AAS 18-131

SLS MODEL BASED DESIGN: A NAVIGATION PERSPECTIVE

T. Emerson Oliver,” Evan Anzalone,t Thomas Park#, and Kevin Geohagan §

The SLS Program has implemented a Model-based Design (MBD) and Model-
based Requirements approach for managing component design information and
system requirements. This approach differs from previous large-scale design ef-
forts at Marshall Space Flight Center where design documentation alone con-
veyed information required for vehicle design and analysis and where extensive
requirements sets were used to scope and constrain the design. The SLS Naviga-
tion Team is responsible for the Program-controlled Design Math Models
(DMMs) which describe and represent the performance of the Inertial Navigation
System (INS) and the Rate Gyro Assemblies (RGAS) used by Guidance, Naviga-
tion, and Controls (GN&C). The SLS Navigation Team is also responsible for
navigation algorithms. The navigation algorithms are delivered for implementa-
tion on the flight hardware as a DMM. For the SLS Block 1B design, the addi-
tional GPS Receiver hardware model is managed as a DMM at the vehicle design
level. This paper describes the models, and discusses the processes and methods
used to engineer, design, and coordinate engineering trades and performance as-
sessments using SLS practices as applied to the GN&C system, with a particular
focus on the navigation components.

NASA is designing and building the Space Launch System (SLS), an evolution of launch vehi-
cles to enable the next era of human exploration of space.»? NASA is currently in the process of
verifying and building the Block 1 Launch Vehicle and designing the next evolution Vehicle, Block
1B. In the design of these new launch vehicles, the SLS Program has implemented a model based
design approach. This paper describes implementation of a program driven systems engineering
and integration (SE&I) approach. The purpose of this paper is not to debate or interpret how MBD
should be implemented, but rather to describe how it has been implemented by the SLS Navigation
Team. This paper will identify the merits of this approach, and provide some key lessons learned.

SLS was built on the Constellation Program (CxP) but it is a very different program with more
efficient design practices and a different SE&I approach. The SE&I approach is described in great
detail by Hutt et. al.> SLS emphasizes efficiency in requirements development and decomposition.
As evidence of this, the Ares | project had five levels of requirements decomposition between the
requirement for a launch vehicle with a specified insertion target and the inertial hardware specifi-
cation. In contrast, the SLS program equivalent includes three levels with an increased level of
design insight. Between the two programs, entire levels of functional requirements were decided
to be unnecessary and thus were eliminated in the implementation of the SLS Program. Dissimilar
to CxP and the Space Shuttle Launch Program (SSLP), SLS requirements are not intended to fully

* SLS Navigation Lead, EV42 Guidance, Navigation, and Mission Analysis Branch, ESSCA/Dynamic Concepts, Inc. Huntsville, AL 35806.

T PhD, Aerospace Engineer, EV42 Guidance, Navigation, and Mission Analysis Branch, NASA/MSFC, Huntsville, AL 35811.

1 PhD, Aerospace Engineer, EV42 Guidance, Navigation, and Mission Analysis Branch, ESSCA/Dynamic Concepts, Inc. Huntsville, AL 35806.
5 Aerospace Engineer, EV42 Guidance, Navigation, and Mission Analysis Branch, ESSCA/Jacobs. Huntsville, AL 35806.

describe the vehicle design but rather exist to constrain key design features with a high sensitivity
to mission success and to facilitate a complete and thorough verification plan.

SLS design emphasizes the use of heritage hardware from SSLP, CxP, and other US launch
vehicle systems. Hutt, Hanson, and Whitehead imply that given the selection of heritage hardware
it is redundant to fully describe that hardware in requirements space.® The effort is better spent on
characterizing the hardware, incorporating the knowledge gained from characterization into the
design, and identifying key components which should be modified and/or verified.

A simplistic interpretation of the SLS program hierarchy is: Level | defines the vehicle and
mission objectives, Level |1 is responsible for the integration and integrated systems such as GN&C
and Integrated Avionics, and Level I11 consists of the elements responsible for managing the Prime
Contractors and providing the component hardware that comprises the integrated vehicle. At the
Program and Chief Engineer level, the delineation of responsibility between the levels is clear.
Guidance, Navigation, and Controls (GN&C) is an integrated vehicle function. Assuch, SLS Nav-
igation is a Level Il integrated vehicle function. However, unlike Guidance for instance, Naviga-
tion has significantly more reliance on vehicle avionics and interfaces. This is particularly true on
SLS where Navigation has the responsibility of managing all GN&C sensor redundancy function-
ality and interfaces including those used in the integrated navigation solution and not. Further,
Navigation, as a discipline, uniquely contains the insight for the definition, specification, and mod-
eling of navigation hardware. For this reason, the delineation of Navigation as completely belong-
ing to Level Il is peculiar and provides rationale for why SLS Navigation supports both Level Il
and Level Ill. Described below are models developed or seeded by SLS Navigation.

