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Appendix A. Launch Vehicle Propellant Tank Hydroelastic Analysis (1976-
2016)
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The Hydroelastic Launch Vehicle

Typical liquid propellant launch vehicle mass
distribution is ~80% fluid mass (full tanks)
Fluid behavior in frequency band of interestis
typically incompressible (except SLS, others)
Three classes of hydroelastic normal modes

— Slosh (low frequency, rigid structure)

— Body (mid frequency, axial, bending, bulge)

— Shell breathing (mid frequency, numerous!)
Hydroelasticity plays a key role in L/V POGO

— Propellant tank dynamics (present discussion)

— Feedsystem (propellantline) dynamics

— POGO suppression components




NASA CR-2662 and Subsequent Developments
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Inviscid Fluid (small displacement)

; ] P=pg-U,
p= f P.dt | A systematic formulation
- ‘ to describe dynamics of
lvp the fluid is required
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Inviscid Fluid

(based on Toupin’s variational principle, 1952)
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Fluid-Structure Interaction Equations
(Zienkeiwicz, Herting, Cosmic Nastran)
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el Sl e

» Unconventional, non-symmetric matrix equations

» Sparse [M], [K], [C], [S], [A] matrices

« Computationally difficult modal analysis (early 1970’s)
» Re-cast for conventional modal analysis (1976-2016)

* Incompressible & compressible fluid forms




Fluid-Structure Interaction Equations
(Symmetric Incompressible Fluid, NASA CR-2662)
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Fluid-Structure Interaction Equations
(Symmetric Incompressible Fluid, NASA CR-2662)

Fully populated fluid mass matrix

|

M+AS'AT| AS'T, |[ U] [K 0](U)_[T, 07[F.
r’s?AT] [TIS7T|[|Q,) [0 oflQ.) |0 1P,
!

Tank bottom outflow susceptance

Tank bottom pressure coefficients

» Matrix equation set conforms to conventional structural dynamics
- special operations required due to generally singular [S]
» Accommodates definition of a modal component

- with consistent interface partitions for connection to the L/V feedsystem.
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Fluid-Structure Interaction Equations
(Symmetric Compressible Fluid, 2016)

Introduce the generalized volume strain variable, [C]{P} = {V}
}=|cfvi=—s"AT}T}-[s7 {V}- s 7T, R,

P, =|rg [P}=—|rgs A" [U}-[rgs V|- [ras T, Qs

M+AS"A" AST AST,|[U]| [K 0 o|[U] [ 0 .
S7AT ST ST, KV i+/0 CcT okVi=(0 0f°
TQ-1AT Tl Tg-1 ~ Pﬂ)
LSPA® LS* LS 0. (0 0 0]10,] |§ =1

» Matrix equation set conforms to conventional structural dynamics
- fully populated mass matrix, potential computational inefficiencies
» Accommodates definition of a modal component
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Hydroelastic Tank Modal Analysis

(general strategy)
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Propellant Tank Steady Load Profile
(ullage and hydrostatic pressure)

2 . IR

N

TTTTT Steagy Pressure

P

steady =

Pullage & pagH

*» The effect of steady loading is expressed as “differential” stiffness

» Some (balloon) tank configurations have extremely thin walls

- and “differential” stiffness from ullage pressure is necessary & dominant
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Significance of Differential Stiffness
(shallow shell theory modal solution, NASA SP-106, 1966)
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Significance of Differential Stiffness
(ullage pressure does not ordinarily affect axial & bending modes)

h=0.028"—»«—

Modal Frequency (Hz)

2 4 B 8 10 12 14 16
Circumferential Harmonic, n

«—— 2R=60" — w5

There are many shell breathing modes in the same frequency band as axial (n=0)
and bending (n=1) modes. How significant are the shell breathing modes?
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Significance of Shell Breathing Modes
(typical upper stage LOX tank)

M Surface

v~ 1 Propellant T “UE

o]
joele]

Shell Structure
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Significance of Shell Breathing Modes
(Hurty-Craig-Bampton modal component)

* Interior & boundary dof partitions
{u}— uj | | Interior Motions
~|u, |  |Boundary Motions
» Partitioned dynamic equations

|:Mii M;, }{Uq } {Bii B, :Hui } |:Kii Ky :Hui } {0}
- =3 s b =
M, M, |lU, B, B (U Ku K |lU 0

* Fixed boundary + constraint mode transformation
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Hurty-Craig-Bampton component (cont’d)
Reduced mass and stiffness matrices
|:Iii Py, qu}_l_|:®,2 0y, H‘L}_{O}
P, My |4, Oy Ky [ (U 0

Modes with low modal participation factors (or modal
effective mass, M= P,,2) are self-equilibrating & do
not significantly interact with other substructures.
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Typical Upper Stage LOX Tank

(a few slosh, axial & lateral modes [n=0,1] are significant)

200
w150
T 128 200+ modes, f<250 Hz
40 20 40 60 80 100 120 140 160 180 200
X Primary Bulge Mode
zmzo . 1 n=0: 5 modes, Mgr>1%
O 1 1 l 'l I 1 1 1
50 100 150 200
40 T T T T
>.
[V
EuLLJzo [ Fundamental Slosh Mode Kok Laeraliviades n=1: 9 modes, Mge>1%
O I L 1 J J 1 1 1 !
0 50 100 150 200
40 T T T T
2 Key Lateral Modes
w I —_— - 0,
EmQO Fundamental Slosh Mode n=1:9 mOdeS’ MEFF>1 %o
O I a I 1 1 l L 1 L 1
0 50 100 150 200

Note: Employment of P=0 on the free surface will eliminate slosh modes
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Hydroelastic Tank Behavior and Challenges

» Behavior
— Many component modes (slosh, axial, lateral, shell breathing)
— Ullage & fluid inertia loading affects only shell breathing modes
— Selected slosh, axial & lateral (n=0,1) modes are of significance

« Challenges
— Large-Order Symmetric Hydroelastic Mass Matrices
— Many non-significant modes in the frequency band of interest
— Need for Efficient Modal Analysis Techniques
— Verification and Validation of Hydroelastic Systems

21
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Hydroelastic Tank Modal Analysis
(Symmetric Incompressible Fluid, NASA CR-2662)

« System dynamic equations with tank bottom outflow

M+ASTAT ASTT, {U} [K oHU} {rF OHFC}
- -+ =
ILSTAT  TIoST,|Q.) |0 0](Qs 0 -1||P,

* Closed-bottom tank modes
[K]@}=|M+AS'AT o

— numerical inefficiency due to the full fluid mass matrix
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Hydroelastic Tank Modal Analysis
(Symmetric Incompressible Fluid, NASA CR-2662)

* Closed tank bottom modes
[KJo!=[M+ASAT [@h

- Efficient shape function reduction
— Harmonic reduction (NASA CR-2662, 1976)
— Modern “load-patch” shape vectors (recent IMAC papers)

{(D} = [‘P ]{(p} (reduction transformation)
[K]=[¥"K¥| [m]=[¥"™™M¥|+|¥TAa]s?]|ATY]
[k]{(p} = [m]{(p}% (reduced order eigenvalue problem)
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Reduction Transformations (1976, 2016)

Harmonic Reduction (1976)

N
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Load Patches (2016)
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A displacement transformation ([U]=[G][U*]) does not readily describe stiffness
non-symmetries, while load patches ([¥]=[K-'][F]) are more accommodating.
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Hydroelastic Tank Modal Analysis
(Symmetric Compressible Fluid, 2016)

Introduce the generalized volume strain variable, [C]{P} = {V}
P}=|cfivi=-[s"aTfO}-[s" fvi-Is T, R,

By =Irz o} is a” o) lis - o

I, 0
1A T -1 -1 C -1 Fe
SIA S ST, KV i+ 0 C* 0oRkVve=l0 0
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» Matrix equation set conforms to conventional structural dynamics
- fully populated mass matrix, potential computational inefficiencies
» Accommodates definition of a modal component
26
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Hydroelastic Tank Modal Analysis
(Symmetric Compressible Fluid, 2016)

» Closed tank bottom (unsymmetric eigenvalue problem)
— Solved via sparse “complex” Lanczos or other modern algorithm

K -A|[®@] _[M 0][®],
0 S ||l®o,] [|AT C||lo,
* Introduce the “dilatational” transformation

Cli@, }={0]

* Normalize and verify “real” modes (using sparse calcs)

] Vel (G ofalw
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Hydroelastic Tank Modal Analysis
(Practical Engineering Options)

Sparse Matrix Computation

1.

