MM
T

.  (9) 

The modal transformation resulting from analysis of the reduced-order system is therefore, 

    qu  ,  (10) 

with corresponding approximate natural frequencies (for orthonormal modal vectors), 

      n

T

n

2

n Kf2     (11) 

Approximate mode shapes, expressed in terms of the original unreduced DOF set are 

       (12) 
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4.3.4 Body and Breathing Modes of Axisymmetric Shell Structures 

The shell structure, shown below in Figure 4.1, serves as an illustrative example system for the present 

discussion (further details are found in Appendix D). It consists of five substructures, namely (1) a lower 

cylindrical skirt (fully fixed at its base), (2) a lower hemispherical bulkhead, (3) lower cylindrical section, 

(4) upper cylindrical section, and (5) upper hemispherical bulkhead. The overall dimensions of the 

aluminum structure are length, L=100 inches, radius, R=20 inches, and wall thickness, h=0.4 inches. It 

should be noted that this illustrative example structure does not represent a realistic design. The rather 

high thickness-to-radius ratio, h/R=1/50, was selected to produce less shell breathing modes in the base 

frequency band (f < 2000 Hz) than typical aerospace systems, while including modes of sufficient 

complexity to illustrate key aspects of quantitative normal mode metrics. 

 
Figure 4.1.  Illustrative Example Axisymmetric Shell Structure 

There are a variety of metrics for characterization of normal modes, namely (a) modal effective mass (for 

a supported structure), (b) directional kinetic energy distribution, (c) component kinetic and strain energy 

distribution (when the structure is appropriately segmented into separate individual components), and  

(d) kinetic energy distribution in terms of “body” and “breathing” modes. While all of the above 

characterization metrics are discussed in references 7 and 8, the present discussion focuses on the fourth 

category. 

Consider the following (Figure 4.2) seven “body” geometric patterns for the example shell axial stations 

(which may be used for either HR or MGR purposes). 

 

Figure 4.2.  Shell Axial Station “Body” Geometric Patterns 
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The seven patterns are associated with cross-sectional lateral (“TX” and “TY”), and axial (“TZ”) 

translations, pitch, yaw and torsional (“RX”,“RY”, and “RZ”) rotations, and radial bulge (“TR”) 

translation. In “circumferential harmonic terms, the above seven patterns represent N=0 and 1 motions (or 

load patterns). 

By organizing the above described geometric patterns as a body displacement transformation matrix, 

[b], the discrete lower frequency FEM shell displacements, [L], are expressed as, 

      rbbL    (13) 

where [b] may be either defined as [HR] or [MGR]. In actuality, [HR] has been selected for the present 

discussion and illustrative example analysis. 

Employing linear least-squares analysis, as follows, each system normal mode may be partitioned into 

“body” and (remainder) “breathing” components. 

           0MMMM bb

T

br

T

bbb

T

bL

T

b   →      L

T

b

1

b

T

bb MM 


 

  (14) 

    bbb  ,       bLr  ,     0M r

T

b    (orthogonality of body and breathing) 

Due to orthogonality of the body and breathing modal displacement components, the following kinetic 

energy metrics are defined: 

       r

T

rb

T

bL

T

LL MMM    (Total modal KE = total body KE + total breathing KE) 

  (15) 

           rrbbLL MMM    (Body and breathing KE distributions) 

The total modal kinetic energy and partial kinetic energies for each individual mode are the diagonal 

terms of the first matrix equation set of “equation” 10. A summary of ideal axisymmetric shell structure 

modal frequencies and kinetic energy metrics is presented below in Figure 4.3. 

 
Figure 4.3.  Axisymmetric Shell Structure Modal Frequencies and Kinetic Energy Metrics 
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4.3.5 MGR and HR Approximations for the Perfectly Axisymmetric Shell Structure 

HR and MGR strategies produce approximate modal solutions for body dominant modes, which are 

summarized below in Table 4.1, along with exact body dominant modes for the ideal axisymmetric shell 

structure. The MGR modal kinetic energy distributions, based on partial generalized displacement (TX, 

TY, TZ, RX, RY, RZ, and TR) sums clearly indicate the nature of each body dominant mode. 

Table 4.1.  Comparison of Exact, HR and MGR Body Modes 

Mode Freq (Hz) Type Mode Freq (Hz) Mode Freq (Hz) TX TY TZ RX RY RZ TR

1 122.20 Bend-Y 1 122.20 1 122.20 96 4

2 122.20 Bend-X 2 122.20 2 122.20 96 4

11 315.24 Torsion 3 315.24 3 315.24 100

14 377.21 Bend-Y 4 377.21 4 377.23 91 9

15 377.21 Bend-X 5 377.21 5 377.24 91 9

24 467.77 Axial 6 467.78 6 467.78 100

49 706.65 Bend-Y 7 706.84 7 706.86 91 9

50 706.65 Bend-X 8 706.85 8 706.87 91 9

63 841.31 Torsion 9 841.35 9 841.35 100

76 997.48 Lateral-Y 10 999.12 10 997.81 60 40

77 997.50 Lateral-X 11 999.14 11 997.83 60 40

86 1029.90 Axial 12 1031.30 12 1030.10 94 6

103 1169.60 Lateral-Y 13 1174.20 13 1170.00 60 40

104 1169.60 Lateral-X 14 1174.30 14 1170.10 60 40

111 1223.50 Bend-Y 15 1233.80 15 1224.10 91 9

112 1223.50 Bend-X 16 1233.80 16 1224.10 91 9

121 1273.40 Axial-Bulge 17 1281.00 17 1273.60 78 22

128 1368.30 Bend-Y 18 1395.10 18 1369.10 95 5

129 1368.40 Bend-X 19 1395.10 19 1369.20 95 5

140 1402.80 Lateral-XY 20 1416.30 20 1404.50 7 8 45 40

141 1402.80 Lateral-XY 21 1416.30 21 1404.50 8 8 40 44

146 1440.40 Bulge-Axial 22 1466.60 22 1440.40 45 55

149 1452.70 Lateral-XY 23 1467.50 23 1453.60 33 43 14 11

150 1452.70 Lateral-XY 24 1484.70 24 1453.60 43 33 11 14

MGR KE DistributionExact Harmonic Reduction MGR

 

The above results indicate that MGR based natural frequencies follow exact structure body dominant 

modal frequencies more accurately than the HR based approximation. 

