

Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

Russell DeHart

Systems Engineer, NASA Goddard Space Flight Center, Space Science Mission Operations,

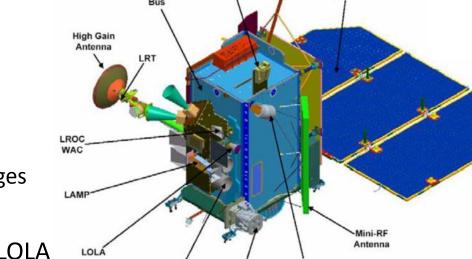
KBRwyle

- Study Motivation & Goal
- Lunar Reconnaissance Orbiter (LRO) Overview
 - Spacecraft
 - Angular momentum control
- Methodology
 - Removing effects of maneuvers
 - Forming piece-wise regression model
- Results
 - Test against 2013 2014 telemetry
- Conclusion & Future Work

Introduction

Study Motivation & Goal

LRO Overview


LRO Angular Momentum

А

Legacy planning procedures often resulted in unloads being performed more frequently than needed

Motivation

- Conserve fuel
 - Fuel remaining at start of 2016: ≈ 34 kg
 - Current fuel usage: ≈ 4 kg/yr
 - Thrusters used for momentum unloads (Δ Hs)
 - Includes station keeping & ΔHs , but not orbit changes
- Increase science collection
 - Three instruments safed during Δ Hs: DLRE, LEND, LOLA
 - One also decontaminated for 24 hrs thereafter: LAMP

LEND

Spacecraft

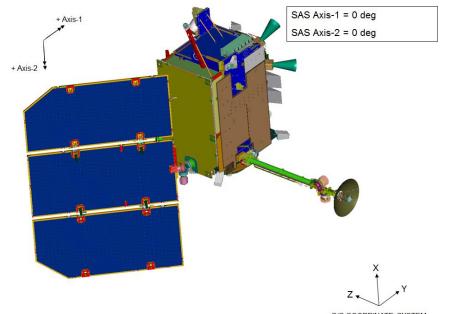
LROC

NACs (2)

Solar Array

Systen

Divine


GOAL: Build model to accurately predict growth in LRO angular momentum, enabling optimal scheduling

Changed several times, now 20 km x 150 km

LRO Spacecraft Overview

- Nominally nadir-pointing
- Solar Array (SA)
 - Has inner & outer gimbals
 - Uses tracking and parked configurations
 - Tracking
 - $|\beta| < 30^\circ$: Gimbals track sun, but with +30° outer gimbal offset
 - $30^{\circ} < |\beta| < 35^{\circ}$: Gimbals track sun, but with -30° outer gimbal offset
 - Parked
 - $35^{\circ} < |\beta| < 55^{\circ}$: park inner gimbal at -90°, outer gimbal at +45°
 - $|\beta| > 55^\circ$: park inner gimbal at -90°, outer gimbal at +15°
 - Offsets and fixed angles selected to maintain gimbals < 45° C

LRO Attitude & Disturbance Torques

- Attitude control
 - Reaction wheel assembly (RWA) used to:
 - Slew spacecraft

Gravity gradient torque

• Maintain attitude, countering disturbance torques

Since lunar orbit, only 2 significant disturbance torques

Solar array dominant term due to large moment arm

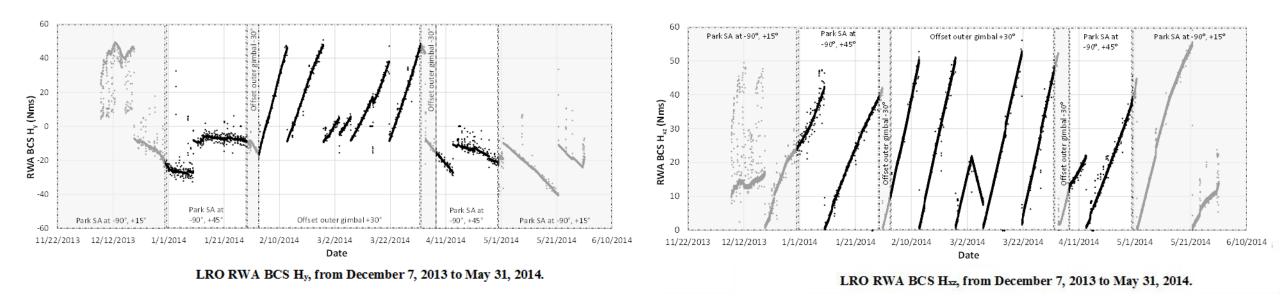
Movement of solar array dominates changes in LRO inertia matrix