2.

Compute all modes for the
sparse, unsymmetric system.

Transform modal pressure
dofs: [®@,] = [C][®p].
Normalize system modes to
unit modal mass.

Select significant system
modes based on modal
effective mass (generally
“tens” of modes among
“thousands”.

Reduced Order Models

Impose an appropriate dof
reduction transformation on
the structure.

Compute system modes via:
a. Symmetric modal analysis for
incompressible fluid.

b. Unsymmetric modal analysis
for compressible fluid.

Select few significant “slosh”
modes based on modal
effective mass.
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5. Concluding Remarks

1.

Mixed fluid pressure-structural displacement equations transform to
a symmetric structural dynamic form.

Hydroelastic tank axial & bending modes are generally not affected
by steady loading (differential stiffness)

A small subset of hydroelastic modes are identified as “significant”
on the basis of modal effective mass.

Numerically efficiency in modal analysis is realized via (a) sparse
matrix operations and/or (b) application of reduction transformations.

Suggested topics for academic research include (a) evaluation of
effects of non-axisymmetry on significant “body modes” and (b)
hydroelastic modal test-analysis correlation.
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Appendix B. Review and Recommendations regarding NESC-RP-14-00946

Robert N. Coppolino
Measurement Analysis Corporation
December 5, 2016

Executive Summary

Based on review of NESC-RP-14-00946, a series of recommendations are made with
regard to finite element modeling, modal testing, and sensitivity analyses focusing on
SLS core vehicle stage IV&V. They are:

1. Include appropriate subassembly interconnection detail (joints) in the system
dynamic model. A common deficiency in modern structural dynamic models is the
result of naive oversimplification of interconnecting joints between structural
components and subassembilies. It is all too easy to simply “join” parts without provision
for local flexibilities (e.g., riveted, bolted and welded connections). This lack of essential
parametric flexibility commonly leads to unrealistic model adjustments that vary a
component’s elastic modulus in order to meet IV&V goals. Incorporation of “right-sized”
model sophistication at joints has produced satisfying results in recent projects.

2. Focus on Core Vehicle Stage Target Modes. One opinion suggests that mapping
of virtually all modes in a selected frequency band (e.g., 0sf<50 Hz) be measured and
validated using standard criteria (Ref 5). This approach incurs a severe instrumentation
penalty to map all circumferential harmonic breathing modes in the selected frequency
band. An alternative opinion (the writer's) suggests mapping of body modes that are
relevant to IV&V of core vehicle stage dynamics (for all propellant loading conditions) in
the 0=<f<50 Hz frequency band. Adoption of the alternative opinion requires some
rethinking of core vehicle modal testing requirements. The benefit of focus on body
modes (a) drastically reduces the number of modes for IV&V and (b) eliminates the
need to identify highly sensitive shell breathing modes.

3. Selection of Core Stage Vehicle Target Modes. Selection of core stage vehicle
target modes becomes an effective, systematic process when modes are categorized
on the basis of class (lateral, axial, torsion, shell breathing, localized appendage, etc.)
by evaluation of subassembly kinetic and strain energy distributions, directional kinetic
and strain energy distributions, and modal effective mass.

4. Extend the Empty Core Stage Modal Frequency Band. By tracking the anticipated
natural frequencies of fully fueled and corresponding empty core vehicle stage body
modes, the frequency band of target modes expands from 0-50 Hz to 0-170 Hz (TBR).
The extended frequency band offers an acceptable level of assurance that target modes
will exercise structural deformations that relate to vehicle system dynamics for the
spectrum of flight times (propellant fill levels) within the 0-50 Hz frequency band.
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5. Instrumentation Requirements for Core Vehicle Stage Modal Testing (the Shell).
The response of shell breathing modes may not be totally suppressed by orienting
applied excitation loads tangential to the shell surface (a common practice). Therefore,
accelerometer allocation must be sufficient to separate body modes from breathing
modes; placement of tri-axial accelerometers 90 degrees apart around the core shell
circumference (TBR) may suffice for satisfaction of standard NASA criteria. Additional
accelerometers (or alternative strain gage sensors) are recommended to at least
separate shell breathing modes from body modes.

6. Instrumentation Requirements for Core Vehicle Stage Appendages. Pitch, yaw,
roll and axial dynamics of the four engine bells must be appropriately instrumented to
discern localized motions, which may couple with overall body dynamics (lateral, axial,
torsion) of the shell subassembly. An appropriate accelerometer array to capture LOX
feedline structural dynamics in the frequency band of the modal test must also be
allocated. Past experience indicates that apparent multiple or repeated body modes
need to be mapped with local appendage accelerometers in order to (a) understand and
separate apparently repeated mode families while (b) satisfying test mode orthogonality
criteria.

7. Core Vehicle Stage Sensitivity and Reconciliation Analysis for IV&V. At the
present time, the SLS contractor's parameterized variations on core vehicle stage
modes are intended as specific, fixed candidates for correlation with modal test data.
The modal sensitivity formulation introduced in 2002 and further refined in 2013
provides the means to efficiently conduct concurrent sensitivity and test-analysis
correlation (and with “luck”, optimal reconciliation) evaluations.

8. The present report offers a first-cut set of recommendations by the writer.

Further Loads and Dynamics TDT discussions and additional SLS program information
will certainly lead to expansion and refinement of recommendations.
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Introduction
Review of NESC-RP-14-00946 indicates the following consensus:

1. System models will be assembled employing Hurty-Craig-Bampton (HCB)
components (which are commonly called modal substructures or superelements).

2. Full-scale modal tests will be planned to map modes to about 50 Hz.

3. Core vehicle stage modal tests will be conducted with empty propellant tanks.

4. Employment of orthogonality, cross-orthogonality & frequency correlation criteria
are expected to be very challenging.

There appears to be a lack of consensus on the general approach to core vehicle modal
testing, specifically:

5. Should all modes or some target modes below 50 Hz (TBR) be mapped in modal
tests?

6. s pressurization important in modal testing?

7. Definition of an appropriate instrumentation array is highly dependent on (5 & 6),

Conversations with Dr. Alvar Kabe indicate that the SLS contractor is building core
stage mathematical models, which differ from one-another in parametrically sensitized
zones. Those specific zones are sensitized by variation of basic material properties (e.g.
elastic modulus). This commonly employed approach is (in this reviewer’s opinion) both
naive and physically unrealistic. A more appropriate strategy for parametric sensitivity
focuses on uncertainty at interconnecting joints (especially between substructures and
subassemblies). In order to enable exercise of joint sensitivities, interfaces must include
sufficiently realistic features to include those sensitivities.

It appears prudent to review the intent of IV&V from the viewpoints of separate
engineering sub-disciplines, namely (a) flight structural loads, (b) control stability, (c)
pogo stability, and (d) aeroelasticity. Each of these sub-disciplines requires differing
subsets of modal information to conduct reliable engineering evaluations. It is
noteworthy to recall that the past 60 years of space launch experience has generally
succeeded while employing less sophisticated dynamic models than those envisioned in
the present endeavor.

Relevant Structural Dynamic Models

The dynamic frequency band (0<f<f*) for a relevant structural dynamic model (assumed
linear for the present) is governed by the SRS of its anticipated loading environments
(Ref 1). Based on f* (typically 50 Hz), minimum grid spacing of structural components
may be defined; however, employment of modern CAE tools generally produces refined
finite element models that exceed minimum grid spacing requirements. It should be
noted that strict adherence to engineering drawings (as emphasized in of NESC-RP-14-
00946), while avoiding ill-advised modeling liberties (often employing RBE2 & RBE3
constraints) minimizes the occurrence of severe modeling deficiencies.
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A common deficiency in modern structural dynamic models is the result of naive
oversimplification of interconnecting joints between structural components and
subassemblies. It is all too easy to simply “join” parts without provision for local
flexibilities (e.g., riveted, bolted and welded connections). This lack of essential
parametric flexibility commonly leads to unrealistic model adjustments that vary a
component’s elastic modulus in order to meet IV&V goals. Incorporation of “right-sized”
model sophistication at joints has produced satisfying results in recent projects.