4.3.6 Body and Breathing Modes of a Perturbed Axisymmetric Shell Structure 

As a general rule, as-built geometrically axisymmetric shell structures are not structurally axisymmetric 

due to local design features and imperfections. The effects of typical perturbations are evaluated herein by 

addition of a “X=0” axial line of added mass (total value is 1.85% of the baseline shell rigid body mass) 

on the example shell (previously illustrated in Figure 4.1). A summary of perturbed axisymmetric shell 

structure modal frequencies and kinetic energy metrics is presented below in Figure 4.4. 

 

Figure 4.4.  Perturbed Shell Structure Modal Frequencies and Kinetic Energy Metrics 
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Applying the body-breathing metrics (equations 8-10) to the perturbed shell structure to categorize modes 

that are body kinetic energy dominant, forty-nine (49) modes of the perturbed system are found to have 

“body” kinetic energy in excess of 2%. The 49 perturbed system modes are now compared to the 24 pure 

“body” modes of the ideal axisymmetric structure employing the cross-orthogonality matrix (using the 

axisymmetric structure mass matrix as a reference). Results showing absolute values of cross-

orthogonality in excess of 5% are provided in below in Table 4.2. 

Table 4.2.  Cross-Orthogonality of Ideal Axisymmetric & Perturbed Shell Body Dominant Modes 
Mode 1 2 11 14 15 24 49 50 63 76 77 86 103 104 111 112 121 128 129 140 141 146 149

Freq (Hz) 122.20 122.20 315.24 377.21 377.21 467.77 706.65 706.65 841.31 997.48 997.50 1029.9 1169.6 1169.6 1223.5 1223.5 1273.4 1368.3 1368.4 1402.8 1402.8 1440.4 1452.7

1 120.97 99

2 121.13 99

11 312.43 99

12 359.94 24

13 367.98 27

14 373.97 95

15 374.65 92

16 375.36 23

17 377.43 16

24 463.45 99

48 695.39 78

50 701.56 99

51 706.21 60

62 833.52 95

63 836.13 26

75 967.62 44

76 986.08 82 7

77 992.77 43

78 994.38 90

81 1001.8 31

83 1017.4 34

85 1020.4 6 91

100 1148.6 29

101 1149.7 91 5

104 1166.4 99

107 1187.2 9 15 7 6

108 1200.1 7 71

109 1205.5 12 22

110 1210.2 8 43 10

111 1212.5 33 7

112 1219.5 97

113 1221.3 23

118 1237.1 32

119 1252.5 21 22

123 1266.5 5 89

124 1275.8 8 20 10

128 1322.5 6 51

130 1352.8 33 9 8

131 1363.1 65 41 7

132 1366.3 98

133 1366.4 5 12 3

134 1368.8 21

136 1373.7 36 83 9

141 1395.2 15 24

142 1402.0 100

144 1419.6 23 58

146 1422.6 38 52

147 1433.2 10 79

148 1434.8 18 31

Ideal Axisymmetric Shell
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Introduction of a perturbation to the ideal axisymmetric shell structure has the effect of “fragmenting” or 

“splitting” the ideal axisymmetric system’s body-dominant modes. The naming and characterization of 

experimental body-dominant modes is no longer a straightforward process. Moreover, estimation of 

specific experimental “body” mode frequencies is problematic. 

4.3.7 Additional Modal Sensitivity Trends for the Perturbed Shell Structure 

Additional insight into modal sensitivity for the example shell structure is gained by variation of the 

magnitude of added line mass from 0 to 3.7% (the sensitivity parameter, p, varies from 0 to 2). Sensitivity 

of all system modes in the 0-1400 Hz frequency band, along with tagged modal subsets with body kinetic 

energy ≥ 25%, ≥ 50%, and ≥ 75% respectively, is illustrated below in Figure 4.5. 
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Figure 4.5.  Sensitivity of Perturbed Shell System Modes to Added Line Mass 

The above results indicate that body dominant (body KE ≥ 75%) modal frequencies are generally 

insensitive to added line mass (0-3.7% of total system mass), while some breathing mode frequencies 

(especially body KE ≤ 25%) exhibit much greater frequency sensitivity. 

4.4 Body Mode Consolidation 

While there appears to be a series of options for understanding and categorization of structural modes for 

shell-type structures (as well as other built-up systems), “fragmentation” or “splitting” of body dominant 

modes represents a challenge that cannot necessarily be easily circumvented when modal data is 

experimental (as noted in ISPE experimental modal data). Moreover, since SLS component and system 

finite element models are highly detailed, the same challenges occur when non-reduced normal modes 

and modal sensitivities are computed. 

4.4.1 Modal Cluster Definition Using the Perturbed Shell Model Example 

Recalling the previous discussion in Section 3.4, the body displacement transformation matrix, [b], is 

used to decompose the discrete lower frequency FEM shell modal displacements, [L], into “body” and 

remaining (“breathing”) components, respectively, 

     rbL  , where      bbb  .  (16) 

Since the “body” and “breathing” modal components are mutually orthogonal (see equations 8-10), the 

modal orthogonality matrix (which is also the modal kinetic energy matrix) is the sum of two 

components, namely, 

        rb mmOR , where    b

T

bb Mm  ,     r

T

rr Mm  . (17) 

The process of mode consolidation focuses on mathematical operations on “clusters” within the body 

mode orthogonality matrix, [mb], and the associated lower eigenvalues of the complete structural system, 

[L]. 