The models that control the design are denoted as Design Math Models (DMM). A DMM is a
physical, mathematical, or otherwise logical representation of a system entity, phenomenon, or
process.* A DMM is not specific to programming language. DMMs are implemented in a media
convenient for the developer and user. The program controlled DMMs are subject to the flight
certification process. The models must adhere to a model development, verification, and validation
process that ensures they are adequate for design. Further, the models must be verified and vali-
dated to show that they adequately emulate the hardware or are otherwise of sufficient fidelity to
emulate the subject being modelled.® Some of the benefits of the MBD approach to the SLS Pro-
gram are detailed by Hanson.*

Requirements are primarily levied at the Level interfaces with respect to their responsibility to
the Program. In general, Level | levies design objectives onto Level Il, Level Il levies vehicle
hardware requirements onto Level 111, and Level 111 levies component requirements onto hardware
suppliers. Models are developed which explicitly describe the design and act as the systems engi-
neering version of a transfer function between Level interfaces. Exceptions occur when design
objectives or model behavior show high sensitivity to lower level model parameters or functions.
Processes exists to elevate these exceptions.*

In theory, the Program Levels do not impose requirements on themselves. As an example,
GN&C is part of Vehicle Management (VM), and GN&C develops the GN&C Model containing
GN&C algorithms. The GN&C Model is implemented into the MAVERIC Model, a 6DOF vehicle
simulation, with other component models. MAVERIC is used to show that VM (Level I1) vehicle
insertion accuracy requirements are met. GN&C does not decompose Guidance and Navigation
accuracy from the vehicle insertion accuracy into requirement space, nor is there a strong justifica-
tion to formally verify the navigation accuracy separate of the vehicle target accuracy requirement.
That said, the rigor is not lost, but rather shifted to the model definition, verification, and validation.

The three sections below describe three models developed, or developed in part, by SLS Navi-
gation. The first is the GN&C Model. Navigation is a contributor to the GN&C Model which is
delivered to Flight Software (FSW) for implementation on the Flight Computers (FC). The second
is the Inertial Navigation System Performance Model. The Inertial Navigation System (INS) Per-
formance Model is developed, verified, and validated by the SLS Navigation Team for the SLS
Stages Element, Level IIl. Level Il Navigation integrates the INS Performance Model into
standalone analysis tools and into MAVERIC for GN&C Model and vehicle performance require-
ments verification. The third model discussed is the GPS receiver Model. This is a new DMM for
the evolved Block 1B vehicle design. SLS Navigation developed the initial framework for the
model containing initial design assumptions associated with the performance and operation of the
GPS receiver. The seed model was delivered to Level 111 Stages to convey initial assumptions and
expected model form and function for use by the EUS Prime Contractor. Going forward, the EUS
Prime Contractor will assume responsibility for updating, verifying, and validating the model
against SLS GPS receiver hardware.

GN&C MODEL AND NAVIGATION SUB-MODEL

On the Ares | project under CxP, GN&C developed algorithms, implemented those algorithms
in code for analysis, and then re-interpreted the implemented algorithms into a document which
was used to develop FSW requirements and detailed design documents, from which code was de-
veloped for implementation on the FCs as FSW. Early in the development of SLS, GN&C and
FSW were asked if they could define a more efficient approach with reduced requirements, verifi-
cation, and systems engineering overhead. A new model based approach was piloted. The ap-
proach centered on the fact that the GN&C team was comprised of individuals that knew how to
write C/C++ code and were already doing so for vehicle level analysis but without a strict set of
coding standards or in a form that was readily portable. The solution was the use of a GN&C
Model which would be developed to represent the design in a form that was directly usable by
FSW. FSW then reviews the executable code and recommends changes back to GN&C. Following
the integration effort, the resultant code is made suitable for implementation as FSW and used in
GN&C analysis tools. The result of the pilot was a significantly more efficient method of advanc-
ing the design from GN&C designers to FC implementation with a common model. The process
is illustrated by Figure 1. Development and verification of the GN&C design, represented by the
GN&C model, occurs in simulation. The model is refined through integration between GN&C and
FSW. Validation occurs after implementation within FSW in HWIL testing in the Systems Inte-

gration Laboratory (SIL).
Flight Sofmnn-/ﬂ.
* SIL

o

\ehicle

Flight Code

L

GN&C
Analysis
Tools

Figure 1: GN&C Common Model Illustration.