The core vehicle stage presents a particular challenge for IV&V in that (a) its primary
structure is a shell (with many shell breathing modes within the band of classically
significant body modes), (b) propellant constitutes the majority of the system’s mass
when it is fully loaded, and (c) core stage modal testing will be limited to the empty
condition. Classical shell theory (Ref 2) and laboratory experience (Ref 3) indicate that
shell breathing modes are sensitive to static pressure and weight loading as well as
flexural stiffness of shell segment transitions and boundary conditions. The body
modes, however, are relatively insensitive to static pressure and weight loading (the
exceptional case occurs for balloon-type propellant tanks typical of earlier Atlas and
Centaur vehicles). In addition, theoretical analyses (Ref 4) and past launch vehicle
experiences strongly indicate that structural loads and system dynamics are primarily
influenced by “body” modes (axial, lateral, torsion). While modern finite element models
include all body and breathing modes of shell structures, it is highly recommended that
the core stage vehicle IV&V process should focus on body modes only.

Focus on Core Vehicle Stage Target Modes
There are differing opinions on IV&YV for the core vehicle stage:

1. One opinion suggests that mapping of virtually all modes in a selected frequency
band (e.g., 0=f<50 Hz) be measured and validated using standard criteria (Ref
5). This approach incurs a severe instrumentation penalty to map all
circumferential harmonic breathing modes in the selected frequency band.

2. An alternative opinion (the writer’'s) suggests mapping of body modes that are
relevant to IV&V of core vehicle stage dynamics (for all propellant loading
conditions) in the 0<f<50 Hz frequency band.

Adoption of the alternative opinion requires some rethinking of core vehicle modal
testing requirements.

Selection of Core Vehicle Stage IV&V Target Body Modes

The theoretical modes of a fixed-base core stage dynamic model with selected
propellant fill levels may be categorized in terms of (a) sub-component kinetic and strain
energy distributions, (b) directional kinetic and strain energy distributions, and (c) modal
effective mass (Ref 4). Prominent body modes are readily identified by employing the
above cited energy and modal effective mass metrics. Tracking of the frequency
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migration of important body modes with decreasing propellant levels (using cross-
orthogonality or modal assurance criteria (MAC)) will indicate which set of empty body
modes should be included in the target mode set.

A very preliminary estimate of the target body mode frequency band results from the
ratio of fully loaded (~2,159,000 Ib) to empty (~188,000 Ib) weights. The ratios of natural
frequencies for corresponding empty and fully loaded system body modes are on the
order of 3.4 (square root of 11.5). This increases the frequency band for empty core
stage target modes from 50 Hz to about 170 Hz (TBR). A more refined estimate of the
frequency range of core stage target modes for IV&V must be the result of rigorous core
stage vehicle (mathematical model) modal tracking. It should be noted that the only type
of body mode that should not be affected by fuel mass loading is torsion, since no
propellant mass should be moved during pure torsion activity.

A relatively simple example shell structure (taken from Ref 4) illustrates how target
modes may roughly scale with respect to fuel level. The original model consists of a 20”
radius, 100” long, 0.5” wall thickness aluminum shell and skirt assembly composed of
five (5) subassemblies, as illustrated below in Figure 1.

ARE SR o SR
AR @f‘.;_ !Z". x5 .), :‘:»?;,

Dome 1 Shell 1 Shell 2 Dome 2

Figure 1: lllustrative Example Shell Structure

In order to “up-scale” this example from 20” radius (40” diameter) to SLS scale, which is
(27’ diameter), the empty shell frequencies will reduce by a length factor of 8.1. The
empty full-scale frequencies are subsequently scaled by a reduction factor of 3.4
(corresponding to the SLS “weight factor”); torsion modes are not subjected to the mass
factor. Results of this process are summarized below in Table 1.
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Table 1: lllustrative Example Base-Fixed Body Modes (with scaling)

En;rte;uency (Hz1)00% Fueled Component Kinetic Energy (%) Kineglcreé::;;al %) Modal Effective Mass (%)
Mode N 1/8.1 Scale | Full Scale | Full Scale [ SKIRT |[DOME1| SHELL [DOME2 X Y 4 X Y y4 RX RY RZ
1Y 1 122.21 15.09 4.44 1.1 1.4 46.7 | 50.8 0.0 96.2 3.8 61.6 98.4
2X 1 122.21 15.09 4.44 1.1 1.4 46.7 50.8 96.2 0.0 3.8 61.6 98.4
11T 0 316.86 38.92 3.9 5.7 64.6 | 25.8 | 50.0 | 50.0 0.0 82.1
14Y 1 377.59 46.57 13.70 11.9 | 35.6 [ 36.6 | 16.0 0.0 91.0 8.9 29.8
15X 1 377.62 46.57 13.70 119 | 356 [ 366 | 159 | 91.1 0.0 8.9 29.8 0.4
247 0 469.44 57.75 16.99 3.4 7.3 52.7 | 36.6 0.4 0.4 99.1 80.8
49Y 1 708.88 87.24 25.66 3.1 36.9 | 41.0 | 18.9 0.5 89.9 9.6 1.0 0.0
50X 1 709.27 87.24 25.66 3.1 37.0 | 41.2 | 18.7 | 90.1 0.5 9.4 1.0 0.0
65T 0 860.54 103.87 16.4 | 31.7 [ 29.5 | 224 | 50.0 | 50.0 0.0 9.2
76Y 1 1005.70 123.15 36.22 17.5 | 18.9 | 51.1 12.6 1.8 61.3 | 36.9 0.4 0.3
77X 1 1011.50 123.15 36.22 18.4 | 184 | 52.3 [ 10.9 [ 63.3 1.9 34.8 0.5 0.3
86Z 0 1036.20 127.15 37.40 7.7 51.9 | 13.6 | 26.9 7.7 7.7 84.6 7.7
99Y 1 1183.30 144.40 42.47 27.4 15.6 30.1 26.9 3.0 57.3 39.7 1.6 0.0
100X 1 1189.60 144.40 42.47 28.0 | 155 | 31.1 254 | 56.0 2.9 41.1 1.6 0.0

The mode numbers in the first column are associated with 14 body modes out of a total
of 100 modes (all modes that are not listed are associated with shell breathing). The
letter after each body mode number designates the body mode type (Y, X represent
lateral bending, T represents torsion, and Z represents axial). Plots of four body modes
are illustrated below in Figure 2.

Mode 1Y Mode 2X Mode 24Z Mode 852

Figure 2: lllustrative Example Body Modes

Note that modes 24Z and 86Z may be significant for a hypothetical Pogo stability
evaluation. Based on examination of the frequency shifts in lateral and axial body
modes, it is clear that empty structure body modes in the 0<f<50 Hz frequency band are
not representative of important fuel-loaded body modes in the same frequency band.

The illustrative example shell structure offers rationale for (a) selection of target IV&V
modes, and (b) expansion of the modal test frequency band to include significant
hydroelastic modes. In addition, elimination of shell breathing modes from the target
mode set, simplifies prospects for satisfaction of test-analysis correlation goals (Ref 5).
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Instrumentation Requirements for Core Vehicle Stage Modal Testing (the Shell)

The response of shell breathing modes may not be totally suppressed by orienting
applied excitation loads tangential to the shell surface (a common practice). Therefore,
accelerometer allocation must be sufficient to separate body modes from breathing
modes. A recently published paper (Ref 6) introduces an extended RKE strategy for
allocation of accelerometers and development of a TAM mass matrix for orthogonality
and cross-orthogonality calculations (to satisfy Ref 5 standards). However, additional
accelerometers (or alternative strain gage sensors) are recommended to at least
separate shell breathing modes from body modes. An array of the type illustrated below
in Figure 3 provides a way forward for effecting separation of shell breathing and body
modes.

qu
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a2 1P,
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Figure 3: Accelerometer Array for lllustrative Example Shell Structure

The tri-axial accelerometer locations denoted by red circles (90 degree circumferential
separation) correspond to the allocation deemed prudent for mapping of body modes
(employing an opportune reduction transformation for body modes). The additional blue
point tri-axial accelerometer (or NASA AFRC type fiber optic strain string) bands
correspond to additional arrays, which are intended to identify the presence of shell
breathing modes (to be eliminated from the measured target mode set).

