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Appendix B.  Review and Recommendations regarding NESC-RP-14-00946 
Robert N. Coppolino 

Measurement Analysis Corporation 
December 5, 2016 

 
Executive Summary 
 
Based on review of NESC-RP-14-00946, a series of recommendations are made with 
regard to finite element modeling, modal testing, and sensitivity analyses focusing on 
SLS core vehicle stage IV&V. They are: 
 
1. Include appropriate subassembly interconnection detail (joints) in the system 
dynamic model. A common deficiency in modern structural dynamic models is the 
result of naïve oversimplification of interconnecting joints between structural 
components and subassemblies. It is all too easy to simply “join” parts without provision 
for local flexibilities (e.g., riveted, bolted and welded connections). This lack of essential 
parametric flexibility commonly leads to unrealistic model adjustments that vary a 
component’s elastic modulus in order to meet IV&V goals. Incorporation of “right-sized” 
model sophistication at joints has produced satisfying results in recent projects. 
 
2. Focus on Core Vehicle Stage Target Modes. One opinion suggests that mapping 
of virtually all modes in a selected frequency band (e.g., 0≤f≤50 Hz) be measured and 
validated using standard criteria (Ref 5). This approach incurs a severe instrumentation 
penalty to map all circumferential harmonic breathing modes in the selected frequency 
band. An alternative opinion (the writer’s) suggests mapping of body modes that are 
relevant to IV&V of core vehicle stage dynamics (for all propellant loading conditions) in 
the 0≤f≤50 Hz frequency band. Adoption of the alternative opinion requires some 
rethinking of core vehicle modal testing requirements. The benefit of focus on body 
modes (a) drastically reduces the number of modes for IV&V and (b) eliminates the 
need to identify highly sensitive shell breathing modes. 
 
3. Selection of Core Stage Vehicle Target Modes. Selection of core stage vehicle 
target modes becomes an effective, systematic process when modes are categorized 
on the basis of class (lateral, axial, torsion, shell breathing, localized appendage, etc.) 
by evaluation of subassembly kinetic and strain energy distributions, directional kinetic 
and strain energy distributions, and modal effective mass.  
 
4. Extend the Empty Core Stage Modal Frequency Band. By tracking the anticipated 
natural frequencies of fully fueled and corresponding empty core vehicle stage body 
modes, the frequency band of target modes expands from 0-50 Hz to 0-170 Hz (TBR). 
The extended frequency band offers an acceptable level of assurance that target modes 
will exercise structural deformations that relate to vehicle system dynamics for the 
spectrum of flight times (propellant fill levels) within the 0-50 Hz frequency band. 
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5. Instrumentation Requirements for Core Vehicle Stage Modal Testing (the Shell). 
The response of shell breathing modes may not be totally suppressed by orienting 
applied excitation loads tangential to the shell surface (a common practice). Therefore, 
accelerometer allocation must be sufficient to separate body modes from breathing 
modes; placement of tri-axial accelerometers 90 degrees apart around the core shell 
circumference (TBR) may suffice for satisfaction of standard NASA criteria. Additional 
accelerometers (or alternative strain gage sensors) are recommended to at least 
separate shell breathing modes from body modes. 
 
6. Instrumentation Requirements for Core Vehicle Stage Appendages. Pitch, yaw, 
roll and axial dynamics of the four engine bells must be appropriately instrumented to 
discern localized motions, which may couple with overall body dynamics (lateral, axial, 
torsion) of the shell subassembly. An appropriate accelerometer array to capture LOX 
feedline structural dynamics in the frequency band of the modal test must also be 
allocated. Past experience indicates that apparent multiple or repeated body modes 
need to be mapped with local appendage accelerometers in order to (a) understand and 
separate apparently repeated mode families while (b) satisfying test mode orthogonality 
criteria. 
 
