

AAS 18-132: 6DOF Testing of the SLS

Inertial Navigation Unit

Kevin Geohagan, MSFC/ESSCA William Bernard, MSFC/ESSCA T. Emerson Oliver, MSFC/ESSCA Jared Leggett, MSFC/NASA Dennis J. Strickland, MSFC/ESSCA

Test Background/Objectives

Test proposed & conducted to:

- Gain insight into gyrocompassing performance of a flight-like
 RINU under representative SLS on-pad dynamics
- Provide gyrocompassing test data for validation of the RINU performance model
- Test planned pre-launch RINU operational procedures
- Assess the robustness of the RINU GCA algorithm to larger-thanpredicted SLS on-pad dynamic environments
- Performed in MSFC 6DOF Table Facility formerly Contact Dynamics Simulation Lab (CDSL), site of:
 - Hubble Space Telescope deployment, service, and Flight Support System (for deorbit), docking/berthing
 - Shuttle/ISS docking/berthing
 - HWIL Space Shuttle Arm training

Facility Test Equipment/Test Article

- Equipment:
 - 6DOF table with ~4m² top
 - Stewart platform (hexapod) design
 - hydraulically actuated
 - *ARTEMIS HWIL simulation framework
 - commands table dynamics
 - emulates SLS flight software
 - *MAESTRO user interface
 - live data display
 - provides test operator interface
 - records1553 bus traffic
 - GPS antenna for accurate timetagging of data
 - Cameras, displays
 - Power supply, power quality monitoring/recording system

- Theodolite, North-referenced mirrors
 - measures RINU true azimuth
- Leica Laser Tracker System (LLTS)
 - tracks position and attitude of table
- Leica inclinometer
 - co-located with RINU to measure tilt

- Test Article is RINU Flight-Equivalent Unit (FEU)
 - identical hardware to RINU flight units
 - "equivalent" because acceptance testing is abbreviated
 - no shock/vibration/thermal testing

^{*} Used for SLS-Program-requirement-verification HWIL testing

Test Operational Flow

- Power on ARTEMIS/MAESTRO (HWIL software), table hydraulics & control, data recording/monitoring devices
 - confirm nominal operation
- Power on RINU, allow to thermally stabilize
- Initialize RINU
- Initiate 6DOF table dynamics
- Command RINU to GCA mode, gyrocompass for 60 minutes
- Command RINU to navigation mode
- Table dynamics end; lower table and power off
- Measure RINU azimuth via theodolite
- Power off RINU

Table Motion

Test Case Summary

Purpose	Description
Preliminary Testing	Static GCA only; no nav
Baseline GCA	Static GCA with nav
Twist & Sway	3 dynamic twist & sway models:
	 Latest SLS
	• Early SLS
	 Vendor heritage
Robustness Testing	SLS twist & sway with scaled up dynamics
24-Hour Static	24-hour static GCA
7-Hour GCA	7-hour dynamic GCA

Purpose:

 To provide validation evidence for RINU model by comparing hardware/model performance

Procedure:

- delta-V & delta-O
 inputs to RINU GCA
 algorithm reported on
 1553
- input to the RINU performance model's GCA code (bypassing sensor model)
- compare GCA solution to hardware

- Analysis of frame counter shows some missing data
 - due to asynchronous polling effects

 Missing data corresponds with some anomalous error growth times

Missing data was replaced with interpolated values

 Using interpolated data, comparison results were improved

Twist & Sway Dynamics	Difference in GCA Azimuth, radians
Early SLS	-0.000123
	0.000162
Vendor Heritage	0.000128
	0.000048
Latest SLS	-0.00054
SLS X4	0.000026
SLS X8	-0.000078
SLS X16	-0.000199
SLS X32	-0.000316
SLS X64	-0.000339

Post-Test Analysis: Monte Carlo Comparison

• Purpose:

Assess hardware test performance relative to expectation

• Procedure:

- 500-case Monte Carlos
 - Same twist & sway dynamics used to produce table dynamics
 - 2 error budgets:
 - vendor capability estimate (labeled "NEB")
 - derived from ATP test limits (labeled "ATP")
- Azimuth error for Monte Carlo solutions co-plotted against that measured in test

Post-Test Analysis: Monte Carlo Comparison

Twist & Sway Model

- Vendor heritage case very near bounds of model prediction
 - Possible explanations:
 - dynamics not structurally derived
 - large-amplitude dynamics—possibly stressing table control

Post-Test Analysis: Monte Carlo Comparison

Twist & Sway Dynamics Scaling Factor

- All scaled-dynamics cases comfortably within modeled bounds
- Negligible sensitivity to error budget across all tested twist & sway environments

Post-Test Analysis: Sensor Noise Characterization

Purpose:

- Examine RINU sensor noise and error characteristics
- Provide validation evidence for RINU performance model

Procedure:

- Data from 24-hour runs used to perform Allan Deviation, spectral analysis
- Recreated test condition using RINU model for comparison
- Findings to feed back to change recommendations for RINU model developers

Conclusions

Testing achieved all test objectives

- Gained insight into GCA performance
- Produced test data for RINU model validation
- Tested pre-launch RINU operational procedures
- Assessed RINU GCA robustness

Post-test analysis providing RINU model validation insight

- Sensor bypass analysis provided direct GCA solution comparison
- Modeled sensor noise/error characteristics were directly assessed via Allan Deviation and spectral analysis
 - Will likely drive future model updates

RINU hardware GCA performance was within expectation for all SLS and SLS-derived (scaled) environments

- Some potential lack of conservatism in modeled performance under vendor heritage environment
 - May merit further testing to confirm

Thank you!