In order to convey the intent of the design, aid in review, and to maintain the rigor required for
FSW and vehicle certification, a number of supplemental products were developed. First, the
GN&C Model is delivered with a set of technical memorandums which describe the design and

interface assumptions. Second, a comprehensive set of unit test cases, developed from simulation,
accompanies the code to support proper implementation and test requirements development. Soft-
ware requirements are still developed, but they are developed for the primary purpose of ensuring
correct implementation and for defining FSW test and verification objectives versus fully defining
the design. Hardware integrated closed loop testing is also supported with GN&C in an insight role
and through the development of test appropriate success metrics. Third, the GN&C Model is de-
livered with a list of input and output variables, including those intended for telemetry. The inter-
face is explicitly defined in code along with the GN&C parameters which drive the execution of
the algorithms.

The purpose of the GN&C software is to fly the vehicle autonomously from liftoff to core stage
Main Engine Cut-Off (MECO). The GN&C system is designed to provide vehicle stability, navi-
gation solution, and guidance to the insertion target. The algorithms also provide data used during
flight such as that used for abort trigger determination logic, sensor data quality information, and
in separation events sequencing. Data pertinent to flight reconstruction is also supplied by GN&C
algorithms through telemetry. Also provided by GN&C algorithms is a MECO command used to
initiate Core Stage engine shutdown and upper stage separation timing, data for abort triggers and
abort decisions, sensor data quality, and telemetry data.

FSW interfaces to GN&C
Navigation Output
*NAV.out

INS State (p,v,q)

RINU Nav State Data Navigated Inertial State

*INS_SENSOR

sensorToNav_ins()

State Derived Auxiliary
> Quantities
INS Measurement computeStateDatal)
(dv,d6)
Transformation

sensorToNav_ins()
Segs:;r"?:ta [’{ RGA Selection Filter } *{ Rate Down Sampling
sensorsDQ) sensorRM_RGA() computeStateData()

RGA Measurement

Auxiliary Nav Variables
(Crew Display Variables)

»| INSMeasurement Data
NavSystem Time
(t_nav)

*INS_SENSOR

RGA Angular Rate Data
(per location)

RGA Measurement Data

I
1
I
1
I
1
1
1
RINU Instrumentation Data I
I
I
1
I
1
I
1

*AFTRGA_SENSOR(] — Transformation >
*FWDRGA_SENSOR][] sensorToNav_rgaf)
L sls_nav_sal.cpp
I-----_----_-_-_-_-_-_--l R]’\"\:ii:;:“ RINU Table Load
H ECEF Position | P (RxSA 27)
RINU Site RN to-ECEF | | eivURx SA 3, Words 3-
(lat, long,alt) 1 fe_rinu_init_PEceff) “)' 1
I
! | RINU Initialization
1 1 Message —
J Inertial TOD Epoch RINU TOD Epach 1 (RxSA3) WLl Nf:vxzdz: i:;'cam"
Approx. Launch Time JI-> fe_rinu_init_TODepoch() |—»| (RINURx SA 3, Words 1 fo_rinu_ check_NauModeTransition()
; fc_eop_model() 20-22) 1
1 fc_riny_lib.cpp_!
_____________________ - GCA Convergenice Check
Other Site Paramet
FSW: RINU Manager FSW: RINU Manager

Figure 2: SLS Block 1 Navigation FSW Diagram.

The Navigation section of the integrated GN&C software is responsible for the state and state-
derived data used by GN&C. This includes the processing and validating of data from the hardware
managers associated with the Redundant Inertial Navigation Unit (RINU) and each Rate Gyro As-
sembly (RGA). The navigation code includes Sensor Data Quality (SDQ) algorithms responsible
for the selection of specific RGA channels and checking the health and status of the RINU. The
SDQ algorithms fill the role of redundancy management for the redundant RGA channels and en-
sure the quality of the measurements for additional fault tolerance down-stream of the navigation
software and the use of the measurements in aborts logic. The navigation software is responsible
for calculating the current state of the vehicle in terms of position, velocity, attitude, and other
trajectory parameters for use in both the Controls and Guidance sections of the integrated GN&C

software. The navigation code is also responsible for computing several parameters for telemetry
and crew displays. Additionally, the navigation code contains algorithms that, while not executing
cyclically in the GN&C partition, are responsible for generating data used to initialize the RINU,
as well as handle Fault Detection, Isolation, and Reconfiguration (FDIR) parameter loads. The
RINU initialization code ensures that the error in the inertial navigation frame and the inertial frame
assumed in the Guidance targets is minimized. The FDIR parameters, loaded during pre-launch,
ensure proper operation of sensor redundancy within the RINU. An implementation-centric picto-
rial representation of the Navigation portion of the GN&C Model for the Block 1 vehicle is shown
in Figure 2. For Block 1, unaided inertial navigation is used to track the vehicle state.® For Block
1B, the model is expanded to include aided inertial navigation and the associated interfaces and
functional components.’