7. Core Vehicle Stage Sensitivity and Reconciliation Analysis for IV&V. At the 
present time, the SLS contractor’s parameterized variations on core vehicle stage 
modes are intended as specific, fixed candidates for correlation with modal test data. 
The modal sensitivity formulation introduced in 2002 and further refined in 2013 
provides the means to efficiently conduct concurrent sensitivity and test-analysis 
correlation (and with “luck”, optimal reconciliation) evaluations. 
 
8. The present report offers a first-cut set of recommendations by the writer. 
Further Loads and Dynamics TDT discussions and additional SLS program information 
will certainly lead to expansion and refinement of recommendations. 
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Introduction 
 
Review of NESC-RP-14-00946 indicates the following consensus: 
 

1. System models will be assembled employing Hurty-Craig-Bampton (HCB) 
components (which are commonly called modal substructures or superelements). 

2. Full-scale modal tests will be planned to map modes to about 50 Hz. 
3. Core vehicle stage modal tests will be conducted with empty propellant tanks. 
4. Employment of orthogonality, cross-orthogonality & frequency correlation criteria 

are expected to be very challenging. 
 
There appears to be a lack of consensus on the general approach to core vehicle modal 
testing, specifically: 
 

5. Should all modes or some target modes below 50 Hz (TBR) be mapped in modal 
tests? 

6. Is pressurization important in modal testing? 
7. Definition of an appropriate instrumentation array is highly dependent on (5 & 6), 

 
Conversations with Dr. Alvar Kabe indicate that the SLS contractor is building core 
stage mathematical models, which differ from one-another in parametrically sensitized 
zones. Those specific zones are sensitized by variation of basic material properties (e.g. 
elastic modulus). This commonly employed approach is (in this reviewer’s opinion) both 
naïve and physically unrealistic. A more appropriate strategy for parametric sensitivity 
focuses on uncertainty at interconnecting joints (especially between substructures and 
subassemblies). In order to enable exercise of joint sensitivities, interfaces must include 
sufficiently realistic features to include those sensitivities. 
 
It appears prudent to review the intent of IV&V from the viewpoints of separate 
engineering sub-disciplines, namely (a) flight structural loads, (b) control stability, (c) 
pogo stability, and (d) aeroelasticity. Each of these sub-disciplines requires differing 
subsets of modal information to conduct reliable engineering evaluations. It is 
noteworthy to recall that the past 60 years of space launch experience has generally 
succeeded while employing less sophisticated dynamic models than those envisioned in 
the present endeavor. 
 
Relevant Structural Dynamic Models 
 
The dynamic frequency band (0≤f≤f*) for a relevant structural dynamic model (assumed 
linear for the present) is governed by the SRS of its anticipated loading environments 
(Ref 1). Based on f* (typically 50 Hz), minimum grid spacing of structural components 
may be defined; however, employment of modern CAE tools generally produces refined 
finite element models that exceed minimum grid spacing requirements. It should be 
noted that strict adherence to engineering drawings (as emphasized in of NESC-RP-14-
00946), while avoiding ill-advised modeling liberties (often employing RBE2 & RBE3 
constraints) minimizes the occurrence of severe modeling deficiencies. 
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A common deficiency in modern structural dynamic models is the result of naïve 
oversimplification of interconnecting joints between structural components and 
subassemblies. It is all too easy to simply “join” parts without provision for local 
flexibilities (e.g., riveted, bolted and welded connections). This lack of essential 
parametric flexibility commonly leads to unrealistic model adjustments that vary a 
component’s elastic modulus in order to meet IV&V goals. Incorporation of “right-sized” 
model sophistication at joints has produced satisfying results in recent projects. 
 
The core vehicle stage presents a particular challenge for IV&V in that (a) its primary 
structure is a shell (with many shell breathing modes within the band of classically 
significant body modes), (b) propellant constitutes the majority of the system’s mass 
when it is fully loaded, and (c) core stage modal testing will be limited to the empty 
condition. Classical shell theory (Ref 2) and laboratory experience (Ref 3) indicate that 
shell breathing modes are sensitive to static pressure and weight loading as well as 
flexural stiffness of shell segment transitions and boundary conditions. The body 
modes, however, are relatively insensitive to static pressure and weight loading (the 
exceptional case occurs for balloon-type propellant tanks typical of earlier Atlas and 
Centaur vehicles). In addition, theoretical analyses (Ref 4) and past launch vehicle 
experiences strongly indicate that structural loads and system dynamics are primarily 
influenced by “body” modes (axial, lateral, torsion). While modern finite element models 
include all body and breathing modes of shell structures, it is highly recommended that 
the core stage vehicle IV&V process should focus on body modes only. 
 