Instrumentation Requirements for Core Vehicle Stage Appendages
On the assumption that the propellant tank and intertank subassemblies will be
instrumented following the above recommendations, there are additional practical

matters that should be addressed related to appendages (e.g., engines, long LOX
feedline). General construction of the core vehicle stage is illustrated below in Figure 4.
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Figure 4: Core Vehicle Stage Construction

Pitch, yaw, roll and axial dynamics of the four engine bells must be appropriately
instrumented to discern localized motions, which may couple with overall body
dynamics (lateral, axial, torsion) of the shell subassembly. In addition, the long LOX
feedline (empty) may be subject to localized flexural and axial dynamics that couple with
the shell subassembly. An appropriate accelerometer array to capture LOX feedline
structural dynamics in the frequency band of the modal test must be allocated. Past
experience (e.g., automobile modal testing, Ref 7) has indicated that apparent multiple
or repeated body modes need to be mapped with local appendage accelerometers in
order to (a) understand and separate apparently repeated modes families while (b)
satisfying test mode orthogonality criteria.

Core Vehicle Stage Sensitivity and Reconciliation Analysis for IV&V

Conversations with Dr. Alvar Kabe indicate that the SLS contractor is building core
stage mathematical models, which differ from one-another in parametrically sensitized
zones. Those specific zones are sensitized by variation of basic material properties (e.g.
elastic modulus). This commonly employed approach is (in this reviewer’s opinion) both
naive and physically unrealistic. A more appropriate strategy for parametric sensitivity
focuses on uncertainty at interconnecting joints (especially between substructures and
subassemblies). In order to enable exercise of joint sensitivities, interfaces must include
realistic enough features to include those sensitivities.

At the present time, the SLS contractor's parameterized variations on Core Vehicle
Stage modes are intended as specific candidates for correlation with modal test data.
The modal sensitivity formulation introduced in 2002 (Ref 8-9) and further refined in
2013 (Ref 10) provides the means to efficiently conduct concurrent sensitivity and test-
analysis correlation (and with “luck”, optimal reconciliation) evaluations.
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The key to the sensitivity formulation is collection of baseline model and individual
parametric variants (finite change in regions of a system, e.g., group of joints), as
described by the sensitized dynamic equation set,

{MO +§:pi -AMi}{ﬁ}+[KO +ZN:pi -AKi}{u}:{O} (1)

i=1 i=1

When all “pi” are null, the system is “baseline”. The low frequency undamped modes of
the baseline system are solutions of the eigenvalue problem

[Ko ][(DOL ] - [Mo ][CDOL ][7\’0L] = [0] (2)
Definition of residual vectors describing parametric variations in Equation 1 is
accomplished utilizing the lowest frequency mode shapes of the baseline structure as

well as the lowest mode shapes associated with each independent alteration of the
structure

[Ko + Pk Jo, J-[M, +pam Joo, Ja, ]=[0] (fori=1,....N), (3)

where p.is a finite (rather than infinitesimal parametric perturbation). An initial set of trial
vectors that redundantly encompass all low frequency altered system mode shapes is

[lP]:[(DlL D, . q)NL] (4)

The redundant set of trial vectors is reduced to a linearly independent “modal” set, [@OL],
by following the methodology described in Ref 9. [5OL]= [CDOL ‘Pp] is the trial vector set
(sensitivity vectors) to be used for expansion of measured operating deflection shapes.

It is of interest to note that the resulting approximate generalized sensitivity model (that
may be employed in a more complete system identification exercise) is

ot 3k fol-| m + 3oplam o111 ©)

i=1 i=1

where the reduced stiffness and mass matrix components are
[ko] = [agLKOEOL ) [mo] = [6gLM060L]’ [Aki] = [5(§LAKi60L ) [Ami] = [68LAMi60L] (6)

The low frequency physical modes for the altered dynamic system are recovered using
the relationship

[q)L] = [6OL ][(P] (7)
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Further operations, successfully employed in modal tests (e.g., Ref 7) have resulted in
post-test system models (with specific parameter values) that closely agree with modal
test data.
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Appendix C. Evaluation of ISPE Model Sensitivities

Appendix C:
Evaluation of ISPE Model Sensitivities

Bob Coppolino
16 March 2017
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Sensitivity Road Map

Element Subcomponent Perturbed Run #
Nominal Run - 1

— 2
MSA Flange Material 3

Weldlands

FWD Barrel Region
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FWD Ring

LOX Tank Upper Dome
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LH2 Tank Middle 14 Negligible
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Discrimination of Sensitive and Insensitive Cases

121lcmat
122cmat
123cmat
124cmat
125cmat
| 126cmat

Case DF (%) |100-Cor (%)) Class
12cmat 4 31
13cmat 5 30
l4cmat 9 17 Sensitive
15c.mat 13 97
16c.mat 13 90
17c.mat 2
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Efficient Modal Sensitivity Convergence
* Exact system modes (for each reference parameter value, p;)
[KO + ZPIAKI}[G)G] u |iM0 + ZPIAMI :|[(De][)\“e]

* Approximate system modes (for a selected value of “tol”)
s Zpk o= my+ Zpam, o]

[@.]=[¥].]
* Convergence indicator
[Cea ] = l(I)ZMO(DaJ

— If cross-orthogonality is not close to [I,] for all cases, reduce “tol” until this
criterion is satisfied (modal frequencies will converge when this is met)
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Efficient Modal Sensitivity Convergence Results

Tolerance 1.00E-04 1.00E-05 1.00E-06
Residuals 65 160 291

Case | |Af] (%) ||AC] (%) ||Af] (%) ||AC] (%) ||Af] (%) ||AC] (%)
1.2c.mat 1.5 11 1.2 10 0.1 3
1.3c.mat 2.3 16 1.9 16 0.0 1
1.4c.mat 3.2 33 1.6 29 0.1 1
1.5c.mat 1.0 16 0.5 & 0.2 0
1.6c.mat 1.3 1 1.0 3 0.1 0
1.7c.mat 0.4 8 0.4 4 0.1 0
1.13c.mat 0.3 12 0.1 2 0.0 0
1.14c.mat 2.5 16 0.6 5 0.0 0
1.18c.mat 0.7 19 0.1 0 0.0 0
1.20c.mat 3.0 20 1.4 7 0.1 2
1.21c.mat 0.7 15 0.3 1 0.0 1
1.22c.mat 0.4 7 0.2 1 0.1 1
1.23c.mat 1.0 4 0.5 3 0.1 0
1.24c.mat 0.1 0 0.1 0 0.0 0
1.25c.mat 1.7 99 0.6 6 0.1 1
1.26c.mat 0.9 5 0.2 2 0.0 0

Notes:
1. Af (%) = [approximate— exact frequency]/[exact frequency] (%)
2. AC (%) = 100% - [Cross-Orthogonality] (%)
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File: Allsensle-4: Convergence Summary
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File: Allsensle-4: Convergence Cross-Orthogonality
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Baseline File: 1.1c.mat , Perturbed File: 1.2c.mat , tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.3c.mat , tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.4c.mat , tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.5¢c.mat , tol=0.0001

66



Baseline File: 1.1c.mat , Perturbed File: 1.6c.mat , tol=0.0001

67



Baseline File: 1.1c.mat , Perturbed File: 1.7c.mat | tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.13c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.14c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.18c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.20c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.21c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.22c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.23c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.24c.mat, tol=0.0001

76



Baseline File: 1.1c.mat , Perturbed File: 1.25¢c.mat, tol=0.0001
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Baseline File: 1.1c.mat , Perturbed File: 1.26c.mat, tol=0.0001

78



File: Allsensle-5: Convergence Summary
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File: Allsensle-5: Convergence Cross-Orthogonality
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Baseline File: 1.1c.mat , Perturbed File: 1.2c.mat |, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.3c.mat , tol=1e-005

98



Baseline File: 1.1c.mat , Perturbed File: 1.4c.mat , tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.5c.mat , tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.6c.mat , tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.7c.mat , tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.13c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.14c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.18c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.20c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.21c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.22c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.23c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.24c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.25c.mat, tol=1e-005
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Baseline File: 1.1c.mat , Perturbed File: 1.26c.mat, tol=1e-005
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File: Allsensle-6: Convergence Summary
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File: Allsensle-6: Convergence Cross-Orthogonality

130



Baseline File: 1.1c.mat , Perturbed File: 1.2c.mat , tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.3c.mat , tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.4c.mat |, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.5c.mat , tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.6c.mat , tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.7c.mat , tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.13c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.14c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.18c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.20c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.21c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.22c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.23c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.24c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.25c.mat, tol=1e-006
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Baseline File: 1.1c.mat , Perturbed File: 1.26c.mat, tol=1e-006
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Appendix D. Consolidation of Body Modes for an “Axisymmetric” Shell
Structure

Appendix D:
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Introduction and Summary

It is anticipated that the SLS Core Vehicle will have a high number of modes
(on the order of 2000) over the 0-50 Hz frequency band. Many anticipated
modes are of shell breathing character (which are sensitive to tank
pressurization associated with fluid inertia and ullage). A smaller subset of
modes are characterized by overall body deformation (e.g., bending, axial
stretch, torsion, and n=0 bulge). Slightasymmetries and imperfections may
cause some modes to be of mixed body and shell breathing character.