The body mode orthogonality matrix, [mb], for the perturbed example shell structure (p=1) from the 

previous section is depicted below in Figure 4.6 as a Matlab “pseudocolor” graphic of absolute values for 

[mb]. 
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Figure 4.6.  Body Mode Orthogonality Matrix, [mb], Absolute Values 

It should be noted that the body modes were normalized to unit modal mass to generate a version of [mb] 

with unit diagonal terms, thus accentuating the repeated nature of clustered modes. Apparently repeated 

and highly coupled body mode clusters are readily “tagged” among the 49 body modes (selected based on 

individual body mode kinetic energy, [mb]ii ≥10%, body modes that have not been not renormalized). 

The following rule is employed to define body mode clusters, with their selection depicted in Figure 4.7: 

10.0m
iib  , 10.0m

ijb   for i ≠ j  (18) 

 

Figure 4.7.  Body Mode Cluster Selection Criterion (note KEB = |mb|ii, |ORIJ| = |mb|ij)  

Eight body mode clusters are defined using the above defined criteria. They are depicted below for body 

dominant modes 1-22 and 23-49, respectively in Tables 4.3 and 4.4. 
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Table 4.3.  Mode Clusters for Body Dominant Modes 1-22 

 

Table 4.4.  Mode Clusters for Body Dominant Modes 23-49 

 

4.4.2 Decomposition of Modal Clusters Using SVD (Mode Consolidation Theory) 

Consider an individual modal cluster (see Tables 4.3-4.4) that is defined by the following matrix data: 

[b] =  “body” mode shape cluster (see equation 16) 

`[] =     eigenvalues for the system modes from which the cluster is defined 

[mb] =  “body” mode cluster generalized mass matrix (see equation 17). 

Generalized eigenvectors associated with [mb] are defined based on the following singular value 

decomposition operations: 

     bbbb
~~m  , where      b

T

b
~~  and      bbb

T

b
~m~  , (19) 

and the calculated eigenvalues are sequenced in descending order (  b,1 ≥  b,2 ≥ b,3 ≥…). By employing a 

cut-off criterion (b,i / b,1 ≥ tol), a truncated subset of eigenvalues and eigenvectors are kept. Finally, the 

truncated set of cluster eigenvectors is rescaled as, 

     2/1

bbb
~  , resulting in     bb

T

b   and      T

bbbm  . (20) 
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The body dominant modal frequencies are finally “consolidated” employing “strain energy” weighted 

summing employing Rayleigh quotients and associated SVD eigenvectors as, 

    
   i,b

T

i,b

i,b

T

i,b

i,c



   →  






2
f

i,b

i,c ,  (21) 

where the “c” subscript is used to denote the “consolidated” mode quantity. The corresponding 

consolidated system mode shapes associated with the consolidated modal frequencies are computed as 

follows: 

    i,bbi,c

~
  (Non-normalized, consolidated system mode shape) 

    i,c

T

i,ci,c

~
M

~
m   (Non-normalized modal mass, with respect to the system (TAM) mass matrix) (22) 

    i,ci,ci,c m/
~
  (Unit mass normalized, consolidated system mode shape) 

The above development is apologetically “heuristic”. However, it appears to provide consistent, satisfying 

results for the example perturbed shell structure (with p=1 and SVD tol=.01), as evidenced in 

orthogonality of the consolidated body modes shown below in Table 4.5. 

Table 4.5.  Consolidated Body Mode Set Orthogonality 
Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Freq (Hz)

1 120.97 100 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 121.13 0 100 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 312.43 0 -2 100 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 373.36 0 0 0 100 0 1 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0

5 374.14 0 0 1 0 100 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 463.45 -1 0 0 1 0 100 0 0 0 -2 0 0 -2 0 1 0 0 0 0 0 0 0 -1

7 699.42 0 0 0 0 0 0 100 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0

8 701.56 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 833.71 0 0 0 0 -1 0 0 0 100 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

10 983.97 0 0 0 1 0 -2 0 0 0 100 0 -1 -1 0 0 0 -1 0 0 0 0 0 0

11 994.07 0 0 0 0 0 0 0 0 -1 0 100 0 0 0 0 0 0 0 0 0 0 0 0

12 1020.02 0 0 0 0 0 0 1 0 0 -1 0 100 1 0 1 0 0 0 3 0 0 -1 0

13 1149.62 0 0 0 0 0 -2 0 0 0 -1 0 1 100 0 0 0 -1 -1 0 0 0 0 -4

14 1166.38 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

15 1210.08 0 0 0 0 0 1 0 0 0 0 0 1 0 0 100 0 0 0 0 0 0 0 1

16 1219.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

17 1260.33 0 0 0 -1 0 0 0 0 0 -1 0 0 -1 0 0 0 100 0 0 0 0 0 2

18 1359.92 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 100 0 0 0 0 0

19 1375.75 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 100 0 0 0 0

20 1381.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

21 1387.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

22 1415.87 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 100 0

23 1422.53 0 0 0 0 0 -1 0 0 0 0 0 0 -4 0 1 0 2 0 0 0 0 0 100

Orthogonality (%)

 

4.4.3 Further Results of the Mode Consolidation Exercise 

General consistency and integrity of the present mode consolidated methodology are further indicated in a 

comparison of various results for the perturbed shell structure below in Table 4.6. 
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Table 4.6.  Comparison of Various Modal Approximations for the Perturbed Shell Structure 

Mode Freq (Hz) Mode Freq (Hz) Mode Freq (Hz) Mode Freq (Hz) COR Mode Freq (Hz) COR

