

# Wall Modeled Lattice Boltzmann and Navier-Stokes Approaches for Selected RCA Cases

Cetin Kiris, Gerrit Stich, Jeffrey Housman, Michael Barad, and Joseph Kocheemoolayil Computational Aerosciences Branch NASA Ames Research Center

CFD Prediction Assessment Workshop, March 20-22, 2018

# Outline



### ✓ Motivation

### ✓ Computational Methodology and Framework

- Structured Overset Curvilinear
  - Hybrid RANS/NLES, DDES, ZDES Mode 3
- Cartesian Lattice Boltzmann Method (LBM)

### ✓ NASA RCA propulsion case

- Round Jet SP7
  - uRANS, DDES, Hybrid RANS/NLES

### ✓ NASA RCA separated flow case

- 2-D NASA Hump
  - RANS, DDES, Zonal DES Mode 3
  - Lattice Boltzmann Method

### ✓ Summary and Future Work

# Motivation



- ✓ Increase predictive use of computational aerosciences capabilities for next generation aviation and space vehicle concepts.
  - The next frontier is to use wall modeled and/or wall resolved large-eddy simulation (LES) to predict:





# **Computational Grid Paradigms**







#### Computational Methodology: Structured Curvilinear Overset



- 3-D Structured Curvilinear Overset Grid Solver
- ✓ Spalart-Allmaras turbulence model (baseline turbulence model)

Low-Dissipation Finite Difference Method (Housman et al. AIAA-2016-2963)

- ✓ 4th-order Hybrid Weighted Compact Nonlinear Scheme (HWCNS)
- ✓ Numerical flux is a modified Roe scheme
- ✓ 4<sup>th</sup>/3<sup>rd</sup>-order blended central/upwind biased left and right state interpolation
- $\checkmark$  2<sup>nd</sup>-order accurate differencing used for time and viscous flux discretization

#### Hybrid RANS/LES Models

- ✓ Delayed Detached Eddy Simulation (DDES) model with modified length scale (Chauvet at al. AIAA J. 2007, Shur et al. 2015, Housman et al. AIAA-2017-0640)
- Zonal Detached Eddy Simulation (ZDES-Mode3) with user selected RANS, LES, and Hybrid RANS LES zones. (*Deck, S. Theor. Comput. Fluid Dyn. 2012*)
- ✓ Zonal RANS-NLES (numerical LES) with user selected zones of URANS, NLES, and walldistance based hybrid RANS-NLES (*Housman et al. AIAA-2017-3213*)

Synthetic Eddy Method (SEM) (Jarrin et al. Int. Journal of Heat and Fluid Flow 30)



- Entropic Multi-Relaxation Time (EMRT)
- Regularized BGK
- LES Model: Smagorinsky sub-grid-scale
- Wall Models: Tamm-Mott-Smith boundary condition, filter-based slip wall model, or traditional equilibrium wall stress model
- Parallelization:
  - Structured adaptive mesh refinement
    - Fine-fine for communication within levels
    - Coarse-fine for communication across levels
    - Efficient parallel I/O
- Multi-Resolution with Recursive Sub-Cycling
- Boundary Conditions:
  - No-slip and slip bounce back walls
  - Accurate and robust curved walls
  - Inflow/outflow. and periodic



#### Recent LAVA Cartesian Lattice-Boltzmann Success: Landing Gear from AIAA BANCIII Workshop (problem 4)



"Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions", Barad, Kocheemoolayil, Kiris, AIAA 2017-4404

Mach = 0.166 Re = 66423 (D=D<sub>strut</sub>) U<sub>ref</sub> = 58.32 m/s T<sub>ref</sub> = 307.05 K P<sub>ref</sub> = 98605 Pa





https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN\_files\_/BANCIII.htm 10