A variety of modal quantities are examined to assist in interpretation of
system modes and select a “target mode” subset, namely (a) directional
kinetic energy, (b) “body” and “breathing” kinetic energies.

“Body” dominant modes (which contain “breathing” components due to

slight asymmetries and imperfections) may form modal clusters containing
repeated body deflection patterns.

Estimation of consolidated “pure body” modes of a corresponding perfectly
axisymmetric structure is accomplished by employing SVD on body mode
cluster generalized masses and system mode frequencies.
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Introduction and Summary (cont’d)

* While the present report serves the purpose of describing the mode
consolidation process, it does not formally advocate how the conceptis to
be applied. Therefore, at this time it is anticipated that mode consolidation
may be employed as back-up/new capability that is potentially useful in
upcoming SLS modal tests.

+ That being said, some preliminary thoughts on mode consolidation are
provided in the next slide.
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Potential Application of Mode Consolidation
(a parallel process augmenting the conventional strategy)

Modal Test Planning (RKE, IRKE, etc.)

'

Modal Test (system modes for O<f<f*)

Develop efficient sensitivity model
(augmentation via residual vectors)

V

Correlation & Reconciliation
(FEM vs. system modes)

]

FEM & test mode consolidation
(classify via body & breathing KE’s)

Approximate FEM body modes
(via generalized Guyan reduction®)

!

Test mode consolidation
a test body mode set)

(form

Correlation & Reconciliation
(consolidated system modes)

* An efficient generalized Guyan reduction sensitivity method
has been defined, to be discussed in a subsequentreport.
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lllustrative Example: Segmented Shell Model
(fixed base at the lower skirt bottom)

O Substructurs Boundary Point
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Body Displacement Pattern Shape Functions

(for each “Z” station)

7t shape is
radial bulge

152




Body Displacement Pattern Shape Functions
(separation of “body” and “breathing” modal patterns)

+ Basic relationship

@, ]=[%,]lo,]+[@,]

* Least-squares analysis

Mo, |- [, Jo, 1+ [ |

fo,]= ey, [ [¥ Mo,

* Modal pattern decomposition

[(Db]: [‘Pb][(pb] ; [(Dr]: [(I)L]_[(Db]
@, |=[@,]+[0]

153



Body Displacement Pattern Shape Functions
(separation of “body” and “breathing” modal patterns)

Modal kinetic energies
Mo]®[o]=[Mo,|®[0,|+[Mo, |®[0, ]
T L} 15}

“total KE” “body KE” “breathing KE”
Also....

[oiMo, |=[1,]= [o]Mo, [+[07Mo |

Note: The “body” and “breathing” contributions are independent
since the two groups are orthogonal to each other.
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Overview of Body & Breathing Mode Kinetic Energies
(for the baseline, axisymmetric structure)

100

50

Body KE (%)

0 50 100 150

Mode

100

Breathing KE (%)
n
o

0 50 100 150
Mode
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Overview of Body Mode Kinetic Energies
(for the baseline axisymmetric structure)
X TY TZ RX RY RZ TR

0 0 O O O O 0
50 50— 50r 4 &0fF 4 5&0r 4 &0 41 50
Mode L n
100¢ 1 100p_q 100f 1 100p 4 100p_ 1 100 4 100
150 4 150 b==d 150 d 150k d 150k d 150Ld 1502
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Mode 1, Freq = 1222 Hz

E S04
Sere ity
Jomoan
ROTN
,}‘.‘:%-.::.
SCalY

Lateral Y

Typical Body Modes
(for the baseline, axisymmetric structure)

Mode 11, Freq = 315.24 Hz

.
. .
treeant

. o

o

* e
tlreeaenstt
R TR

z
Yl %

Torsion
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Mode 24, Freq = 467 .77 Hz Mode 146, Freq = 1440.38 Hz
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Typical Breathing Modes
(for the baseline, axisymmetric structure)

Mode 3, Freq = 176.086 Hz Mode 5, Freq = 187659 Hz Mode 7, Freq = 241072 Hz

'8 o0
CADFAR RTINS
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Overview of Body & Breathing Mode Kinetic Energies
(for the perturbed®, axisymmetric structure)

100

50

Body KE (%)

0 50 100 150
Mode

50

Breathing KE (%)

0
0 50 100 150

Mode

* Finite mass perturbation introduced along the “X=0" line of grid points.

13
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Overview of Body Mode Kinetic Energies

(for the perturbed axisymmetric structure)
X TY TZ RX RY RZ TR

0= 0 0 O 0F— O0r— O0Of
50 sofF 4 sof 4 sof { sof { sof 4 sof
Mode - - - -
100{_ 4 100}=1 100} 4 100f~ 4 100} q 100} 4 100}
p—— r »
: [l
1s0ld 150Ed sk d 1s0bd a0k d a0k d 150k
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Typical Mixed Body & Breathing Modes
(for the perturbed, axisymmetric structure)

Mode 14, Freq = 37397 Hz Mode 15, Freq = 374 65 Hz Mode 16, Freq= 37536 Hz Mode 17, Freq =377 43 Hz

S LIRS L SR LTRES 43
¢ .,
. X 2

PLT XX L

Mode 14, Freq = 37397 Hz Mode 15, Freq = 374 65 Hz
N2
LI
Y L
oo X Y % S o5 Nz
\p~ 1 ¥ \y
[KEB,KER] = [90,10] [84,16] [5,95] [3,97]
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Typical Mixed Body & Breathing Modes
(for the perturbed, axisymmetric structure)

Mode 48, Freq = 69539 Hz

"'@J;}’
B IPERERND
{0‘. - .o

0

st haet
)}
et ot
S0 o oo s Y
R ‘

&

2

Mode 48, Freq = 695.39 Hz

LR R L 80
ST
¥ V-
33
e
SN N
LA
ALLAN
Y X

N
[KEB,KER] = [61,39]

Mode 51, Freq = 706.21 Hz

Mode 49, Freq = 699.64 Hz Mode 50, Freq = 701.55 Hz

e LTRXXPS 3
- o,
y

[36.64] ¢
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Mode Consolidation Theory
(mode segmentation using shape matrix, [y] )

[(I)L] = [\Pb][q)b]+ [(I)r] (body, “b”, and breathing, “r’, segments)

oMo, J= [, Jo, 1+ (46 ] fo,]=[ermee, ] frime,
!