INS MODEL FRAMEWORK

One of the primary hardware models used by SLS Level Il Navigation is the Redundant Inertial
Navigation Unit (RINU) Performance Model, sometimes referred to as the Inertial Navigation Sys-
tem (INS) Performance Model. This DMM was developed to support GN&C Model development,
navigation analysis, 6-DOF analysis, and Independent Verification and Validation (IV&V). Early
in the SLS design process, the INS Model was chosen to pilot the MBD concept for component
hardware employed on SLS. The implementation of the DMM concepts resulted in a reduction of
230 potential requirements which would have necessitated verification at the VM Level.> Further,
the change resulted in reduced ambiguity in the specification, an extraordinarily high level of in-
sight into the hardware design, and a forum for which to discuss and negotiate design details and
data products with the hardware supplier.

In lieu of the Navigation Team specifying detailed inertial instrument and navigation system
requirements, the requirements structure was simplified to only specify and verify the interface
required by GN&C and the gross performance, treating the model in a “black box” fashion, illus-
trated in Figure 3. Key performance parameters include the specific interface comprised of data
guantities and rates, navigation performance, coordinate frame definitions and alignment toler-
ances, and measurement frequency response characteristics. The performance was specified along
a reference trajectory, consistent with an early SLS reference mission, and accuracy constraints on
the interface. The error dynamics of an inertial navigation system are well known. By specifying
performance in terms of integrated performance along with defining the dynamics, it is not neces-
sary to maintain the individual error terms as requirements given that the general error dynamics
are well known and the detailed error dynamics required for design will be explicitly described in
the DMM. Even gyrocompassing accuracy (initial alignment) can be constrained through the al-
lowable error in the insertion plane at the end of a reference trajectory. Likewise, an acceptable
frequency response envelop was specified to ensure a clean low-band response for flight control
and adequate anti-aliasing on non-navigation measurements.

INS Model

Vehicle Position Estimate
Vehicle Velocity and Rate Estimate

Vehicle Dynamics Body to Navigation Quaternion
—_—

INS Function

Fully compensated, Nav quality, AV and A©
(Element Provided) >

Mode Cmd/Sim control Anti-aliased AV and AO
—_— S

Health/status
Initialization Msg/Data
2) -
Mode specific output (e.g. GCA data)
I ——

Figure 3. Level 11 INS Requirements Interface.

Model Capabilities and Approach

The SLS INS Model emulates the expected input/output and functional behavior of an inde-
pendent INS for the SLS GN&C design. The primary function of the INS is to perform inertial
navigation, a self-contained navigation technique in which the outputs of accelerometers and gyro-
scopes are used to track position, velocity, and orientation from a known set of initial conditions.
The INS is a strap down inertial navigation system where the inertial sensor assembly are mounted
rigidly to a non-rotating “platform”. As part of the primary function of the INS design, the INS is
intended to autonomously align its self to an inertial frame provided the present location in the
Earth Fixed Frame via gyrocompassing. As a secondary function, the INS samples the outputs of
the accelerometers and gyroscopes, anti-aliases, and down-samples for use by the flight control and
guidance systems. The design of the INS is intended to be fault tolerant and able to perform its
primary and secondary functions with a single fault and retain the ability to detect a second fault.
The SLS INS Model is intended to represent the aspects of software and hardware that impact
navigation and GN&C performance. The intended use of the SLS INS Model is to perform time-
domain analysis for the integrated GN&C design. The INS Model is not intended to capture the
physical interfaces within the SLS Integrated Avionics Architecture (I1AS), e.g. MIL-STD-1553
message and command composition.

Early analysis performed for trade and vehicle feasibility studies was conducted with a more
generic INS Model. The model was matured using hardware Critical Design Review (CDR) doc-
umentation including review products developed specifically for use in model development. This
allowed for the emulation of the actual algorithms implemented on the avionics unit and for the
included complexity of modeling low and high-rate processing groups, internal data filtering and
processing, as well as the exact navigation algorithm implementation. This level of precise model-
ing helps to generate a DMM that is easily verifiable. The overall functions and integration ap-
proach of the model is given in Figure 4. This describes the major components of the model includ-
ing inertial sensor error budgets, navigation software, and modeling of the output interface (in terms
of data generated, as opposed to direct implementation of the unit's ICD). This model is intended
for integration into both standalone analysis tools and 6DOF simulation tools.

S S S _._Driver/Wrapper
i INS Model Core
i Code Modules Data File(s

I

I
Defines interface |
assumpticns = Input Interface i

I

Defines Instrument error I
model implementation :>| Instrument Error Model H Instrument Error Budget J(::I DE"”E‘"’";:E':}”;:E“I Eror
and assumptions i
(oo] o Pl |

I e o Navigation Software assumptions. i
implementation including => Model
Defines assumed 1

I

I

I

I

I

I

I

]

I

I

|
I
i
i
|
I
i
|
i
i imp
j fiter mplementation SW & Filter Definitiens | =1 gyrocompassing, SDINS,
i
|
I
I
i
|
i
|
|
i.