1 122.20 1 120.97 1 120.97 1 121.02 100 1 121.02 100

2 122.20 2 121.13 2 121.13 2 121.14 100 2 121.13 100

11 315.24 11 312.43 3 312.43 3 312.38 100 3 312.38 100

14 377.21 15 374.65 4 373.36 4 373.37 100 4 373.35 100

15 377.21 14 373.97 5 374.14 5 374.19 100 5 374.17 100

24 467.77 24 463.45 6 463.45 6 463.50 100 6 463.50 100

49 706.65 48 695.39 7 699.42 7 698.99 100 7 698.99 100

50 706.65 50 701.56 8 701.56 8 701.74 100 8 701.70 100

63 841.31 62 833.52 9 833.71 9 833.72 100 9 833.72 100

76 997.48 76 986.08 10 983.97 10 983.00 100 10 984.52 100

77 997.50 78 994.38 11 994.07 11 994.38 100 11 995.48 100

86 1029.94 85 1020.38 12 1020.02 12 1020.47 100 12 1021.74 100

103 1169.56 101 1149.73 13 1149.62 13 1151.88 100 13 1156.45 100

104 1169.59 104 1166.38 14 1166.38 14 1166.83 100 14 1170.61 100

111 1223.46 108 1200.07 15 1210.08 15 1205.31 99 15 1215.82 99

112 1223.49 112 1219.50 16 1219.59 16 1220.14 100 16 1228.84 100

121 1273.43 123 1266.47 17 1260.33 17 1261.37 99 17 1268.71 99

128 1368.34 131 1363.11 18 1359.92 18 1344.84 94 18 1371.89 91

129 1368.41 132 1366.26 19 1375.75 20 1379.78 84 19 1391.51 80

140 1402.79 136 1373.70 20 1381.47 19 1367.05 76 20 1391.78 74

141 1402.83 142 1402.03 21 1387.15 21 1403.83 76 21 1415.61 74

146 1440.38 147 1433.20 22 1415.87 23 1427.86 78 23 1453.68 82

149 1452.66 144 1419.64 23 1422.53 22 1426.94 88 22 1453.35 9

Modified Guyan Reduction (MGR) Harmonic Reduction (HR)Baseline (O) Perturbed (P) Consolidated (C)

   (MGR)  = Modified Guyan Reduction (Perturbed System)

   (HR) = Harmonic Reduction (Perturbed System)

   Cross-Orthogonality (COR) : Reference Modes=Consolidated (C)

                                             Reference Mass = Baseline [MFF]

    (O) = Baseline System Body Modes

    (P) = Perturbed System Body-Dominant Modes (p=1)

    (C) = Perturbed System Consolidated Body Modes (Reference)

 

The above results lead to the following observations for the perturbed shell structure: 

1. The body dominant modes are remarkably insensitive to introduction of the “line mass” 

perturbation. This suggests that “features” and “imperfections” in a real structure’s make-up may 

not significantly alter its “body dominant” modes (which are perhaps a reasonable target mode set 

for practical V&V). 

2. Deviation of the last six “body dominant” modal frequencies among the various approximations 

(especially Consolidated vs. MGR) may be a symptom of truncation in the mode consolidation 

process, which employs modes up to 1500 Hz; a more authentic consolidation in this range may 

require inclusion of some modes above 1500 Hz. 

3. Modified Guyan Reduction (MGR) appears to be slightly more accurate than Harmonic 

Reduction (HR). 

4. While mixed body and breathing modes for a shell structure are generally unavoidable, mode 

consolidation may offer an efficient and effective alternative for test mode “comprehension”.  

5. Moreover, employment of body mode consolidation and MGR may produce an abbreviated, more 

direct path for test-analysis reconciliation (V&V), which avoids complexities and sensitivities 

inherent in shell breathing modes. 

4.5 Conclusions 

Thin shell structures have many breathing modes interspersed among fewer overall body dominant lateral 

(bending), torsion, and axial-bulge dominant modes within the typically accepted 0-60 Hz frequency band 

for full-scale launch vehicles. Due to high sensitivity of body (especially bending) modes to configuration 

features and imperfections (and static pressure and “g” loads), body dominant “target modes” often adopt 

mixed body-shell breathing (and local appendage) characteristics, which are difficult to discern and 

verify. Review, comprehension, and categorization of system modes should be treated using two distinct 

strategies for FEM predictions and experimental modal data, respectively. Modified Guyan Reduction 

(MGR) and Harmonic Reduction (HR) represent two related options for estimation of body modes (not 

requiring consolidation operations) for the system FEM. The newly introduced Mode Consolidation (MC) 

procedure, in contrast, appears to resolve the often noticed “repeated body mode” phenomenon occurring 

in experimental modal analysis of thin-walled shell structures. It is anticipated that Mode Consolidation 

will gradually gain acceptance in the technical community as a result of its application in modal testing 

and inevitable refinements of the strategy.  
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5.0 Part 3: Experimental Mode Verification 

5.1 Introduction 

Challenges encountered by NASA/MSFC employing the B&K Reflex system for the ISPE modal survey 

in the Fall of 2016 bring an important challenge to the forefront. The basic question is, “Which estimated 

test modes are valid, and which modes are questionable or invalid?” This is a multifaceted question that 

goes well beyond a “knee-jerk” reaction that questions integrity of the B&K Reflex system; it is a 

question that should apply in virtually all modal test situations. The present discussion on experimental 

mode verification (EMV) is the result of an ongoing dialogue with Kevin Napolitano of ATA, who 

pointed out similarities of this writer’s idea with Randy Mayes’ thoughts[1]. While the presently discussed 

EMV approach ought to be quite independent of the investigator’s choice of a modal extraction algorithm, 

the results herein apply to methods that explicitly estimate the tested system’s “plant” matrix such as the 

Simultaneous Frequency Domain (SFD) method[2-4]. 