[(DL]: [q)b]+[q)r] , [(I)b]= [\Pb][(Pb] , [(I)r]= [(I)L]_[q)b]

@M, |=[0R, |=[m,], [07M®, |=[OR ]=[m,], [o}M, |=[o]

segmented (partial) modal kinetic energies
(KEL )i = (KEb)i * (KEr)i =1, (KEb )i = (mb )ii ) (KEr)i = (mr )i'

1

17
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Mode Consolidation Theory
(motivational facts)

[K][(I)] = [M][(D][X] (eigenvalue problem)

[OR] =[] ~[o™M0]-[1] []=[o"K®]-[]

- The orthogonality matrix is the sum of “body” and “breathing” components

[OR]=[m]=[m, |+[m, ]

* The “experimental” generalized stiffness matrix cannot be segmented
- [K] is unknown, but [k] = [A], which is experimentally “known”

- therefore, a strategy based on [m,] and [A] is required

18
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Mode Consolidation Theory

(“body” mode segment cluster consolidation via SVD)

basic SVD operations

[m, IS, 1= [0y Ive]  vou 2752 2705
[G‘E Iﬁb ] = [I] lsgmbsb J = [Yb ]

Criterion for eigenvalue cut-off, (y,;/ y,4) 2 tol

eigenvector rescaling

[o,]=[5, I, ]
oo, [=[y,]  my]=[o, Jor]

(Convenient step for KE based mode consolidation)
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Mode Consolidation Theory

(“body” mode segment cluster consolidation via SVD)

consolidated modal frequencies as Rayleigh quotients

_ {Db,i }T [}“]{Ub,i} _ E
A S

 2n
consolidated body modes via SVD transformation

[&)c ]: [(Db][ob] M5 = {(D c.i }T [M]{(D c,i}

o =0, m; oo =[]
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Body Mode Cluster Selection Criteria

Body KE (%)

[ORIJ] (%)

100

50

100

(KEg=210%, |OR,,| 210%)

Body Mode Cluster Selection Criteria (KEB>=10%, |ORW[>=10%)

0 50 100 150
Mode

0 50 100 150
Mode
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Orthogonality of Body Mode Clusters
(normalized body modes indicating “repeated” body modes)

Body Mode

5 10 15 20 25 30 35 40 45
Body Mode

22
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Selected Mode

Overview of Body Mode Clusters
(non-normalized body mode KE)

Selected Body Mode Clusters

5 0 15 20 25 30 35 40 45
Selected Mode
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Mode Consolidation Theory

(process summary for each modal cluster)

1. Mode segmentation

- o, ]=|o,]+[o,]
2. ldentify distinct “body” mode clusters

; Requires judgmentand intuition
* | with experimental modal data

3. Consolidate “body" mode clusters
- SVD process results in [®,], [A.] for successive clusters
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SV Resutts

Cluster Analysis
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©
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©
&

Index
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[Egonm shuel

SVO Resuts

Index

SVO Resutts
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[Esgom abuel

[Esgom abuel

06

05

04

SVO Resutts

Cluster Analysis

Index

SVO Resutts

1"
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[Esgorm shuel

[Esgorm suel

SVO Resutts

Index

SVO Resutts
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Consolidated Body Mode Orthogonality
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Consolidated Body Mode Orthogonality

—_
o oo o

-
N

Body Mode

14

16
18
20
22

5 10 15 20
Body Mode
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Cross-Orthogonality
(Body Mode Clusters vs. Consolidated Body Modes)

Body ModeCluster

5 10 15 20
Consolidated Body Mode
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144038 | 145288

140279 | 140283

17 | 18 19
136834 | 136841

15 16 1
122346 | 122349 | 127343

14
1189 59

13 ]
1165 56

12

Baseline Structure
1029.94

1

10
12220 | 31524 | 37721 | 37721 | «87.77 | 70868 | 70865 | 24131 | 99748 | 997 %0

Cross-Orthogonality
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Cross-Orthogonality
(Consolidated Body Modes vs. Baseline Body Modes)

Perturbed Consolidated Bodt Mode

5 10 15 20
Baseline Body Mode
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Cross-Orthogonality

(150 Perturbed Modes vs. 150 Baseline Modes)

Perturbed Mode

0 190
160
40
170
60 460

Q0
o

100

120

140

0 40 B0 80 100 120 140
Baseline Mode
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Cross-Orthogonality
(50 Perturbed Modes vs. 50 Baseline Modes)

190
180

~70

460

Perturbed Mode

5 10 15 20 25 30 35 40 45 &8O
Baseline Mode
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Comparison of Shell Body Mode Approximations
(Modal Frequencies)

Baseline (0) Perturbed (P) Consolidated (C) M odifed Guyan Reduction (WGR) Harmonic Reduction (HR)

Mode |Freq Hz) M ode Freq (Hz) M ode Freq (Hz) M ode Freq (Hz) COR M ode Freq Hz) COR
1 12220 1 120.97 1 120.97 1 121.02 100 1 121.02 100
2 122.20 2 121.13 2 121.13 2 121.14 100 2 121.13 100
11 31524 1 312.43 3 312.43 3 312.38 100 3 31238 100
14 377.21 15 37465 4 373.36 4 373.37 100 4 37335 100
15 377.21 14 373.97 5 37414 5 374.19 100 5 37417 100
24 467.77 24 463 .45 6 463.45 6 463.50 100 6 463.50 100
49 706.65 43 695.39 7 699 .42 7 698.99 100 7 698.99 100
50 706.65 50 701.56 8 701.56 8 701.74 100 8 701.70 100
63 841.31 62 833.52 9 833.71 9 833.72 100 9 833.72 100
76 997.48 76 986.08 10 983.97 10 983.00 100 10 984.52 100
77 997.50 78 994 .38 11 994.07 11 994.38 100 1 995.48 100
86 1029.94 85 1020.38 12 1020.02 12 1020.47 100 12 1021.74 100
103 1169.56 101 1149.73 13 1149.62 13 1151.88 100 13 1156.45 100
104 1169.59 104 1166.38 14 1166.38 14 1166.83 100 14 1170.61 100
111 1223.46 108 1200.07 15 1210.08 15 1205.31 93 15 1215.82 99
112 1223.49 112 1219.50 16 1219.59 16 1220.14 100 16 1228.84 100
121 1273.43 123 1266.47 17 1260.33 17 1261.37 99 17 1268.71 99
128 1368.34 131 1363.11 18 1359.92 18 1344.84 94 18 1371.89 91
129 1368.41 132 1366.26 19 1375.75 20 1379.78 84 19 1391.51 80
140 1402.79 136 1373.70 20 1381.47 19 1367.05 76 20 1391.78 74
141 1402.83 142 1402.03 21 1387.15 21 1403.83 76 21 1415.61 74
146 1440.38 147 1433.20 22 1415.87 23 1427.86 78 23 1453.68 82
149 1452.66 144 1419.64 23 1422.53 22 1426.94 38 22 1453.35 9

(0) = Baseline System Body Modes Cross-Orthogonality (COR) : Reference M odes=Consolidated (C)

(P)= Perturbed System Body-Dominant Modes (p=1) Reference Mass = Baseline [MFF]

(C) = Perturbed System Consolidated Body M odes (Reference)

(MGR) = Modified Guyan Reduction (Perturbed S ystem)

(HR) = Harmonic Reduction (Perturbed System)
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Comparison of Shell Body Mode Approximations

(Kinetic Energy Distribution: Baseline & Consolidated)

Saseline Consolidated

Mode | Direction [ Freq(Hz)] TX | 1Y | 1Z | RX | RY | RZ | TR Mode | Direction | Freq(Hz)] TX | 1Y | 1Z | RX | RY | RZ | 1R
1 TY 122.20 0 96 0 4 0 0 0 1 TY 120.97 0 94 0 4 0 0 0
2 ™ 12220 | 9 0 0 0 4 0 0 2 L2 12113 | 95 0 0 0 4 0 0
3 RZ 31524 0 0 0 0 0 100 0 3 RZ 31243 0 0 0 0 0 98 0
4 TY 377.21 0 91 0 9 0 0 0 4 Y 37336 0 91 0 9 0 0 0
5 2 377.21 91 0 0 0 9 0 0 5 ™ 374.14 91 0 0 0 9 0 0
6 Lr4 467.77 0 0 100 0 0 0 0 6 T2 46345 0 0 98 0 0 0 0
7 Y 706.65 0 90 0 10 0 0 0 7 IY. 699.42 0 90 0 10 0 0 0
8 ™ 706.65 90 0 0 0 10 0 0 8 ™ 701.56 89 0 0 0 9 0 0
9 RZ 84131 0 0 0 0 0 100 0 9 RZ 833.71 0 0 0 0 0 100 0
10 TY-RX | 99748 0 59 0 41 0 0 0 10 TY-RX | 98397 0 58 0 42 0 0 0
1 TXRY | 99750 | 59 0 0 0 41 0 0 1 TXRY | 99407 | 60 0 0 0 40 0 0
12 Z 102994 | 0 0 96 0 0 0 4 12 TZ 102002 | 0 0 95 0 0 0 4
13 TY-RX | 1169.56 0 61 0 39 0 0 0 13 TY-RX | 114962 0 61 0 39 0 0 0
14 TX-RY | 116959 | 61 0 0 0 39 0 0 14 TX-RY | 116638 | 59 0 0 0 39 0 0
15 Y 122346 | 0 90 0 10 0 0 0 15 Y 121008 | 0 90 2 8 0 0 0
16 ™ 122349 | 90 0 0 0 10 0 0 16 ™ 121959 | 90 0 0 0 10 0 0
17 TZTR | 127343 | 0 0 81 0 0 0 19 17 TZTR | 126033 | 0 2 80 1 0 0 18
18 TY 1368.34 0 94 0 6 0 0 0 18 TY. 1359.92 0 85 4 6 0 0 6
19 ™ 136841 | 94 0 0 0 6 0 0 19 |RXTY-TR| 137575 | 0 17 12 61 0 0 10
20 RX 140279 | 0 16 0 83 0 0 0 20 TXRY | 138147 | 70 0 0 0 30 0 0
21 RY 1402.83 16 0 0 0 83 0 0 21 TX-RY | 1387.15 | 41 0 0 0 59 0 0
22 TR-TZ | 144038 0 0 45 0 0 0 55 22 TR-TZ-RX| 141587 0 9 31 23 0 0 37
23 TY-RX | 145266 | 0 74 0 25 0 0 0 23 TY-RX | 142253 | 0 74 2 23 0 0 1