Focus on Core Vehicle Stage Target Modes 
 
There are differing opinions on IV&V for the core vehicle stage: 
 

1. One opinion suggests that mapping of virtually all modes in a selected frequency 
band (e.g., 0≤f≤50 Hz) be measured and validated using standard criteria (Ref 
5). This approach incurs a severe instrumentation penalty to map all 
circumferential harmonic breathing modes in the selected frequency band. 

2. An alternative opinion (the writer’s) suggests mapping of body modes that are 
relevant to IV&V of core vehicle stage dynamics (for all propellant loading 
conditions) in the 0≤f≤50 Hz frequency band. 

 
Adoption of the alternative opinion requires some rethinking of core vehicle modal 
testing requirements. 
 
Selection of Core Vehicle Stage IV&V Target Body Modes 
 
The theoretical modes of a fixed-base core stage dynamic model with selected 
propellant fill levels may be categorized in terms of (a) sub-component kinetic and strain 
energy distributions, (b) directional kinetic and strain energy distributions, and (c) modal 
effective mass (Ref 4). Prominent body modes are readily identified by employing the 
above cited energy and modal effective mass metrics. Tracking of the frequency 
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migration of important body modes with decreasing propellant levels (using cross-
orthogonality or modal assurance criteria (MAC)) will indicate which set of empty body 
modes should be included in the target mode set. 
 
A very preliminary estimate of the target body mode frequency band results from the 
ratio of fully loaded (~2,159,000 lb) to empty (~188,000 lb) weights. The ratios of natural 
frequencies for corresponding empty and fully loaded system body modes are on the 
order of 3.4 (square root of 11.5). This increases the frequency band for empty core 
stage target modes from 50 Hz to about 170 Hz (TBR). A more refined estimate of the 
frequency range of core stage target modes for IV&V must be the result of rigorous core 
stage vehicle (mathematical model) modal tracking. It should be noted that the only type 
of body mode that should not be affected by fuel mass loading is torsion, since no 
propellant mass should be moved during pure torsion activity.  
 
A relatively simple example shell structure (taken from Ref 4) illustrates how target 
modes may roughly scale with respect to fuel level. The original model consists of a 20” 
radius, 100” long, 0.5” wall thickness aluminum shell and skirt assembly composed of 
five (5) subassemblies, as illustrated below in Figure 1. 
 

 
Figure 1: Illustrative Example Shell Structure 

 
In order to “up-scale” this example from 20” radius (40” diameter) to SLS scale, which is 
(27’ diameter), the empty shell frequencies will reduce by a length factor of 8.1. The 
empty full-scale frequencies are subsequently scaled by a reduction factor of 3.4 
(corresponding to the SLS “weight factor”); torsion modes are not subjected to the mass 
factor. Results of this process are summarized below in Table 1. 
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Table 1: Illustrative Example Base-Fixed Body Modes (with scaling) 
100% Fueled

Mode N 1/8.1 Scale Full Scale Full Scale SKIRT DOME1 SHELL DOME2 X Y Z X Y Z RX RY RZ
1Y 1 122.21 15.09 4.44 1.1 1.4 46.7 50.8 0.0 96.2 3.8 61.6 98.4
2X 1 122.21 15.09 4.44 1.1 1.4 46.7 50.8 96.2 0.0 3.8 61.6 98.4