Defines assumed S/W

Defines effective and gravity definition
i Defines latency, timing
implementation of => System Error Model Latency, Timing, &
latency and timing errors Y isali error.‘and ”0':’;5“5:’"
misalignmen eqts
Defines required output
" Defines output precision
Interface with effective |:> | Output Interface H Precision data] <= and antialiasing Req'ts

output precision model
implementation

Allows for Validation of Allows for Validation of
Model use and facilitates C_'I_"r:‘.dc‘:’“" 6-DOF Simulation Standalone Driver D:ﬁ‘:i‘“i:’:"d Model Implementation
Verification of Vehicle jeciony (MAVERIC) Data and Verification of Model

Performance Performance

Figure 4: INS Model Functional Flow.

The model was implemented in C/C++ in order to match frameworks and tools already used by
the team to support vehicle performance assessment. Another key design feature of the model is its
inherent ability for the same code to be integrated into multiple environments and tools. Cross-
verification of software between tools is used to ensure proper integration of the model into a new

simulation package and to provide the necessary input to test and analyze other vehicle functions.
The primary functionality and breakdown of the code is shown in Figure 5. This provides a high-
level view of the individual algorithms implemented in the model. A listing of the primary capa-
bilities and their rationale for inclusion is included in Table 1.

Table 1. INS Model Elements

Model Component Rationale
Chassis and Isolator Dynamic Re- | Modeling of vehicle's response to vibration and dynamic modes, allows for direct assessment
sponse Filters (High-Rate) of sensitivity to and adequacy of anti-aliasing filtering for downstream usage
Inertial Sensor Error Models Implementation of RINU Error Budget, capturing errors on inertial measurements, as well as
(High-Rate) noise and quantization modelling

Captures latency of sensor measurements and software processes, applied at high rate to

Delay Model (High-Rate) maximize precision

Models how the INS accumulates high-rate measurements at navigation rate and conversions

Dynamic Filtering (Low-Rate) to navigation frame measurements

Dynamic Compensation (Low- Implementation of coning and sculling algorithms used to capture errors of independent
Rate) measurement and navigation rate processes

Implementation of SLS-defined filter to ensure dynamic response of sensor measurements is

Anti-Aliasing Filter (Low-Rate) robust to aliasing risk for low-rate operations

Modeling of algorithms and software used in detecting and isolated sensor faults, required

FDIR (Low-Rate) for development of fault detection thresholds

Implementation of Gyrocompassing algorithms, attitude and state integrations, initialization
Inertial Navigation algorithms, frame definitions to assess integrated performance, sensitivity analysis, and inte-
gration

Model Verification and Validation

In contrast to the black-box approach taken with Level Il requirements specification, model
verification requires a high level of insight. Verification in part consisted of the inspection of in-
dividual function against the described hardware implementation in vendor documentation. Indi-
vidual error models were unit tested and compared against expected behaviors. Further, test cases
used by the INS vendor to qualify software were re-used to verify the model. Using the same input,
very close comparisons were made between results recorded during INS Flight Software Qualifi-
cation (FQT) and results from the model. During the V&YV process, a distinction was made between
developer and verifier to force independence between the model development and the model V&V.
This allowed for higher confidence in the results and allows for individuals not involved with model
development to gain insight into and understanding of the model. During the process, the primary
model developer role shifted from active development to responding to comments and actions from
the verification team. This process helped to provide additional insight into internal frame conven-
tions, error models, and dynamic response. The summary of the verification effort was the primary
product of this work and certified the model as verified for use in the SLS Vehicle Verification
Analysis Cycle-1 Analysis. 8

As the RINU program moved from hardware design to testing and qualification, test data rec-
orded from development, qualification, and acceptance testing was made available to the model
V&V team enabling validation efforts. Test data was also collected from a dynamic RINU gyro-
compassing alignment test performed with a flight-equivalent RINU. The test was developed and
performed by SLS Navigation at MSFC with cooperation from the Space Systems department.®

The modular design of the model and separation of error and navigation algorithms allows for
direct validation of software algorithms, helping to decouple from sensor error uncertainties. As a
result of this analysis, detailed validation was performed on the sensor's navigation algorithms.

Sensor calibration uncertainties are being used in statistical analysis to capture the robustness of
the model and support error model validation efforts. An Allan Deviation assessment of the error
models is being used to validate noise models, particularly in terms of sensor readout noise and
guantization effects. Further model validation will be conducted as part of assessment of Green
Run and a Frequency Response Test (FRT) to be performed at MSFC. The FRT will provide the
data required to validate the frequency response portion of the INS Model, including anti-aliasing
filter design and low frequency inertial sensor response. Once fully validated, the DMM may begin
the flight certification process. Model validation is ongoing and is expected to be completed prior
to SLS Flight Readiness Review.