## **Round Jet – Experimental Setup SP7**



- Experiment performed by Bridges and Wernet using the Small Hot Jet Acoustic Rig (SHJAR) at NASA Glenn
- ✓ Baseline axisymmetric convergent Small Metal Chevron (SMC000) nozzle at Set Point 7 (SP7)
- ✓ Nozzle axis in downstream flow direction is marked as 180°

| Bridges et. al. (NASA-TM-2011-216807)     | SP7                      | PIV measurement device |
|-------------------------------------------|--------------------------|------------------------|
| Acoustic Mach number $U_{jet}/c_{\infty}$ | 0.9                      |                        |
| Jet temperature ratio $T_e/T_\infty$      | 0.835                    |                        |
| Nozzle pressure ratio $p_t/p_{\infty}$    | 1.861                    |                        |
| Nozzle Diameter D                         | 0.0508 [m]<br>2.0 [inch] |                        |
| Reynold number Re <sub>D</sub>            | 1 Million                |                        |
| Reynolds number $\text{Re}_{\tau}$        | 800                      |                        |
| Boundary layer thickness                  | 0.0128 D                 |                        |

Similar conditions were analyzed in Bres *et. al.* AIAA-2015-2535, but the boundary layer thickness is 5.5 times smaller in this study

## **Round Jet - Objective & Metrics**



| solver                 | x/D <sub>j</sub> [-] | Error [%] |
|------------------------|----------------------|-----------|
| Bridges & Wernet       | 7.8                  | -         |
| Wind, RANS-SA-2D       | 6.84                 | -12.3     |
| Wind, RANS-SST-2D      | 9.01                 | 15.5      |
| lava, urans-sa-3D      | 7.22                 | -7.5      |
| LAVA, RANS-NLES-SEM-3D | 7.90                 | 1.2       |

#### **Objective:**

 Improvements in prediction of jets (including developing region, the effect of compressibility, and the effect of temperature).

### Metrics:

- ✓ Length of the potential core (where u/U<sub>iet</sub> = 0.98)
- ✓ Value and location of the peak turbulent kinetic energy on 89.6%
  - improvement s
  - Reynolds stress fields

## **Round Jet - Objective & Metrics**



✓ Mean velocity field at locations downstream of nozzle exit shifted by 1.2

## **Round Jet – Structured Overset Grid**





- ✓ Coarse (28 M) and Refined (106 M) grid point meshes were generated
- ✓ Seven point overlap
- ✓ No orphan points
- ✓ Minimum stencil quality 0.9
- Localized circumferential refinement at specified axial and radial locations



## **Round Jet - Computational Results**



### **Round Jet – Near-Field Results**



### Round Jet – Far Field at 100D



# NASA 2-D Hump – Experimental Setup

- NASA
- Assess ability of CFD solvers to predict flow separation from a smooth body (caused by adverse pressure gradient) as well as subsequent reattachment and boundary layer recovery.



- ✓ Experiments described in Detail in Greenblatt<sup>1</sup> and NASA CFDVAL 2004 Workshop<sup>2,3</sup>.
  - ANS known to perform poorly.
- Eddy-resolving methods have been successfully applied.

<sup>1</sup> Greenblatt et. Al. "Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction". AIAA Journal, vol 44, no. 12, pp. 2820-2830, 2006

<sup>2</sup> Rumsey C, "Turbulence Modeling Resource", <u>https://turbmodels.larc.nasa.gov</u>

<sup>3</sup> Rumsey C, "CFD Validation of Synthetic Jets and Turbulent Separation Control", http://cfdval2004.larc.nasa.gov

# NASA 2-D Hump – Experimental Setup

- NASA
- Assess ability of CFD solvers to predict flow separation from a smooth body (caused by adverse pressure gradient) as well as subsequent reattachment and boundary layer recovery.

#### Wall-resolved LES:



✓ Uzun, A. and Malik, M. (AIAA 2017-5308)

#### Wall-modeled LES:

✓ Iyer, P. and Malik, M. (AIAA 2016-3186)

#### Lattice Boltzmann Methods:

✓ Duda, B. and Fares, E. (AIAA 2016-1836)

<sup>1</sup> Greenblatt et. Al. "Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction". AIAA Journal, vol 44, no. 12, pp. 2820-2830, 2006

<sup>2</sup> Rumsey C, "Turbulence Modeling Resource", <u>https://turbmodels.larc.nasa.gov</u>

<sup>3</sup> Rumsey C, "CFD Validation of Synthetic Jets and Turbulent Separation Control", http://cfdval2004.larc.nasa.gov

## NASA 2-D Hump



- ✓ Mach = 0.1 ; chord C = 0.42 [m] ;  $\text{Re}_{\text{C}}$  = 936,000 ;  $\text{T}_{\text{ref}}$  = 298.3 [K]
- ✓ Top wall contoured to mimic side-wall effect
- ✓ Experimental data at locations marked below available