11T 0 316.86 3.9 5.7 64.6 25.8 50.0 50.0 0.0 82.1
14Y 1 377.59 46.57 13.70 11.9 35.6 36.6 16.0 0.0 91.0 8.9 29.8
15X 1 377.62 46.57 13.70 11.9 35.6 36.6 15.9 91.1 0.0 8.9 29.8 0.4
24Z 0 469.44 57.75 16.99 3.4 7.3 52.7 36.6 0.4 0.4 99.1 80.8
49Y 1 708.88 87.24 25.66 3.1 36.9 41.0 18.9 0.5 89.9 9.6 1.0 0.0
50X 1 709.27 87.24 25.66 3.1 37.0 41.2 18.7 90.1 0.5 9.4 1.0 0.0
65T 0 860.54 16.4 31.7 29.5 22.4 50.0 50.0 0.0 9.2
76Y 1 1005.70 123.15 36.22 17.5 18.9 51.1 12.6 1.8 61.3 36.9 0.4 0.3
77X 1 1011.50 123.15 36.22 18.4 18.4 52.3 10.9 63.3 1.9 34.8 0.5 0.3
86Z 0 1036.20 127.15 37.40 7.7 51.9 13.6 26.9 7.7 7.7 84.6 7.7
99Y 1 1183.30 144.40 42.47 27.4 15.6 30.1 26.9 3.0 57.3 39.7 1.6 0.0
100X 1 1189.60 144.40 42.47 28.0 15.5 31.1 25.4 56.0 2.9 41.1 1.6 0.0

Directional                
Kinetic Energy (%)

Modal Effective Mass (%)

38.92

103.87

Frequency (Hz)
Empty

Component Kinetic Energy (%)

 
 
The mode numbers in the first column are associated with 14 body modes out of a total 
of 100 modes (all modes that are not listed are associated with shell breathing). The 
letter after each body mode number designates the body mode type (Y, X represent 
lateral bending, T represents torsion, and Z represents axial). Plots of four body modes 
are illustrated below in Figure 2. 
 

 
Figure 2: Illustrative Example Body Modes 

 
Note that modes 24Z and 86Z may be significant for a hypothetical Pogo stability 
evaluation. Based on examination of the frequency shifts in lateral and axial body 
modes, it is clear that empty structure body modes in the 0≤f≤50 Hz frequency band are 
not representative of important fuel-loaded body modes in the same frequency band. 
 
The illustrative example shell structure offers rationale for (a) selection of target IV&V 
modes, and (b) expansion of the modal test frequency band to include significant 
hydroelastic modes. In addition, elimination of shell breathing modes from the target 
mode set, simplifies prospects for satisfaction of test-analysis correlation goals (Ref 5). 
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Instrumentation Requirements for Core Vehicle Stage Modal Testing (the Shell) 
 
The response of shell breathing modes may not be totally suppressed by orienting 
applied excitation loads tangential to the shell surface (a common practice). Therefore, 
accelerometer allocation must be sufficient to separate body modes from breathing 
modes. A recently published paper (Ref 6) introduces an extended RKE strategy for 
allocation of accelerometers and development of a TAM mass matrix for orthogonality 
and cross-orthogonality calculations (to satisfy Ref 5 standards). However, additional 
accelerometers (or alternative strain gage sensors) are recommended to at least 
separate shell breathing modes from body modes. An array of the type illustrated below 
in Figure 3 provides a way forward for effecting separation of shell breathing and body 
modes. 

 
Figure 3: Accelerometer Array for Illustrative Example Shell Structure 

 
The tri-axial accelerometer locations denoted by red circles (90 degree circumferential 
separation) correspond to the allocation deemed prudent for mapping of body modes 
(employing an opportune reduction transformation for body modes). The additional blue 
point tri-axial accelerometer (or NASA AFRC type fiber optic strain string) bands 
correspond to additional arrays, which are intended to identify the presence of shell 
breathing modes (to be eliminated from the measured target mode set). 
 