SLS_RIMJ_chassisModel() | discrete_filterN() |
Moceis RINU chassis ransfer Generic 1-100" onder discete fier |
F T [e Ty T |
SLS_RIMJ_isolationModel() | discrete_filterN() |
Mocels RMNUisclatar transfer Generic 1-100" onder disoete filter
b ! "
e LT 515 RN
SL5_RIMJ_IMS ErrorModel() SLS_RINU_IMS Error_Saxis_Bias()
Corverts from 3-=pace toS-space, applies SLS_RINU_IMS_Error_Saxis_ScaleFactor()
instument ervor models. SLS_RIMJ_IMS_Error_Saxis_ScaleFactorasy()
SLS_RINU_IMS Error_Saxis_ScaleFactorNonLin()
SLS_RINU_IMS_Error_Saxis_ScaleFactorkK3()
SLS_RIMJ_IMS_Error_Saxis_KIP()
SLS_RINU_TNS() SLS_RIMJ_IMS_Error_Saxis_KIO()
Cheches F“RF::;"‘ vt SLS_RIM)_IMS Error_Saxis_RandomWalk()
appropnate FIR phase Lo comvert from SLS_RIMJ_IMS_Error_Saxis_ReadOutMoise()
SLS_RINU_IMS_Error_Saxis_Quantization()
Individual instrument error models.
55 RMU Erododd o
SLS_RIMI_Software() {55 R Eroiosd o |
Executes S-zpace (Dither/ lead, Maving
Aug) and F=p .
At e e, _ - oiter Fiter
e [Modng Average Fter |
SLS_RINU_IMS()
Checus FDR failure status, uses
3 .
e]
Anti-Aliasing Filter
S5 AN Emdloas op
FDIRSS_input() —
FDIRSS_run() Pruclsian Medel
Update FOIR data structure: run FOR
ageritims.
FSScmp
I Fitered Rates & Accsls.
inertial_navigation()
S
Rage, integrate dyr
r siate.
{5 A e Vengasen]

Figure 5. INS Model Code Structure

GPS MODEL FRAMEWORK

As part of the evolution from SLS Block 1 to Block 1B, the primary navigation component, the
RINU, is being moved up to the EUS. A GPS receiver will be integrated onto the stage to support
navigation aiding. The preliminary design and motivations are described by Oliver, et al.” Similar
to the RINU, a detailed DMM for the GPS receiver is required to support the development process.
The model is developed by the Level 11l Stages element to support Level Il GN&C design and
analysis. Additionally, the GPS Model must support implementation into simulation environments
including Hardware- and Software-in-the loop simulation, MAVERIC to support vehicle level
6DOF analysis, 6DOF V&YV simulations, and standalone navigation design tools. As such, a mod-
ular model is required with a well-defined interface in order to support a wide variety of software
frameworks.

To simplify the process and to convey model design expectations, the SLS Navigation team
developed the Marshall Advanced GPS Model for Analysis (MAGMA) in C++ in order to provide
a framework for capturing interface definitions and analysis functionality. The framework provides
a definition of the input and output interfaces and breakdown of internal functionality. The model
is an effective realization of model requirements conveying expectations in both form and function.
As part of integration with industry partners, this framework was released with an open-use license
to provide a starting point for model development. While the receiver-specific model is in devel-
opment, the generic framework can be used to support software integration and testing. An addi-
tional benefit of seeding the model was in the communication of design assumptions used for early
Design and Analysis Cycles (DAC).

MAGMA was originally implemented as a simulation asset used to provide insight into the GPS
receiver-specific functionality and help inform sensitivities needed for requirements development.
As such, the model includes the generic GPS functionalities required for modeling the onboard
software and navigation processes used on a typical receiver. This includes both generic function-
ality for loading files, estimating SV states, inserting noise onto the measurements, and assessing
link margin between the vehicle and individual GPS satellites. The model also has functions set
aside to support modeling receiver specific algorithms, processes, and capabilities, specifically in
terms of onboard error correction, navigation software, and output interface. As such, the generic
MAGMA framework can be used to model any number of individual requirements within the same
input and output interface and design. This allows for a common interface and helps to aid simula-
tion integration. A common framework enables rapid development and reuse for future applica-
tions. The functional elements of the model architecture are illustrated in Figure 6. This diagram
captures the high-level functionality and helps define the split between generic and receiver-spe-
cific capabilities.