# NASA 2-D Hump – LAVA RANS Validation



- Consistent convergence to a mesh refined solution is observed in each of the quantities
- ✓ Under prediction of C<sub>p</sub> in the separated flow region and over prediction of the reattachment length is consistent with the SA results for CFL3D, FUN3D, and OVERFLOW (reported on the TMR)
- ✓ RANS solvers typically over predict bubble size by 35%





### NASA 2-D Hump – Application of Delayed DES (SA)



- ✓ Upstream of the separation point the SA-DDES results fall on-top of the SA-RANS results indicating the attached boundary layer is staying in RANS mode as expected.
- ✓ SA-ZDES-Mode3 shows slightly lower skin friction upstream of the bump
- ✓ Downstream of the separation point SA-DDES shows a shallow reattachment region with the larger separated flow region reattaching near the SA-RANS result.
- ✓ The separated flow region is very well-predicted using the SA-ZDES-Mode3 with almost no difference between the experiment and the computation

### NASA 2-D Hump – Application of Delayed DES (SA)











<sup>1</sup> Uzun, A. : https://turbmodels.larc.nasa.gov/Other\_LES\_Data/nasa\_hump\_uzun\_2017.html





- ZDES (11.3m) compares well with wall resolved LES<sup>1</sup> (420m) and experiment.
- The skin-friction is under-predicted in the upstream attached BL
- Very good agreement in the reattachment location
- Noticeable log-layer mismatch in the upstream BL profile



✓ Wall resolved LES mesh has 420m points, ZDES 11.3m points

29

### NASA 2-D Hump – Hybrid RANS-LES







- ✓ Lattice: D3Q27
- ✓ Collision Model: EMRT
- ✓ Synthetic Eddy Method with scaled DNS Flat plate Data at x/c = -3.0



- ✓ Synthetic eddy method created realistic turbulent structures
- ✓ Initial run without included top-wall to simulate side-wall effects

 Local as well as adaptive mesh refinement well tested in our Cartesian framework.





- Total of 5 Levels with
- ✓ Refinement ratio of 2
- ✓ Level 3 in regions of high vorticity
- ✓ Level 4 on all viscous walls
- ✓ Level 5 from x/c = -0.2 to 1.3
- ✓ 105 million points
- ✓ Spanwise extend 0.2 chord
- ✓ dy<sup>+</sup> ≈ 50 in wall normal direction



✓ Further improvement in coarse fine interface operation necessary





✓ Further improvement in coarse fine interface operation necessary

# Summary



#### **Overset Curvilinear:**

- ✓ Excellent agreement with state-of-the-art wall-resolved LES (Uzun) for Hump achieved with a significant smaller mesh (11.3M ZDES vs 420M WR-LES).
- ✓ DDES over-predicts the shear-layer strength and causes a spurious inner-layer attached region for Hump and delays development of 3D structures at nozzle exit.
- ✓ Some sensitivity to interface height for ZDES Mode 3 has been observed.

#### **Cartesian Lattice Boltzmann:**

- ✓ Hump case has proven to be very challenging on a Cartesian mesh, accurate wallmodel crucial for accuracy and efficiency.
- Coarse-Fine interface very sensitive at higher Reynolds-number, conservative interface necessary.
- ✓ Good agreement achieved once coarse-fine interface was improved and enough grid resolution was provided.

#### Future work:

- ✓ Add sensor to determine local boundary layer thickness for defining the interface location in ZDES Mode 3.
- Further enhance wall-models in LBM implementation for higher Reynolds-numbers, e.g. filtered wall-model and equilibrium wall model.
- ✓ Add higher order accurate coarse-fine interface operations.
- Implement a hybrid RANS-LBM model to add modeled stress in highly under resolved regions.

# Acknowledgments



- ✓ This work was partially supported by the NASA ARMD's Transformational Tools and Technologies (T^3) and Advanced Air Transport Technology (AATT) projects
- ✓ LAVA team members in the Computational Aerosciences Branch at NASA Ames Research Center for many fruitful discussions
- ✓ Tim Sandstrom (optimized ray-tracing kernels, and particle visualizations) NASA Ames Research Center
- ✓ Computer time provided by NASA Advanced Supercomputing (NAS) facility at NASA Ames Research Center

## **Questions?**