Instrumentation Requirements for Core Vehicle Stage Appendages 
 
On the assumption that the propellant tank and intertank subassemblies will be 
instrumented following the above recommendations, there are additional practical 
matters that should be addressed related to appendages (e.g., engines, long LOX 
feedline). General construction of the core vehicle stage is illustrated below in Figure 4. 
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Figure 4: Core Vehicle Stage Construction 

 
Pitch, yaw, roll and axial dynamics of the four engine bells must be appropriately 
instrumented to discern localized motions, which may couple with overall body 
dynamics (lateral, axial, torsion) of the shell subassembly. In addition, the long LOX 
feedline (empty) may be subject to localized flexural and axial dynamics that couple with 
the shell subassembly. An appropriate accelerometer array to capture LOX feedline 
structural dynamics in the frequency band of the modal test must be allocated. Past 
experience (e.g., automobile modal testing, Ref 7) has indicated that apparent multiple 
or repeated body modes need to be mapped with local appendage accelerometers in 
order to (a) understand and separate apparently repeated modes families while (b) 
satisfying test mode orthogonality criteria. 
 
Core Vehicle Stage Sensitivity and Reconciliation Analysis for IV&V 
 
Conversations with Dr. Alvar Kabe indicate that the SLS contractor is building core 
stage mathematical models, which differ from one-another in parametrically sensitized 
zones. Those specific zones are sensitized by variation of basic material properties (e.g. 
elastic modulus). This commonly employed approach is (in this reviewer’s opinion) both 
naïve and physically unrealistic. A more appropriate strategy for parametric sensitivity 
focuses on uncertainty at interconnecting joints (especially between substructures and 
subassemblies). In order to enable exercise of joint sensitivities, interfaces must include 
realistic enough features to include those sensitivities. 
 
At the present time, the SLS contractor’s parameterized variations on Core Vehicle 
Stage modes are intended as specific candidates for correlation with modal test data. 
The modal sensitivity formulation introduced in 2002 (Ref 8-9) and further refined in 
2013 (Ref 10) provides the means to efficiently conduct concurrent sensitivity and test-
analysis correlation (and with “luck”, optimal reconciliation) evaluations.  
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The key to the sensitivity formulation is collection of baseline model and individual 
parametric variants (finite change in regions of a system, e.g., group of joints), as 
described by the sensitized dynamic equation set, 
 

     0uKpKuMpM
N
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ii0

N

1i
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



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






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                (1) 

 
When all “pi” are null, the system is “baseline”. The low frequency undamped modes of 
the baseline system are solutions of the eigenvalue problem 
 
        0MK L0L0OL0O                (2) 
 
Definition of residual vectors describing parametric variations in Equation 1 is 
accomplished utilizing the lowest frequency mode shapes of the baseline structure as 
well as the lowest mode shapes associated with each independent alteration of the 
structure 
 
        0MpMKpK iLiLiiOiLiiO    (for i=1,…,N),          (3) 
 
where ip is a finite (rather than infinitesimal parametric perturbation). An initial set of trial 
vectors that redundantly encompass all low frequency altered system mode shapes is 
 
   NLL2L1 ...                 (4) 
 
The redundant set of trial vectors is reduced to a linearly independent “modal” set,  OL , 
by following the methodology described in Ref 9.     OLOL  is the trial vector set 
(sensitivity vectors) to be used for expansion of measured operating deflection shapes. 
 
It is of interest to note that the resulting approximate generalized sensitivity model (that 
may be employed in a more complete system identification exercise) is 
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 ,           (5) 

where the reduced stiffness and mass matrix components are 
 
   OLO

T
OLO Kk  ,    OLO

T
OLO Mm  ,    OLi

T
OLi Kk  ,    OLi

T
OLi Mm         (6) 

 
The low frequency physical modes for the altered dynamic system are recovered using 
the relationship 

     OLL                     (7) 
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Further operations, successfully employed in modal tests (e.g., Ref 7) have resulted in 
post-test system models (with specific parameter values) that closely agree with modal 
test data. 
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Appendix C.  Evaluation of ISPE Model Sensitivities 
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Appendix D.  Consolidation of Body Modes for an “Axisymmetric” Shell 
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Appendix E.  Verification of Experimental Modes (ISPE case study using SFD 

modes)  
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