MAGMA_GPS

? (Measurement Rate Group

Calculate true position Visibility check for
of GPS satellites Earth occlusion

Visibility Check for
elevation

Load configuration
variables into structure

Load true position of

vehicle into structure

Load truth ephemeris ¢

data from file
C) | .
H
Lo Apply errors to H
Load receiver ephemeris =] measurement (PR, PRR, t) H
data from file MAGMA_GPS_output - : |__(and measurement latenc E
----------- ‘- EmmsmmEnEE, :— FiESssmsssssmusssEismssEEEsssssassssmsmEsmsg
: : 2| calculate estimated Apply atmospheric |
= | Load antennamodels | & Hot? s s DRPY s =
" N N M [position of GPS sats and clock corrections n
= [into workingmemory |« . = H
H - Copy receiver data onto i ¢ =1
]
H
u
|
|

5 H
il : excemslinterfacs < . | Estimate state Process/smooth PR
Initialize variables ‘ < =

i

I

and PRR

i
..................) i
= Receiver Dependent % Warm - Tracking !

Components H Hot = Navigating !

(Output Rate Group)

Apply latencies to
output data and output

Figure 6. MAGMA Functionality.

This model seeks to capture the primary aspects of a GPS receiver to provide insight into system
performance, algorithm capability, and navigation functionalities. The application of this model is
focused on a multi-antenna system operating in an orbital environment. This is especially important
as the model will be used to help assess link closure and GPS availability at high altitudes on a

lunar-bound trajectory. As such, the model includes direct modeling of the individual antenna lo-
cations and orientations relative to the body frame. This allows for capturing moment arm effects,
and is necessary when assessing the performance of the onboard solution when moment arms can-
not be corrected algorithmically, i.e. when two RF inputs are joined prior to entering the receiver
hardware. Additionally, a large amount of detail is provided to model antenna gain patterns both
on the GPS SVs and vehicle. To accommodate this, the framework employs a modular interface to
load in fixed or axisymmetric gain patterns via input files to allow for more detailed assessment.
Full 2-d models are not included due to the uncertainty in GPS SV attitude. The framework allows
for input of receiver losses, noise temperature, and any amplification on the RF input line to support
calculation of signal power levels and carrier signal to noise ratio (C/No).

To support estimation of transmission losses and one-way light travel times, the MAGMA
framework supports generic GPS almanac, broadcast ephemeris, and final trajectory data for con-
stellation modeling. Newton interpolation was implemented to allow for use of the final trajectories
to determine SV state at a defined time. The framework enables assessment of the effects of ephem-
eris aging with individual inputs for truth and onboard ephemeris in order to assess sensitivity.
Combining the knowledge of constellation geometry, vehicle attitude and antenna placement, and
receiver characteristics, it is possible to determine number of satellites in view and determine fix
availability over the trajectory.

The core of the MAGMA framework is in the ability to model receiver latency and navigation
processing. This includes assessing latency of measurement to truth, rate of updates, and bus la-
tency. These aspects directly affect navigation filter development. The model provides functional-
ity dedicated to modeling of the onboard receiver algorithms. Currently, the model implements a
Least Squares solution to determine the vehicle state from GPS pseudorange and delta-range ob-
servations. This allows for direct emulation of the receiver's onboard algorithms, emulating direct
simulation of raw measurements, noise sources, and integration routines, providing a much higher
level of insight into onboard processes. With the framework, industry partners can include algo-
rithms unique to specific receivers as raw code or from an embedded library, allowing for mainte-
nance of proprietary information. Figure 7 shows position estimation errors from the MAGMA
Model with a notional receiver. This provides insight into errors across the mission, and also iden-
tifies where vehicle attitude maneuvering affects the state solution.

SonrLrror . Dot LedFS

-

N . .

g & £

1w ¥ i

3 A !
T 3

Figure 7. Notional MAGMA Errors through an In-space Trajectory

-
-
-
—

In addition to providing insight into receiver performance across a trajectory in terms of meas-
urement accuracy, MAGMA also allows for evaluation and assessment of availability. This enables
insight into sensitivities to receiver C/No parameters, orbital shape, and altitude over the trajectory.
Due to its modular nature, parts of the framework can be called similarly to GPSTK. This includes
loading RINEX, YUMA, or SEM files for simulation of the constellation. The broad functionality
enabled rapid assessment of GPS availability across a wide range of metrics and scenarios. Figure
8 shows notional results for a EUS-like mission and was used to generate movies to support visu-
alization of link closures over the reference trajectory. Another application is to assess availability

10

across the Earth system. Figure 9 captures availability at the receiver given spacecraft location.
Having a robust modeling framework allows for a rapid assessment for a variety of locations, al-
lowing for a parametric trade on position in Earth orbit, focusing on signal power levels received
at the spacecraft at specific times. These plots show slices at individual altitudes relative to the
equator with X, and y axis representing location on the plane. The colors in the charts represent
number of satellites in view, and provides insight into sensitivities to constellation geometry. The
red sphere represents Earth, with the black lines representing potential altitude operational require-
ments, i.e. 2500, 5000, or 8000 kilometers.