183

37



Comparison of Shell Body Mode Approximations

(Kinetic Energy Distribution: Body-Dominant Perturbed & Consolidated)

Selected Body-Dominant Perturbed Consolidated
Mode | Direction | Freq (Hz)| TX TY T2 RX RY RZ TR Mode | Direction | Freq (Hz)| TX TY T2 RX RY RZ TR
1 TY 120.97 0 94 0 4 0 0 0 1 Y 120.97 0 94 0 4 0 0 0
2 L2 12113 95 0 0 0 4 0 0 2 L2 121.13 95 0 0 0 4 0 0
3 RZ 31243 0 0 0 0 0 98 0 3 RZ 31243 0 0 0 0 0 98 0
4 Y 374.65 0 7 0 8 0 0 0 4 Y 373.36 0 91 0 9 0 0 0
5 ™ 373.97 81 0 0 0 8 0 0 5 L2 37414 91 0 0 0 9 0 0
6 1z 463.45 0 0 98 0 0 0 0 6 Tz 463.45 0 0 98 0 0 0 0
7 TY 695.39 0 55 0 6 0 0 0 7 Y 699.42 0 90 0 10 0 0 0
8 s 701.56 89 0 0 0 9 0 0 8 LS 701.56 89 0 0 0 9 0 0
9 RZ 833.52 0 0 0 0 0 91 0 9 RZ 833.71 0 0 0 0 0 100 0
10 TY-RX | 986.08 0 38 0 28 0 0 0 10 TY-RX | 983.97 0 58 0 42 0 0 0
1 TXRY | 93438 48 0 0 0 32 0 0 1 TXRY | 99407 60 0 0 0 40 0 0
12 1z 1020.38 0 0 80 0 0 0 4 12 Tz 1020.02 0 0 95 0 0 0 4
13 TY-RX | 1149.73 0 51 0 32 0 0 0 13 TY-RX | 1149.62 0 61 0 39 0 0 0
14 TXRY | 1166.38 | 59 0 0 0 39 0 0 1 TX-RY | 1166.38 | 59 0 0 0 39 0 0
15 Y 1200.07 0 47 0 4 0 0 0 15 Y 1210.08 0 90 2 8 0 0 0
16 L2 121950 [ 84 0 0 0 9 0 0 16 L2 121959 | 90 0 0 0 10 0 0
17 TZTR | 1266.47 0 0 65 0 0 0 14 17 TZ-TR | 1260.33 0 2 80 1 0 0 18
18 TY-RX | 1363.11 0 38 1 21 0 0 0 18 Y 1359.92 0 85 4 6 0 0 6
19 1S 1366.26 | 89 0 0 0 5 0 0 19 RXTY-TR| 1375.75 0 17 12 61 0 0 10
20 RX-TY | 1373.70 0 28 1 53 0 0 0 20 TXRY | 138147 | 70 0 0 0 30 0 0
21 RY-TX | 140203 [ 16 0 0 0 83 0 0 21 TXRY | 138715 | 41 0 0 0 59 0 0
22 TRTZ | 1433.20 0 1 29 1 0 0 34 22 TR-TZ-RX| 1415.87 0 9 31 23 0 0 37
23 Y 1419.64 0 27 3 8 0 0 3 23 TY-RX | 142253 0 74 2 23 0 0 1
38
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Comparison of Shell Body Mode Approximations
(Kinetic Energy Distribution: Generalized Guyan Reduction & Consolidated)

Perturbed "PsiF" Consolidated

Mode | Direction | Freq (Hz)| TX TY jrd RX RY RZ TR Mode | Direction | Freq (Hz) TY 1Z RX RY RZ TR
1 TY 121.02 0 94 0 4 0 0 0 1 Y 120.97 0 94 0 4 0 0 0
2 2 121.14 95 0 0 0 4 0 0 2 L2 121.13 95 0 0 0 4 0 0
3 RZ 31238 0 0 0 0 0 98 0 3 RZ 31243 0 0 0 0 0 98 0
4 TY 373.37 0 89 0 9 0 0 0 4 Y 37336 0 91 0 9 0 0 0
5 X 374.19 90 0 0 0 9 0 0 5 L2 374.14 9 0 0 0 9 0 0
6 1Z 463.50 0 0 98 0 0 0 0 6 TZ 463.45 0 0 98 0 0 0 0
7 TY 698.99 0 88 0 9 0 0 0 7 Y 699.42 0 90 0 10 0 0 0
8 L2 701.74 89 0 0 0 9 0 0 8 L2 701.56 89 0 0 0 9 0 0
9 RZ 833.72 0 0 0 0 0 98 0 9 RZ 833.71 0 0 0 0 0 100 0
10 TY-RX | 983.00 0 56 0 40 0 0 0 10 TY-RX | 983.97 0 58 0 42 0 0 0
1 TX-RY | 994.38 59 0 0 0 40 0 0 1 TXRY | 994.07 60 0 0 0 40 0 0
12 1Z 1020.47 0 0 93 0 0 0 4 12 TZ 1020.02 0 0 95 0 0 0 4
13 TYRX | 1151.88 0 60 0 37 0 0 0 13 TY-RX | 1149.62 0 61 0 39 0 0 0
14 TXRY | 1166.83 | 60 0 0 0 40 0 0 14 TX-RY | 1166.38 | 59 0 0 0 39 0 0
15 TY 1205.31 0 87 0 9 0 0 0 15 Y 1210.08 0 90 2 8 0 0 0
16 ™ 1220.14 | 89 0 0 0 10 0 0 16 ™ 121959 [ 90 0 0 0 10 0 0
17 TZTR | 126137 0 0 79 0 0 0 18 17 TZ-TR | 1260.33 0 2 80 1 0 0 18
18 TY 1344.84 0 89 0 6 0 0 1 18 Y 1359.92 0 85 4 6 0 0 6
19 L2 1367.05 | 94 0 0 0 6 0 0 19 RX-TY-TR| 1375.75 0 17 12 61 0 0 10
20 RXTY | 1379.78 0 16 1 79 0 0 0 20 TXRY [ 138147 | 70 0 0 0 30 0 0
21 RY-TX | 140383 | 16 0 0 0 83 0 0 21 TXRY [ 138715 | 41 0 0 0 59 0 0
22 TYRX | 1426.94 0 59 8 19 0 0 9 22 TR-TZRX| 1415.87 0 9 31 23 0 0 37
23 TR-TZ-TY| 1427.86 0 13 37 4 0 0 44 23 TY-RX | 142253 0 74 2 23 0 0 1

39

185




Comparison of Shell Body Mode Approximations
(Kinetic Energy Distribution: Rigid Cross-Section & Consolidated)