5.2 Preliminary Thoughts 

Consider a structural dynamic system subjected to an applied excitation, 

           FuKuBuM   .  (1) 

On the assumption that the real eigenvectors of the undamped system ([B]=[0]) represent a reasonable set 

of system modes, 

    qu  , where the diagonal modal matrices are (noting  = 2f, n = 2fn) (2) 

     MT
,    2

n

TK  ,    nn

T 2B  . (3) 

The uncoupled modal acceleration frequency responses are therefore, 

 



 T

n

nn

2

n

2

n
n

)f/f(i2)f/f(1

)f/f(
)f(h)f(q  (4) 

Finally, the relationship between physical and modal frequency response functions is 

      )f(h)f(H)f(u  , where [h(f)] is the array of modal frequency responses. (5) 

If the physical frequency responses, [H(f)], and modal vectors, [], are “known” based on experimental 

modal analysis, then the uncoupled modal responses, [h(f)], may be estimated by manipulation of 

equation 5, specifically 

     )f(H)f(h
1

 .  (6) 

Since a truncated set of modes are typically estimated in experimental modal analysis, there are two 

options for computation of the result in equation 40, namely, (a) exploitation of the mass-weighted modal 

orthogonality relationship on equation 3), and (b) estimation of []-1 as the Moor-Penrose pseudo-inverse 

of []. The first option is theoretically exact, i.e., 

    )f(HM)f(h T .  (7) 

Accuracy of the above expression requires employment of the TAM mass matrix for [M], which is a 

subjective estimate, and it is desired that the estimate for []-1 should not by contingent on model 

accuracy (evaluation of experimental modal analysis results should initially, at least, be independent of 

model predictions). 
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While the second option, which employs the Moore-Penrose pseudo-inverse of [] is independent of 

model predictions, it can be shown to substantially deviate from the theoretical inverse, [TM], in many 

situations. The continuing discussion presented below, addresses this issue for the cases of both real and 

complex experimental modal vectors. 

5.3 The Simultaneous Frequency Domain (SFD) Method 

The SFD method[2], introduced in 1981, has undergone substantial revision and refinement since that 

time[3,4], primarily by this writer and principals at The Aerospace Corporation. SFD implicitly assumes 

that FRFs associated with multiple excitations relate to a single generalized FRF array as follows: 

      )f(HV)f(H)f(U GG111      (Excitation #1) 

   (8) 

      )f(HV)f(H)f(U GNGNN     (Excitation #N). 

The collection of all FRF data is then described by, 
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By performing a singular value decomposition analysis of the FRF collection, [H(f)], a dominant set of 

generalized trial vectors, [VG], and generalized FRFs, [HG(f)], is obtained. Normalization of the SVD 

calculations is set such that the trial vectors have unit length, i.e., 

     G

T

G VV   (10) 

Theoretically, the collection of FRF arrays describes the following dynamic system equations associated 

with the individual applied forces (where the acceleration arrays are the FRFs, [H1(f)], ...), 
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The physical velocity and displacement arrays are successively formed by “2if” division. By noting that 

the force array associated with each FRF array is a “unit” row matrix, the collection of all frequency 

response data is expressed as, 
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Introducing the SVD-based reduction transformation (equation 9), 
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, etc. for velocity and displacement,  (13) 
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the following effective dynamic system is defined,  
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Note that “M-1B” and “M-1K” partitions in the above equation set represent the “repeat-chain” coefficient 

matrices in equation13. Before proceeding further in this derivation, it should be noted that the above 

effective dynamic system (with unit applied “row” force array, [F(f)]), collects all applied excitation 

force-based FRF data into a single generalized, effective dynamic system. Moreover, the reader is 

reminded that the generalized accelerations are actually the generalized FRFs, [HG(f)], that were formed 

in the FRF SVD calculations (equations 8-10). And, as in the case of physical FRF data, the generalized 

velocity and displacement arrays are successively formed by “2if” division. An important feature of the 

effective dynamic system, defined by equation 14, is that it represents system response to all excitations 

simultaneously. This attribute maximizes the opportunity to automatically account for very closely-spaced 

and/or repeated (same eigenvalue) modes. 

The matrices associated with the effective dynamic system are estimated through linear least squares 

analysis of the following equation set (where [R] represents the “residual” error): 
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It should be noted that, due to the fact that the generalized FRF arrays are complex, actual details of the 

least-squares estimation computations are more involved than implied by the above relationships.  

Estimation of experimental modal parameters is performed by complex eigenvalue analysis of the state 

variable form of the effective dynamic system, 
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Complex eigenvalue analysis of the effective dynamic system produces the following results: 

(a)     q  where the “left-handed” eigenvectors are     1

L



   

(b)        L ,         L  (complex eigenvalues) 

  (17) 

(c)        L  (modal gains) 

(d)    )f(Fqq jjjj   (frequency response of individual modes). 
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Recovery of experimental modes in terms of the physical DOFs involves back transformation employing 

the trial vector matrix, [VG]. 

5.4 Selection of Valid Experimental Modal Data (the Heart of the Present Discussion) 

Estimation of the effective dynamic system with the SFD method (and more generally any method that 

performs similar system “plant” estimation operations) will pick up spurious “noise” degrees of freedom 

and associated spurious modes. Over the years since 1981, the writer has employed a heuristic practice in 

versions of SFD algorithms that select “valid” modes from the complete set, which is estimated in 

selected frequency bands. The heuristic criteria include, (1) elimination of modes having negative 

damping, (2) modes with very low modal gain, and (3) other modes that appear spurious from any 

number of physical/experience based considerations. The present discussion is a radical departure from 

past practice in that it endeavors to replace heuristic criteria with a more rigorous criterion. 