- RWA angular momentum capacity
 - 115 Nms at nominal bus voltage
 - 80 Nms at minimum bus voltage

Solar radiation pressure (SRP) torque

LRO Reaction Wheel Assembly

All disturbance torque orbitaveraged values are simply functions of β



- Body Coordinate System (BCS) H_y very dependent on solar array configuration (and hence β)
- Activities, like pitch & yaw campaigns in Dec 2013 can overwhelm trend

Model must include both regression against β and adjustments for activities

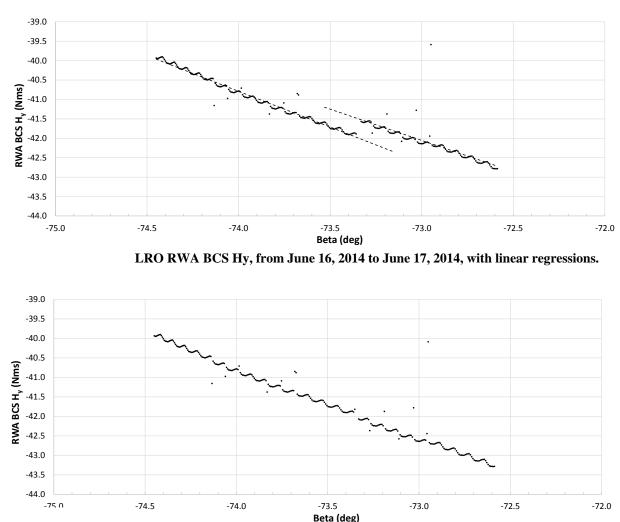
Methodology

Overview

Determining effects of maneuvers

Forming piece-wise regression model

Methodology Overview

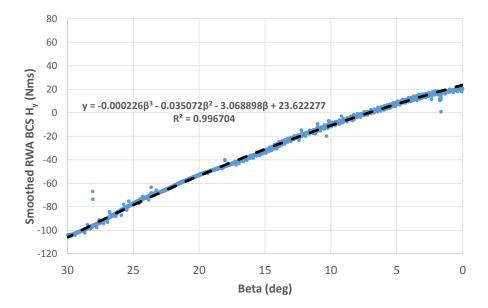


- Piece-wise polynomial least-squares regression
 - One year's worth of data
 - Regress Hy and Hxz against beta separately, with Htot simply being RSS
 - October 2014 October 2015
 - Covers full cycle of beta values
 - Linear and cubic regressions
 - Define piece boundaries based on SA modes
- First remove effects of slews & unloads to see 'natural' trend
 - Analyze angular momentum in vicinity of each and every activity
 - Collect perturbations induced by activities & make ruleset
 - Perform regression
 - Use regression coefficients—and perturbations—to predict future momentum

LRO RWA BCS H_y, from June 16, 2014 to June 17, 2014, without effect of roll maneuver. nuary 2017. 10

Determining Effects of Maneuvers

- Perform linear regressions on either side of activity
 - Perturbance is vertical step change
 - Remove step change to smooth data
 - Repeat several hundred times
 - Example: 0.5-Nms increase in Hy caused by 59° LROC roll
- Make "ruleset"
 - Group slews by type and beta regime at time of slew
 - Define changes in angular momentum due to slew/beta pairs



11

Forming Piece-Wise Regression Model

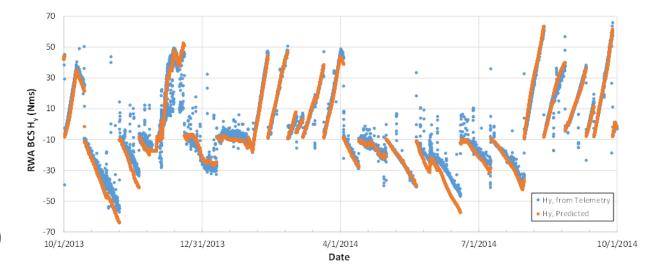
- Perform regressions with now smooth data
 - Least squares
 - On Hy & Hxz
 - SA modes guide boundary selection
 - Example at right: beta going from 30° to 0°
- Record six decimal places for coefficients for sufficient precision in angular momentum
- R² values > 0.99 typical

Smoothed LRO RWA BCS $H_{_V}\!,$ for β spanning from 30° to 0°.