Perturbed "PsiFR" Consolidated

Mode | Direction | Freq (Hz)| TX TY: jrd RX RY RZ TR Mode | Direction | Freq (Hz)] TX jrd RX RY RZ TR
1 TY 121.02 0 94 0 4 0 0 0 1 TY 120.97 0 94 0 4 0 0 0
2 ™ 121.13 95 0 0 0 4 0 0 2 ™ 12113 95 0 0 0 4 0 0
3 RZ 312.38 0 0 0 0 0 98 0 3 RZ 31243 0 0 0 0 0 98 0
4 Y 373.35 0 89 0 9 0 0 0 4 Y 373.36 0 91 0 9 0 0 0
5 L2 37417 90 0 0 0 9 0 0 5 L2 37414 91 0 0 0 9 0 0
6 1z 463.50 0 0 98 0 0 0 0 6 Z 463.45 0 0 98 0 0 0 0
7 Y 698.99 0 88 0 9 0 0 0 7 Y 699.42 0 90 0 10 0 0 0
8 ™ 701.70 89 0 0 0 9 0 0 8 L2 70156 | 89 0 0 0 9 0 0
9 RZ 833.72 0 0 0 0 0 98 0 9 RZ 83371 0 0 0 0 0 100 0
10 TY-RX | 984.52 0 56 0 41 0 0 0 10 TY-RX | 983.97 0 58 0 42 0 0 0
1 TXRY | 99548 59 0 0 0 40 0 0 1 TXRY | 99407 | 60 0 0 0 40 0 0
12 Tz 1021.74 0 0 94 0 0 0 4 12 Tz 102002 ( 0 0 95 0 0 0 4
13 TY-RX | 115645 0 60 0 37 0 0 0 13 TY-RX | 114962 | 0 61 0 39 0 0 0
14 TX-RY | 117061 | 59 0 0 0 40 0 0 14 TXRY | 1166.38 | 59 0 0 0 39 0 0
15 TY 121582 | 0 90 0 7 0 0 0 15 TY 121008 | 0 90 2 8 0 0 0
16 12 122884 | 91 0 0 0 8 0 0 16 L2 121959 | 90 0 0 0 10 0 0
17 TZTR | 1268.71 0 0 82 0 0 0 16 17 TZ-TR | 126033 | 0 2 80 1 0 0 18
18 Y 137189 | 0 91 0 5 0 0 0 18 Y 135992 | 0 85 4 6 0 0 6
19 RXTY | 1391.51 0 17 1 79 0 0 0 19 |RXTY-TR| 137575 | 0 17 12 61 0 0 10
20 ™ 1391.78 | 96 0 0 0 4 0 0 20 TXRY | 138147 | 70 0 0 0 30 0 0
21 RY-TX | 141561 | 16 0 0 0 84 0 0 21 TXRY | 1387.15 | 41 0 0 0 59 0 0
22 RZ 145335 | 0 0 0 0 0 98 0 22 |TRTZRX| 141587 | 0 9 31 23 0 0 37
23 TZTR | 145368 | 0 2 59 1 0 0 36 23 TY-RX | 142253 | 0 74 2 23 0 0 1
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Appendix E. Verification of Experimental Modes (ISPE case study using SFD
modes)

Appendix E:
Verification of Experimental Modes
(ISPE case study using SFD modes)

Bob Coppolino
Measurement Analysis Corporation
15 August 2017
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Executive Summary

In view of difficulties encountered by NASA/MSFC with analysis of ISPE
modal test data, recorded on its B&K modal test system, the following
preliminary development of an objective strategy for modal test data
verification and validation was pursued. The presently defined strategy
is (1) independent of mathematical model predictions and orthogonality
checks, and (2) requires estimation of “left-hand” eigenvectors. The
second attribute may be problematic as the author employed the SFD
method of test mode estimation, which readily computes “left-hand”
eigenvectors for an estimated effective dynamic system. The user of
other well-established test mode estimators (e.g., AFPoly) are
encouraged to implement similar verification methodology that employs
“left-hand” eigenvectors.

The new verification strategy offers objective means for evaluation of
estimated modes (acceptable-to-unacceptable figures of merit) based on
properties of (a) estimated SDOF modal FRFs and (b) modal FRF
coherence factors.
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General Overview of the SFD Method
(as published in IMAC XXI, 2003)

How the SFD Method Works

‘L Eigenvectors and Residuals

Numerous variations of SFD have been defined, but not employed herein.
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Nuanced Application of SFD
(with Embedded Experimental Mode Verification)

How the SFD Method Works

Select full range of interest

[H(®)] = [V] [Hg(®)] via SVD

[He(P)] — io{uci=[A{ucH[BKF}

Not used

JJ Eigenvectors and Residuals

Experimental mode verification focuses on the effective dynamic system
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SFD Effective Dynamic System Development

* Organization of MI/MO FRF data
]

[E’n(f)] [E, (D) “shorthand”
k"’ff“ﬂ [Hffﬂ "ol = [00]- o= VO]V o)
0,0 | Eo]| Wl v ]-{v]=[1]

» Effective dynamic system (physical dof)
ospofo s b -besi
AR T BAR RN GARS Ta s

i el o] b

» Effective dynamic system (generalized dof)

v [VE]+ v IM B VE]+ v Mk Ve = v IMT[F]
|
]+ BIe]+ [KJel = [F)F
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Effective Dynamic System Verification Operations

« Effective dynamic system

e|_[-B -K[e], [T o
T S = =Bl
« Complex system modes & “model” based modal FRFs
@, ]=[®]" d, =2y, =|@; BfF}
=120 = [, Jol- =

@, Ja]o]=[A]

» Construction of experimental modal FRFs

S| He® T [ Ho (£) ]
Lj_{HG(f)/(ian)} => [h®=[o.] H, (f) /(i2nf)

hn,model = qn
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Attributes of the Modal FRFs

* Model-based FRFs, (h; noge)

— Based on exact frequency domain response of the “SFD”
effective dynamic system to unit loading, F(f)=1.
« Experimental modal FRFs (h,)

— Left hand experimental complex mode, [®,] serves as a scale
factor for combining experimental generalized FRFs, [Hg(f)] that
are linear combinations of MI/MO FRFs, [H(f)].

— The modal FRFs (h,) do not necessarily constrain experimental
data to behave as “theoretical” SDOF systems.

« Validity of experimental modes
— Objectively evaluated based on attributes of h(f) and...
— A coherence metric (defined in the next slide).
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Modal FRF and Coherence Metric

* Definition
* 2
h -h
COHn - n,m)c:del n
hn : hn s hn,model : hn,modcl

* Properties and attributes (of h,(f) and COH,)
— values 0.0<COH, <1.0
— Completely independent of TAM mass matrix (FEM model)
— Performs modal isolation reminiscent of multi-shaker tuning
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ISPE Results
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Candidate Experimental Modes 1-45

EIéiioﬂ(Nl.'GﬂM)l Evaluation Critera & Assessment
1G] (5 [Pras= (d=g | maxin] (%) [Conerence (5] s its mods?
63 21

| 2 |3as] 23 [ 2 | 182 ] sw ]| w0 ] v |
|26 |32 ] os3 [ w0 | es1 ] ase ] o ] v ]

1578 Y
0 1633 1803 33 Y

L2 | 3627 ] o3 [ s¢ ]| 1374 ] o9s | o ] v |

s [3661] os6 | a0 | 191 ] 20000 | 100 [ v |
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Candidate Experimental Modes 46-90
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Candidate Experimental Modes 91-133

Evalustion Criters &Amesment
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Candidate Experimental Modes 1-4
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Candidate Experimental Modes 5-8
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Candidate Experimental Modes 9-12
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Candidate Experimental Modes 13-16
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Candidate Experimental Modes 17-20
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Candidate Experimental Modes 21-24

ko st ey ot e T e =

18

204



Candidate Experimental Modes 25-28
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Candidate Experimental Modes 29-32
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Candidate Experimental Modes 33-36
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Candidate Experimental Modes 37-40
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Candidate Experimental Modes 41-44
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Candidate Experimental Modes 45-48
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Candidate Experimental Modes 49-52
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Candidate Experimental Modes 53-56
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Candidate Experimental Modes 57-60
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Candidate Experimental Modes 61-64
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Candidate Experimental Modes 65-68
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Candidate Experimental Modes 69-72
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Candidate Experimental Modes 73-76
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Candidate Experimental Modes 77-80
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Candidate Experimental Modes 81-84
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Candidate Experimental Modes 85-88
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Candidate Experimental Modes 89-92
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Candidate Experimental Modes 93-96
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Candidate Experimental Modes 97-100
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Candidate Experimental Modes 101-104
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Candidate Experimental Modes 105-108
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Candidate Experimental Modes 109-112

} il i S SRS —

W;saﬂ(n\l#\»dk-’w'f’\wwvv*':n ey

226

40



Candidate Experimental Modes 113-116
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