The initial point of departure from past SFD practice is estimation of an effective dynamic system over 

the entire frequency band of interest (in the case of ISPE, the range is 0-60 Hz). In order to achieve a 

satisfactory estimation for the effective dynamic system, the “tolerance” factor employed in the SVD 

process described by equations 8-10 is set to a sufficiently low value (10-5); in previous “band-limited” 

SFD calculations, the SVD “tolerance” factor was set to a value of 10-2. 

Computation of effective dynamic system modal parameters, from the first-order system described in 

equation 16, yields complex modes with eigenvalues having negative and positive real parts. The first 

level of mode down-selection is to eliminate all modal eigenvalues and eigenvectors that are outside the 

frequency band of interest. For the ISPE modal test, there are 133 complex eigenvalues in the 15-60 Hz 

frequency band. A vital component of the mode down-selection process is selection of left-hand 

eigenvectors. [L] that correspond to their [] counterparts; this circumvents issues associated with 

more involves procedures for computation of a truncated left-hand eigenvector set. 

There are two computational procedures to estimate uncoupled experimental modal FRFs. The first 

method computes the exact modal solution from the estimated modal parameters of equation 17d. 

Specifically, 
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The second method estimates uncoupled experimental modal FRFs from linear combinations of the 

generalized FRFs, [HG(f)], as follows: 
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Verification (selection and validation) of any candidate estimated experimental mode is now to be judged 

on the basis of (a) graphical displays of the modal FRFs, and (b) a new modal coherence metric, which is 

defined as, 
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In addition, (c) a third, potential weaker selection metric is the magnitude and phase of the modal gain, j, 

defined in equation 17c. 
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5.4.1 ISPE Experimental Mode Verification (EMV) 

While detailed results of ISPE EMV are presented in Appendix E, typical results of that exercise are 

provided in this section. 

Modal FRFs for the first seven candidate modes are illustrated in the following seven figures (Figure 5.1 

through Figure 5.7) the include FRF magnitude, magnitude and phase, polar, and real and imaginary 

parts. 

 

Figure 5.1.  EMV Graphic for ISPE Candidate Mode 1, 16.74 Hz 

 

Figure 5.2.  EMV Graphic for ISPE Candidate Mode 2, 17.10 Hz 
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Figure 5.3.  EMV Graphic for ISPE Candidate Mode 3, 18.12 Hz 

 

Figure 5.4.  EMV Graphic for ISPE Candidate Mode 4, 18.16 Hz 
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Figure 5.5.  EMV Graphic for ISPE Candidate Mode 5, 18.79 Hz 

 
Figure 5.6.  EMV Graphic for ISPE Candidate Mode 6, 18.79 Hz 
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Figure 5.7.  EMV Graphic for ISPE Candidate Mode 7, 18.80 Hz 

It is clear in the above seven figures that candidate modes 1-4 and 6 appear valid based on close 

agreement of the two types of uncoupled modal FRF estimates. In contrast, candidate modes 5 and 7 

appear to be spurious and invalid. 

A complete, numerical EMV assessment for the 133 candidate ISPE experimental modes is summarized 

in Tables 5.1 through 5.3, which are self explanatory in content. 
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Table 5.1.  EMV for ISPE Candidate Modes 1-45 

FREQ (Hz) Zeta (%) |Gain| (%) Phase (deg) max|h| (%) Coherence (%) Is it a mode?

1 16.74 2.42 9 6.9 2.11 100 Y

2 17.10 2.37 8 -11.0 2.04 100 Y

3 18.13 0.12 2 -169.2 6.99 97 Y

4 18.16 0.11 1 -174.2 4.72 96 Y

5 18.79 -0.03 0 137.5 6.00 63 N

6 18.79 0.11 6 -4.0 24.72 98 Y

7 18.80 0.01 0 161.1 7.71 58 N

8 19.28 0.08 1 -2.6 2.31 88 Y

9 20.36 2.81 6 165.7 1.31 99 Y

10 20.90 0.03 0 -118.2 4.25 18 N

11 20.96 0.07 2 -8.9 10.86 88 Y?

12 21.02 0.07 2 156.2 11.47 91 Y?

13 21.25 0.05 1 163.7 1.72 2 N

14 22.43 -2.12 1 13.0 0.86 4 N

15 24.02 0.10 1 -2.1 2.44 86 Y?

16 24.07 0.46 12 -175.5 15.21 100 Y

17 24.27 0.44 12 175.0 15.52 100 Y

18 25.82 0.14 4 4.5 13.89 100 Y

19 25.88 -0.01 0 -58.7 2.99 10 N

20 25.89 0.12 4 -0.2 16.30 99 Y

21 26.75 -0.85 1 153.8 0.50 1 N

22 27.53 1.65 7 26.3 2.66 100 Y

23 27.81 1.54 9 159.8 3.15 100 Y

24 28.41 -0.34 0 67.2 0.43 0 N

25 30.14 -0.01 1 138.7 4.35 8 N

26 30.15 0.33 2 -167.1 3.31 62 Y?

27 31.00 -0.83 1 61.0 1.33 2 N

28 31.78 -0.43 1 -55.8 0.63 0 N

29 32.32 1.08 3 -163.5 1.31 95 Y?

30 33.15 1.03 7 80.9 3.46 95 N

31 33.42 0.32 5 -113.0 8.72 96 Y?