AN o e o
L AT i

%10" Atgaa 4y S At 186889 w10 A 17000

5 2 2
G R R R T 2 45 1 @5 0 05 1 15 2) 45 4 05 0 05 1 15 2

Figure 9: GPS Availability (Number of Satellites in View) as a Function of Altitude

Utilization of a common framework has allowed SLS Navigation to perform detailed sensitivity
analysis and performance evaluation, while EUS GPS Receiver design trades are being completed.
This has allowed for development of onboard navigation filtering algorithms to support vehicle
CDR-level design. Additionally, this allowed the prime contractor to rapidly develop and begin
work on receiver-specific functionality and deliver a version of the framework back to NASA team-
mates for reintegration and development. Post- GPS receiver development and integration, this re-
delivered model will act as a DMM for the specific hardware in use, with algorithms and perfor-
mance verified and validated against vendor designs and testing data thus allowing for a high level
of confidence in integrated performance.

CONCLUSIONS

From a SLS Navigation perspective, the MBD approach has been hugely successful in focusing
design efforts and providing a mechanism for insight required for design and analysis. Along the
way some key lessons have been learned. Each Model implementation has been unique and re-
quired flexibility to meet the developer, user, and program needs for the specific application.

11

With the Block 1 GN&C Model, the effort required to implement software to FSW standards
was not fully appreciated. This has been rectified by focusing effort early in designing code ac-
cording to standard and by incorporating updates to GN&C Model into the design process. Addi-
tionally, the paradigm shift from traditional software requirements to the MBD approach has con-
flicted with established CMMI certified processes. A FSW Requirements Document is required as
a basis for a FSW test program, but there’s a balance between too much detail requiring increased
overhead associated with requirements modification and not enough detail resulting in inadequate
test coverage. Also, if the approach is culturally different than what has been done before, effort
is required to defend the approach.

Very detailed Design Data Requirements and very tight integration with the INS vendor were
key to enabling the detailed development of the INS Performance Model. Very early in the pro-
curement process, data required for model development was specifically described and the INS
supplier was contractually obligated to deliver that data. Additionally, test data that will be used
for model validation from the hardware supplier needs to be defined early in contractual negotia-
tions to ensure data availability in sync with model verification and validation efforts. Similarly,
key areas of sensitivity should be defined early. If the areas of sensitivity are not adequately cov-
ered by vendor testing, then vendor test plans should be augmented or supplemental testing
planned.

In the development of the INS Model, responsibility for the model intended for use in HWIL
simulations and the performance model intended for vehicle analysis was split, resulting in two
different models with different capabilities and different performance predictions. In the initiation
of the GPS Receiver DMM development, a plan was developed to use the same core model sup-
plemented with use-specific code to avoid a cross-validation effort later. Lastly, model V&V
required more effort than originally expected. Scheduling was also more difficult than expected
due to repeated hardware and testing delays. This led to Program hesitance to accept further in-
house modeling responsibility. Ultimately, the increased insight helped to better inform the Navi-
gation Team resulting in an improved design at a significant cost savings. This level of insight is
needed to provide confidence in hardware testing results and expected flight performance.

REFERENCES
L'W. Gerstenmaier. “HEO Status Report”. NASA. November 29th, 2017.

2W. Gerstenmaier. “Progress in Defining the Deep Space Gateway and Transport Plan”. Presentation to the NASA Ad-
visory Council. NASA. March 28th, 2017.

3 J. Hutt, J., Whitehead, & J. Hanson,. (2017). “NASA's Space Launch System: Systems Engineering Approach for Af-
fordability and Mission Success”. In AIAA SPACE and Astronautics Forum and Exposition (p. 5330).

4 Department of Defense, Directive 5000.59, M&S Management, 1998.

5J. Hanson. “SLS Vehicle Modeling and Simulation”. NDIA Annual Systems Engineering Conference; 18th; 26-29 Oct.
2015; Springfield, VA, United States

6 MSFC SLS Navigation Working Group. “SLS Navigation Flight Software Description”. February 13, 2017.

"T. E. Oliver, et al. "Space Launch Systems Block 1B Preliminary Navigation System Design", Proceedings of the AAS
Guidance and Control Conference, Breckenridge, CO., 2018.

8 Bernard, W. & Geohagan, K. (2016) “Verification of the Redundant Inertial Navigation Unit (RINU) Model, DMM-
CS-0411”. Report included with delivery of DMM-CS-0411 v3.0.

9K. Geohagan, et al. "6DOF Testing of the SLS Inertial Navigation Unit", Proceedings of the AAS Guidance and Control
Conference, Breckenridge, CO., 2018.

12