Selected linear regression when strongly linear, arbitrarily selected cubic otherwise—it's all about simply achieving a good fit

Results

Hy

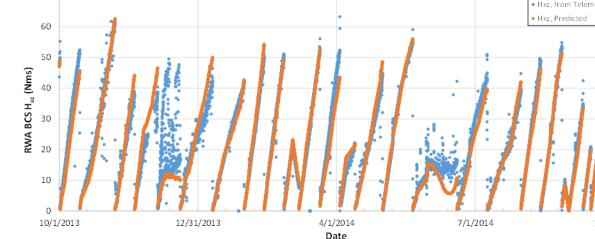

Hxz

Total H

2013 – 2014 Test: Hy

- Use regression from Oct 2014 Oct 2015 to predict angular momentum in previous year
- Immediately after each unload
 - Initialize model to values from telemetry (Hy≈-9 Nms, Hxz≈0 Nms)
 - Predict angular momentum until next unload
 - 'Baseline' prediction based on:
 - Regression coefficients
 - Beta values predicted at time by FD
 - Add step changes using list of performed slews

Achieved very good fit, even during times when spacecraft activities completely obscured underlying trend



70

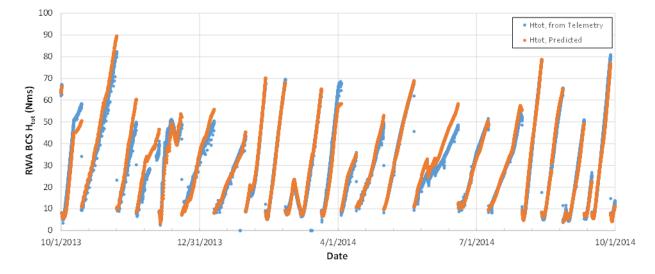
14

10/1/2014

Achieved good fit, though most challenging period is when beta has just retreated away from ± 90°

- Largely very good agreement except for Dec 2013 & June 2014
 - Corresponds to when beta has just retreated away from ± 90°
 - Morphology of predicted trend not matching observations
 - Max prediction errors approaching 10 Nms
- Have since formed new regression equations with better, though not perfect fit
- Total H is most important

2013 – 2014 Test: Hxz



2013 – 2014 Test: Total H

- Total H used for unload planning
- Small prediction errors at time of next unload:
 - Mean = 3.7 Nms
 - Median = 2.7 Nms
 - Max = 10.6 Nms
- Operational results would likely be even better than here
 - OPSCON would include using tool intermittently
 - Opportunities for re-synching model against telemetry

Prediction capabilities vastly outperform legacy method employed by mission

Conclusion

Summary

Future Work

Discussion

- LRO operations now uses these accurate angular momentum predictions
 - Especially accurate if schedule known far in advance
 - Currently schedule 1 2 weeks in advance
 - Mission investigating scheduling farther out based on results of study
- Momentum unloads now performed more optimally
 - Momentum target now selected depending on trend experienced after unload
 - For example, don't select -10 Nms if trend is to become more negative
 - Delays next unload by 3 9 days, depending on trend
 - Have waited as much as 42 days between unloads
- Study has enabled other improvements
 - Identified slews that counteract trend in angular momentum
 - Hope to eventually control angular momentum without using propellant

Future Work

- Developing tool to deliver to operations team
- Analyzing angular momentum behavior as beta retreats from ± 90°
- Testing the use of select operational slews to decrease angular momentum
 - Off-nadir attitude providing beneficial gravity-gradient torque
 - SRP smaller factor

LRO Mission Operations Center

Thank you for your attention

SciTech 2017, Grapevine, Texas, 9 – 13 January 2017.