32 33.70 -0.07 1 -59.3 1.66 0 N

33 34.18 2.23 20 148.4 5.00 100 Y

34 34.22 0.03 0 -116.1 0.51 3 N

35 34.64 -0.23 0 -101.3 0.44 0 N

36 35.42 0.53 10 -165.1 8.94 99 Y

37 35.77 -10.73 7 72.0 0.68 32 N

38 35.96 -0.23 1 106.1 1.57 1 N

39 35.97 1.16 12 157.8 6.04 100 Y

40 36.21 0.14 5 163.3 18.03 98 Y

41 36.30 0.09 1 13.2 4.01 67 N

42 36.47 0.31 54 137.4 99.69 100 Y

43 36.51 0.00 0 -151.1 2.74 28 N

44 36.55 -0.05 0 103.5 4.34 1 N

45 36.61 0.56 100 -159.1 100.00 100 Y

EV
Eigenvalue Excitation (PHIL*GAM) Evaluation Critera & Assessment
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Table 5.2.  EMV for ISPE Candidate Modes 45-90 

FREQ (Hz) Zeta (%) |Gain| (%) Phase (deg) max|h| (%) Coherence (%) Is it a mode?

46 36.76 -0.07 0 45.4 1.34 3 N

47 36.92 0.17 2 109.1 4.65 73 N

48 37.03 0.25 7 8.1 16.80 99 Y?

49 37.24 -0.13 1 -70.8 3.68 0 N

50 37.27 0.47 18 -101.4 22.79 99 Y?

51 37.36 0.30 20 -161.4 36.59 100 Y

52 37.69 0.36 19 158.1 30.11 100 Y

53 37.99 -0.07 0 24.2 1.06 0 N

54 38.13 0.09 1 -15.9 1.13 20 N

55 38.30 1.22 17 -57.8 7.97 99 Y

56 38.55 -0.09 1 -65.5 0.92 0 N

57 38.71 0.04 0 160.9 1.85 23 N

58 38.81 0.12 2 13.2 4.98 62 N

59 38.92 2.14 37 -77.3 10.35 99 Y

60 39.35 -0.41 1 103.4 0.83 1 N

61 39.41 0.62 18 -38.9 15.34 99 Y?

62 39.54 0.16 4 -161.5 14.33 98 Y?

63 39.68 0.70 15 -80.4 12.27 96 Y?

64 39.90 0.31 2 115.1 2.46 58 N

65 40.40 -0.03 0 -0.5 0.40 0 N

66 40.99 0.03 0 86.9 1.85 8 N

67 41.18 -0.98 4 -129.2 2.61 2 N

68 41.22 -0.17 1 8.1 1.84 0 N

69 41.71 0.78 46 166.6 32.62 99 Y

70 41.88 0.04 4 73.0 8.51 31 N

71 42.02 0.95 36 22.2 22.07 99 Y

72 42.57 0.03 0 -42.6 0.64 3 N

73 42.93 0.01 1 -46.7 0.78 1 N

74 43.11 -0.01 0 -35.1 1.00 0 N

75 43.45 0.99 92 -2.3 52.01 100 Y

76 43.51 -8.62 11 -43.5 1.83 32 N

77 43.63 0.03 1 55.5 1.56 16 N

78 43.73 0.49 8 148.6 8.23 98 Y?

79 43.98 0.08 1 152.6 1.63 33 N

80 44.49 -0.14 1 -15.3 0.70 0 N

81 44.70 0.04 1 17.5 2.61 12 N

82 45.00 0.39 10 178.3 13.83 99 Y

83 45.02 0.04 1 -97.9 4.04 41 N

84 45.35 -0.10 1 -178.5 1.77 0 N

85 45.54 0.15 2 -17.5 8.13 90 Y?

86 45.72 2.10 49 -158.7 13.36 100 Y

87 45.77 0.00 0 -64.1 2.20 2 N

88 45.87 -0.96 3 46.2 2.24 2 N

89 45.92 0.05 1 -159.1 5.97 15 N

90 46.11 0.00 0 -9.3 38.44 22 N

EV
Eigenvalue Excitation (PHIL*GAM) Evaluation Critera & Assessment
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Table 5.3.  EMV for ISPE Candidate Modes 91-133 

FREQ (Hz) Zeta (%) |Gain| (%) Phase (deg) max|h| (%) Coherence (%) Is it a mode?

91 46.15 -0.01 1 -115.3 44.25 76 N

92 46.24 0.13 4 -142.3 13.66 52 N

93 46.49 0.50 18 81.7 21.27 99 Y

94 46.65 0.76 49 175.6 36.27 100 Y

95 46.96 -0.01 0 -166.0 4.44 2 N

96 46.98 0.23 6 59.8 12.55 91 N

97 47.48 0.22 7 -135.1 17.45 99 Y

98 47.62 0.83 64 -30.8 44.04 100 Y

99 47.78 -0.23 1 75.0 1.43 0 N

100 47.83 0.37 7 -8.8 10.03 98 Y?

101 48.11 1.54 56 15.4 21.03 100 Y

102 48.38 0.24 3 -99.5 4.45 86 N

103 48.58 -0.04 0 161.7 1.04 0 N

104 48.89 -0.11 1 135.8 1.11 0 N

105 49.18 0.75 20 -26.6 14.84 100 Y

106 50.05 0.75 11 -141.6 8.99 99 Y?

107 50.20 0.10 1 -19.4 2.30 53 N

108 50.44 0.33 6 85.7 9.16 97 Y?

109 50.69 0.18 3 141.2 6.82 91 N?

110 50.93 0.49 16 156.3 17.32 99 Y?

111 51.26 0.19 3 69.0 7.05 85 N

112 51.32 0.48 23 33.8 25.71 99 Y

113 51.45 1.47 56 -178.8 21.49 100 Y

114 52.28 0.03 0 67.6 1.33 4 N

115 52.73 -0.07 1 30.4 0.99 0 N

116 53.43 0.57 12 79.8 12.76 99 Y?

117 53.62 1.64 54 3.4 18.42 100 Y

118 53.80 0.23 5 58.8 9.09 96 Y?

119 54.18 0.01 3 169.1 5.52 10 N

120 54.32 0.52 15 -115.7 15.63 99 Y?

121 55.11 -0.39 1 -31.7 1.00 1 N

122 55.26 1.04 44 15.3 23.55 100 Y

123 55.44 0.62 19 -26.6 16.11 99 Y

124 55.99 0.00 1 82.6 1.24 1 N

125 56.38 0.58 13 -149.9 12.06 99 Y

126 57.33 0.93 30 142.0 18.25 100 Y

127 57.88 0.36 6 -157.6 8.80 98 Y

128 58.03 -0.03 0 68.5 1.66 0 N

129 58.40 0.38 11 143.9 15.37 99 Y

130 58.56 1.25 64 12.5 28.51 100 Y

131 58.77 0.09 1 -22.1 5.50 59 N

132 59.43 0.02 1 61.9 4.76 26 N

133 59.65 0.13 4 -154.0 13.25 96 Y?

EV
Eigenvalue Excitation (PHIL*GAM) Evaluation Critera & Assessment

 

The above tabular summaries provide a clear demonstration of the utility of the newly introduced EMV 

metrics (particularly the modal coherence metric defined in equation 20 for which a value of 95% or 

greater generally indicates a validly estimated mode). 

5.4.2 Estimation of Experimental Modal Vectors 

Once a valid set of experimental eigenvalues are selected, the associated eigenvectors (modal vectors) 

must be estimated. There are three distinct approaches for estimation of, namely, 

(a)  Employment of the SFD vector transformations, [VG] and [] 

(b)  Global linear least squares fit of complex modal vectors 

(c)  Global linear least squares fit of real modal vectors. 
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The first approach estimates the complex modal vectors as, 

    
accGV  ,  (21) 

where the “acc” subscript refers to the partition of [ associated with   (see equation 16). This 

computation is strictly limited to the SFD method. 

The second approach performs a linear least squares analysis on the following well-known relationship 

(in terms of the frequencies  = 2f), 
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
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


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







j
*

j

*

j

j

j

ii
)(H ,  (22) 

where [H()] is the measured FRF array (for all responses and excitations, see equation 9), and j = j 

+ij are the selected estimated complex eigenvalues. 

The third approach performs a linear least squares analysis on the following relationship (in terms of the 

frequencies  = 2f), 

    )(h)(H  , where 

  (23) 
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jj
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j

2

j
i2

)(h , for each mode “j”. 

All three approaches for experimental modal vector estimation have an inherent associated challenge 

related to the fact that the modal vectors, [], that is actually a composite of estimates corresponding to 

the independent excitations (see equations 8-13), i.e., 

 



















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1

...  associated with excitations 

















"F"

...

"F"

N

1

 (24) 

Ideally, the modal excitation related partitions for each individual modal vector, {}, should be 

proportional to one another, but this is approximately true or not at all true if there are multiple repeated 

modes at the same eigenvalue. Resolution of this issue is realized based on a combination of special 

calculations (e.g., SVD) and the test engineer’s judgment and experience. 

Finally, it is noted that the prevailing approach employed in V&V relies on real experimental modal 

vectors. In this context, global linear least squares fitting of real modal vectors is preferred. The 

alternative approach relates to calculation of “best fit” real mode approximations for estimated complex 

modal vectors. 

5.5 Conclusions 

Experimental modal analysis is a very mature discipline in the structural dynamics community, which is 

as much an “art” as it is a “science”. Modern procedures for estimation of modal parameters from 

measured data are highly automated; however, applications involving complicated structural systems 

and/or systems with closely-spaced, parametrically sensitive modes require the test engineer’s experience 

and judgment (“art”) to discern the difference between authentic and spurious (“junk” or “noise”) system 

modes. A prevailing metric for experimental modal data validation is the orthogonality check, which 

relies on a model-based (TAM) mass matrix. In addition, reconstructive synthesis of measured frequency 
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response function (FRF) data is another widely used strategy for experimental mode validation. The 

present EMV study employs mathematical operations aimed at isolating individual candidate 

experimental modes without reliance on a TAM mass matrix. In a sense EMV, as presented in this report, 

recalls past heuristic graphical techniques (“art”) for discernment of experimental modes in a formal 

mathematical (“science”) sense. 

The key to mathematical and visual isolation of individual modes from measured data is the left-hand 

eigenvector. Virtually all modern experimental modal analysis techniques produce estimates of right-hand 

eigenvectors and eigenvalues (modal frequency and damping). While techniques for estimation of left-

hand eigenvectors are well-known (e.g., “[TM]” and the Moore-Penrose pseudo-inverse), they have 

been judged inadequate during the course of the present study. The purest approach to estimation of left-

hand eigenvectors is a consequence of some experimental modal analysis techniques, specifically those 

techniques that estimate the measured system’s plant or effective dynamic system matrix. Since a 

complete set of (authentic and “junk”) system modes are identified for the estimated plant, the left-hand 

eigenvectors are calculated exactly from the inverse of the complete right-hand eigenvector set. 

The following metrics provide a systematic basis for EMV: 

(1) The estimated Single-Degree-of-Freedom (SDOF) modal FRF, formed by the product of a single 

estimated left-hand eigenvector and FRF matrix, is plotted in terms of real and imaginary 

components vs. frequency, magnitude and phase components vs. frequency, and polar real vs. 

imaginary components. Authenticity of an estimated mode is then judged on the basis of quality 

of the plots. 

(2) The SDOF modal FRF is also formed from exact mathematical solution of the estimated effective 

dynamic system. Graphical comparison of this result with the above left-handed product 

information offers further means of authentic vs. “junk” mode discrimination. 

(3) Finally, a coherence metric based on comparison of the results of “1” and “2” provides a 0-to-

100% figure of merit for estimated experimental modes. 

As a closing thought regarding EMV, it is suspected that estimated left-handed eigenvectors may 

ultimately provide the means to compute test-analysis cross-orthogonality independent of the TAM mass 

matrix. This, of course, is the subject of a future endeavor. 
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